Graph & BFS

Lecture 1

Graphs

Extremely useful tool in modeling problems \bowtie Consist of: Vertices Vertices can be Edges considered "sites" D Ε or locations. A **Edges** represent F connections. В Vertex

Edge

Graph & BFS / Slide 3

Application

Air flight system

- Each vertex represents a city
- Each edge represents a direct flight between two cities
- A query on direct flights = a query on whether an edge exists
- A query on how to get to a location = does a path exist from A to B
- We can even associate costs to edges (weighted graphs), then ask "what is the cheapest path from A to B"

Definition

- ⊠ A graph G=(V, E) consists a set of vertices, V, and a set of edges, E.
- \boxtimes Each edge is a pair of (*v*, *w*), where v, w belongs to V
- If the pair is unordered, the graph is undirected; otherwise it is directed

An undirected graph

Definition

Complete Graph

- How many edges are there in an N-vertex complete graph?
- Bipartite Graph
 - What is its property? How can we detect it?
- \boxtimes Path
- ⊠Tour
- \bowtie Degree of a vertices
 - Indegree
 - Outdegree
 - Indegree+outdegree = Even (why??)

Graph Variations

\bowtie Variations:

- A connected graph has a path from every vertex to every other
- In an undirected graph:
 - rightarrow Edge (u,v) = edge (v,u)
 - $rightarrow No \ self-loops$
- In a *directed* graph:
 - \simeq Edge (u,v) goes from vertex u to vertex v, notated u \rightarrow v

Graph Variations

\bowtie More variations:

A weighted graph associates weights with either the edges or the vertices
 E.g., a road map: edges might be weighted w/ distance
 A multigraph allows multiple edges between the same vertices
 E.g., the call graph in a program (a function can get called from multiple points in another function)

Graphs

 \boxtimes We will typically express running times in terms of |E| and |V| (often dropping the 's) • If $|E| \approx |V|^2$ the graph is dense • If $|E| \approx |V|$ the graph is sparse \boxtimes If you know you are dealing with dense or sparse graphs, different data structures may make sense

Graph Representation

Two popular computer representations of a graph. Both represent the vertex set and the edge set, but in different ways.

- 1. Adjacency Matrix
 - Use a 2D matrix to represent the graph
- 2. Adjacency List Use a 1D array of linked lists

Graph & BFS / Slide 10

Adjacency Matrix

- ☑ 2D array A[0..n-1, 0..n-1], where *n* is the number of vertices in the graph
- Each row and column is indexed by the vertex id
 - e,g a=0, b=1, c=2, d=3, e=4
- \bowtie A[i][j]=1 if there is an edge connecting vertices *i* and *j*; otherwise, A[i][j]=0
- The storage requirement is $\Theta(n^2)$. It is not efficient if the graph has few edges. An adjacency matrix is an appropriate representation if the graph is dense: $|E|=\Theta(|V|^2)$
- \boxtimes We can detect in O(1) time whether two vertices are connected.

Simple Questions on Adjacency Matrix

 Is there a direct link between A and B?
 What is the indegree and outdegree for a vertex A?

- ➢How many nodes are directly connected to vertex A?
- Is it an undirected graph or directed graph?

Suppose ADJ is an NxN matrix. What will be the result if we create another matrix ADJ2 where ADJ2=ADJxADJ?

Graph & BFS / Slide 12

Adjacency List

- If the graph is not dense, in other words, sparse, a better solution is an adjacency list
- ☑ The adjacency list is an array A[0..n-1] of lists, where n is the number of vertices in the graph.
- \boxtimes Each array entry is indexed by the vertex id
- Each list *A[i]* stores the ids of the vertices adjacent to vertex *i*

Adjacency Matrix Example

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0	1
2	0	1	0	0	1	0	0	0	1	0
3	0	1	0	0	1	1	0	0	0	0
4	0	0	1	1	0	0	0	0	0	0
5	0	0	0	1	0	0	1	0	0	0
6	0	0	0	0	0	1	0	1	0	0
7	0	1	0	0	0	0	1	0	0	0
8	1	0	1	0	0	0	0	0	0	1
9	0	1	0	0	0	0	0	0	1	0

Graph & BFS / Slide 14

Adjacency List Example

Storage of Adjacency List

- \bowtie The array takes up $\Theta(n)$ space
- \bowtie Define degree of *v*, deg(*v*), to be the number of edges incident to *v*. Then, the total space to store the graph is proportional to:

- An edge $e = \{u, v\}$ of the graph contributes a count of 1 to deg(u) and contributes a count 1 to deg(v)
- Therefore, $\Sigma_{vertex v} deg(v) = 2m$, where *m* is the total number of edges
- \boxtimes In all, the adjacency list takes up $\Theta(n+m)$ space
 - If m = O(n²) (i.e. dense graphs), both adjacent matrix and adjacent lists use Θ(n²) space.
 - If m = O(n), adjacent list outperform adjacent matrix
- \bowtie However, one cannot tell in O(1) time whether two vertices are connected

Adjacency List vs. Matrix

☑ Adjacency List

- More compact than adjacency matrices if graph has few edges
- Requires more time to find if an edge exists

☑ Adjacency Matrix

Always require n² space
 This can waste a lot of space if the number of edges are sparse
 Can quickly find if an edge exists

Path between Vertices

A path is a sequence of vertices (v₀, v₁, v₂,..., v_k) such that:
 ■ For $0 \le i < k$, {v_i, v_{i+1}} is an edge

Note: a path is allowed to go through the same vertex or the same edge any number of times!

 ⊡ The length of a path is the number of edges on the path
 Graph & BFS / Slide 18

Types of paths

A path is simple if and only if it does not contain a vertex more than once.

A path is a cycle if and only if v₀= v_k
 The beginning and end are the same vertex!
 A path contains a cycle as its sub-path if some vertex appears twice or more

Path Examples

Are these paths?

Any cycles?

What is the path's length?

- 1. {a,c,f,e}
- 2. {a,b,d,c,f,e}
- 3. {a, c, d, b, d, c, f, e}
- 4. {a,c,d,b,a}
- 5. {a,c,f,e,b,d,c,a}

Graph Traversal

➢ Application example

- Given a graph representation and a vertex s in the graph
- Find paths from s to other vertices
- ⊠Two common graph traversal algorithms
 - ▷ Breadth-First Search (BFS)
 - Find the shortest paths in an unweighted graph
 - ▷ Depth-First Search (DFS)
 - Topological sort
 - Find strongly connected components

BFS and Shortest Path Problem

Given any source vertex *s*, BFS visits the other vertices at increasing distances away from s. In doing so, BFS discovers paths from s to other vertices
 What do we mean by "distance"? The number of edges on a path from s

Example

Consider s=vertex 1

Nodes at distance 1? 2, 3, 7, 9

Nodes at distance 2? 8, 6, 5, 4

Nodes at distance 3?

Graph Searching

- \boxtimes Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- ⊠Ultimately: build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
 - Note: might also build a *forest* if graph is not connected

Breadth-First Search

- \boxtimes "Explore" a graph, turning it into a tree
 - One vertex at a time
 - Expand frontier of explored vertices across the *breadth* of the frontier
- Builds a tree over the graph
 - Pick a source vertex to be the root
 - Find ("discover") its children, then their children, etc.

Breadth-First Search

Every vertex of a graph contains a color at every moment:

- White vertices have not been discovered All vertices start with white initially
- Grey vertices are discovered but not fully explored
 They may be adjacent to white vertices
- Black vertices are discovered and fully explored
 They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search: The Code

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
{
   for each vertex u \in V-\{s\}
   {
      color[u]=WHITE;
       prev[u]=NIL;
       d[u]=inf;
   }
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE(Q,s);
```

```
While (Q not empty)
{
  u = DEQUEUE(Q);
  for each v \in adj[u]{
    if (color[v] ==
 WHITE) {
        color[v] = GREY;
        d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue (Q, v);
    }
  color[u] = BLACK;
     25
```


Vertex	r	S	t	u	V	w	X	у
color	W	W	W	W	W	W	W	W
d	∞							
prev	nil							

vertex	r	S	t	u	V	w	X	У
Color	W	G	W	W	W	W	W	W
d	∞	0	∞	∞	∞	∞	∞	∞
prev	nil	nil	nil	nil	nil	nil	nil	nil

prev

nil

S

nil

W

nil

S

W

nil

Graph & BFS / Slide 36

BFS: The Code (again)

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
{
   for each vertex u \in V-\{s\}
   {
      color[u]=WHITE;
       prev[u]=NIL;
       d[u]=inf;
   }
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE(Q,s);
```

```
While (Q not empty)
{
  u = DEQUEUE(Q);
  for each v \in adj[u]{
    if (color[v] ==
 WHITE) {
        color[v] = GREY;
        d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue (Q, v);
    }
  color[u] = BLACK;
     36
```

Breadth-First Search: Print Path

Data: color[V], prev[V],d[V]

```
Print-Path(G, s, v)
{
  if(v==s)
       print(s)
   else if(prev[v]==NIL)
       print(No path);
  else{
       Print-Path(G,s,prev[v]);
       print(v);
   }
}
```

Amortized Analysis

Stack with 3 operations:
 Push, Pop, Multi-pop
 What will be the complexity if "n" operations are performed?

BFS: Complexity

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
{
   for each vertex u \in V - \{s\}
      color[u]=WHITE;
                         O(V)
       prev[u]=NIL;
       d[u]=inf;
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE(Q,s);
```

```
While (Q not empty)
           u = every vertex, but only once
                           (Why?)
  u = DEQUEUE(Q);
  for each v \in adj[u] {
   if(color[v] == WHITE) {
         color[v] = GREY; O(V)
        d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue (Q, v);
  color[u] = BLACK;
   What will be the running time?
```

Total running time: O(V+E)

Breadth-First Search: Properties

- BFS calculates the shortest-path distance to the source node
 - Shortest-path distance δ(s,v) = minimum number of edges from s to v, or ∞ if v not reachable from s
 - Proof given in the book (p. 472-5)
- BFS builds *breadth-first tree*, in which paths to root represent shortest paths in G
 - Thus can use BFS to calculate shortest path from one vertex to another in O(V+E) time

Application of BFS

Find the shortest path in an undirected/directed unweighted graph.
Find the bipartiteness of a graph.
Find cycle in a graph.
Find the connectedness of a graph.

Books

⊠Cormen – Chapter 22 – elementary Graph Algorithms \boxtimes Exercise you have to solve: ■ 22.1-5 (Square) <u>22.1-6 (Universal Sink)</u> ■ 22.2-6 (Wrestler) 22.2-7 (Diameter) ■ 22.2-8 (Traverse)