
Graph & BFS

Lecture 1



Graph & BFS / Slide 2

Graphs

Extremely useful tool in modeling problems

Consist of:

 Vertices

 Edges D

E

A

C

F
B

Vertex

Edge

Vertices can be

considered “sites”

or locations.

Edges represent

connections.



Graph & BFS / Slide 3

Application

Air flight system

• Each vertex represents a city

• Each edge represents a direct flight between two cities

• A query on direct flights = a query on whether an edge exists

• A query on how to get to a location = does a path exist from A to B

• We can even associate costs to edges (weighted graphs), then 

ask “what is the cheapest path from A to B”



Graph & BFS / Slide 4

Definition
 A graph G=(V, E) consists a set of vertices, V, and a set 

of edges, E.

 Each edge is a pair of (v, w), where v, w belongs to V

 If the pair is unordered, the graph is undirected; 

otherwise it is directed

{c,f}

{a,c}{a,b}

{b,d} {c,d}

{e,f}

{b,e}

An undirected graph



Graph & BFS / Slide 5

Definition

Complete Graph

 How many edges are there in an N-vertex 

complete graph?

Bipartite Graph

 What is its property? How can we detect it?

Path

Tour

Degree of a vertices

 Indegree

 Outdegree

 Indegree+outdegree = Even (why??)



Graph & BFS / Slide 6

Graph Variations

Variations:

 A connected graph has a path from every 

vertex to every other

 In an undirected graph:
Edge (u,v) = edge (v,u)

No self-loops

 In a directed graph:
Edge (u,v) goes from vertex u to vertex v, notated uv



Graph & BFS / Slide 7

Graph Variations

More variations:

 A weighted graph associates weights with 

either the edges or the vertices
E.g., a road map: edges might be weighted w/ distance

 A multigraph allows multiple edges 

between the same vertices
E.g., the call graph in a program (a function can get 

called from multiple points in another function)



Graph & BFS / Slide 8

Graphs

We will typically express running times 

in terms of |E| and |V| (often dropping 

the |’s)

 If |E|  |V|2 the graph is dense

 If |E|  |V| the graph is sparse

If you know you are dealing with dense 

or sparse graphs, different data 

structures may make sense



Graph & BFS / Slide 9

Graph Representation

 Two popular computer representations of 

a graph.  Both represent the vertex set 

and the edge set, but in different ways.

1. Adjacency Matrix

Use a 2D matrix to represent the graph

2. Adjacency List

Use a 1D array of linked lists



Graph & BFS / Slide 10

Adjacency Matrix

 2D array A[0..n-1, 0..n-1], where n is the number of vertices in 
the graph

 Each row and column is indexed by the vertex id
 e,g a=0, b=1, c=2, d=3, e=4

 A[i][j]=1 if there is an edge connecting vertices i and j; otherwise, 
A[i][j]=0

 The storage requirement is Θ(n2). It is not efficient if the graph 
has few edges. An adjacency matrix is an appropriate
representation if the graph is dense: |E|=Θ(|V|2)

 We can detect in O(1) time whether two vertices are connected.



Graph & BFS / Slide 11

Simple Questions on Adjacency Matrix

Is there a direct link between A and B?

What is the indegree and outdegree for 
a vertex A?

How many nodes are directly connected 
to vertex A?

Is it an undirected graph or directed 
graph?

Suppose ADJ is an NxN matrix. What 
will be the result if we create another 
matrix ADJ2 where ADJ2=ADJxADJ?



Graph & BFS / Slide 12

Adjacency List

 If the graph is not dense, in other words, sparse, a 
better solution is an adjacency list

 The adjacency list is an array A[0..n-1] of lists, where 
n is the number of vertices in the graph.

 Each array entry is indexed by the vertex id

 Each list A[i] stores the ids of the vertices adjacent to 
vertex i



Graph & BFS / Slide 13

Adjacency Matrix Example

2

4

3

5

1

7

6

9

8

0 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 1 0 1

2 0 1 0 0 1 0 0 0 1 0

3 0 1 0 0 1 1 0 0 0 0

4 0 0 1 1 0 0 0 0 0 0

5 0 0 0 1 0 0 1 0 0 0

6 0 0 0 0 0 1 0 1 0 0

7 0 1 0 0 0 0 1 0 0 0

8 1 0 1 0 0 0 0 0 0 1

9 0 1 0 0 0 0 0 0 1 0



Graph & BFS / Slide 14

Adjacency List Example

2

4

3

5

1

7

6

9

8

0 0

1

2

3

4

5

6

7

8

9

2 3 7 9

8

1 4 8

1 4 5

2 3

3 6

5 7

1 6

0 2 9

1 8



Graph & BFS / Slide 15

 The array takes up Θ(n) space

 Define degree of v, deg(v), to be the number of edges incident to 
v.  Then, the total space to store the graph is proportional to:

 An edge e={u,v} of the graph contributes a count of 1 to deg(u) 
and contributes a count 1 to deg(v)

 Therefore, Σvertex vdeg(v) = 2m, where m is the total number of 
edges

 In all, the adjacency list takes up Θ(n+m) space
 If m = O(n2) (i.e. dense graphs), both adjacent matrix and adjacent 

lists use Θ(n2) space.

 If m = O(n), adjacent list outperform adjacent matrix

 However, one cannot tell in O(1) time whether two vertices are 
connected

Storage of Adjacency List


v

v
vertex 

)deg(



Graph & BFS / Slide 16

Adjacency List vs. Matrix

Adjacency List
 More compact than adjacency matrices if graph has few 

edges

 Requires more time to find if an edge exists

Adjacency Matrix
 Always require n2 space

This can waste a lot of space if the number of edges are sparse

 Can quickly find if an edge exists



Graph & BFS / Slide 17

Path between Vertices

A path is a sequence of vertices (v0, v1, 
v2,… vk) such that:

 For 0 ≤ i < k,  {vi, vi+1} is an edge

Note: a path is allowed to go through the same vertex or the 
same edge any number of times!

The length of a path is the number of 
edges on the path



Graph & BFS / Slide 18

Types of paths

A path is simple if and only if it does 

not contain a vertex more than 

once.

A path is a cycle if and only if v0= vk
The beginning and end are the same vertex!

A path contains a cycle as its sub-path if 

some vertex appears twice or more



Graph & BFS / Slide 19

Path Examples

1. {a,c,f,e}

2. {a,b,d,c,f,e}

3. {a, c, d, b, d, c, f, e}

4. {a,c,d,b,a}

5. {a,c,f,e,b,d,c,a}

Are these paths?

Any cycles?

What is the path’s length?



Graph & BFS / Slide 20

Graph Traversal

 Application example

Given a graph representation and a vertex s

in the graph

 Find paths from s to other vertices

Two common graph traversal algorithms
 Breadth-First Search (BFS)

 Find the shortest paths in an unweighted graph

 Depth-First Search (DFS)

 Topological sort

 Find strongly connected components



Graph & BFS / Slide 21

BFS and Shortest Path Problem

 Given any source vertex s, BFS visits the other 

vertices at increasing distances away from s.  In doing 

so, BFS discovers paths from s to other vertices

 What do we mean by “distance”?  The number of 

edges on a path from s

2

4

3

5

1

7

6

9

8

0

Consider s=vertex 1

Nodes at distance 1?

2, 3, 7, 91

1

1

1
2

22

2

s

Example

Nodes at distance 2?

8, 6, 5, 4

Nodes at distance 3?

0



Graph & BFS / Slide 22

Graph Searching

Given: a graph G = (V, E), directed or 

undirected

Goal: methodically explore every vertex 

and every edge

Ultimately: build a tree on the graph

 Pick a vertex as the root

Choose certain edges to produce a tree

Note: might also build a forest if graph is 

not connected



Graph & BFS / Slide 23

Breadth-First Search

“Explore” a graph, turning it into a tree

One vertex at a time

 Expand frontier of explored vertices across 

the breadth of the frontier

Builds a tree over the graph

 Pick a source vertex to be the root

 Find (“discover”) its children, then their 

children, etc.



Graph & BFS / Slide 24

Breadth-First Search

Every vertex of a graph contains a color at 

every moment:

 White vertices have not been discovered
All vertices start with white initially

 Grey vertices are discovered but not fully explored
They may be adjacent to white vertices

 Black vertices are discovered and fully explored
They are adjacent only to black and gray vertices

Explore vertices by scanning adjacency list of 

grey vertices



Graph & BFS / Slide 25

25

Breadth-First Search: The Code

Data: color[V], prev[V],d[V]

BFS(G) // starts from here

{

for each vertex u  V-{s}

{

color[u]=WHITE;

prev[u]=NIL;

d[u]=inf;

}

color[s]=GRAY;

d[s]=0; prev[s]=NIL;

Q=empty;

ENQUEUE(Q,s);

While(Q not empty)

{

u = DEQUEUE(Q);

for each v  adj[u]{

if (color[v] == 

WHITE){

color[v] = GREY;

d[v] = d[u] + 1;

prev[v] = u;

Enqueue(Q, v);

}

}

color[u] = BLACK;

}

}



Graph & BFS / Slide 26

Breadth-First Search: Example

















r s t u

v w x y

Vertex r s t u v w x y

color W W W W W W W W

d        

prev nil nil nil nil nil nil nil nil



Graph & BFS / Slide 27

Breadth-First Search: Example





0











r s t u

v w x y

sQ:

vertex r s t u v w x y

Color W G W W W W W W

d  0      

prev nil nil nil nil nil nil nil nil



Graph & BFS / Slide 28

Breadth-First Search: Example

1



0

1









r s t u

v w x y

w rsQ:

vertex r s t u v w x y

Color G B W W W G W W

d 1 0    1  

prev s nil nil nil nil s nil nil



Graph & BFS / Slide 29

Breadth-First Search: Example

1



0

1

2

2





r s t u

v w x y

t xw rsQ:

vertex r s t u V w X y

Color G B G W W B G W

d 1 0 2   1 2 

prev s nil w nil nil s w nil



Graph & BFS / Slide 30

Breadth-First Search: Example

1

2

0

1

2

2





r s t u

v w x y

vt xw rsQ:

vertex r s t u v w x y

Color B B G W G B G W

d 1 0 2  2 1 2 

prev s nil w nil r s w nil



Graph & BFS / Slide 31

Breadth-First Search: Example

1

2

0

1

2

2

3



r s t u

v w x y

uvt xw rsQ:

vertex r s t u v w x y

Color B B B G G B G W

d 1 0 2 3 2 1 2 

prev s nil w t r s w nil



Graph & BFS / Slide 32

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

yuvt xw rsQ:

vertex r s t u v w x y

Color B B B G G B B G

d 1 0 2 3 2 1 2 3

prev s nil w t r s w x



Graph & BFS / Slide 33

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

yuvt xw rsQ:

vertex r s t u v w x y

Color B B B G B B B G

d 1 0 2 3 2 1 2 3

prev s nil w t r s w x



Graph & BFS / Slide 34

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

yuvt xw rsQ:

vertex r s t u v w x y

Color B B B B B B B G

d 1 0 2 3 2 1 2 3

prev s nil w t r s w x



Graph & BFS / Slide 35

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

yuvt xw rsQ:

vertex r s t u v w x y

Color B B B G B B B B

d 1 0 2 3 2 1 2 3

prev s nil w t r s w x



Graph & BFS / Slide 36

36

BFS: The Code (again)

Data: color[V], prev[V],d[V]

BFS(G) // starts from here

{

for each vertex u  V-{s}

{

color[u]=WHITE;

prev[u]=NIL;

d[u]=inf;

}

color[s]=GRAY;

d[s]=0; prev[s]=NIL;

Q=empty;

ENQUEUE(Q,s);

While(Q not empty)

{

u = DEQUEUE(Q);

for each v  adj[u]{

if (color[v] == 

WHITE){

color[v] = GREY;

d[v] = d[u] + 1;

prev[v] = u;

Enqueue(Q, v);

}

}

color[u] = BLACK;

}

}



Graph & BFS / Slide 37

37

Breadth-First Search: Print Path

Data: color[V], prev[V],d[V]

Print-Path(G, s, v)

{

if(v==s)

print(s)

else if(prev[v]==NIL)

print(No path);

else{

Print-Path(G,s,prev[v]);

print(v);

}

}



Graph & BFS / Slide 38

Amortized Analysis

Stack with 3 operations:

 Push, Pop, Multi-pop

What will be the complexity if “n” 

operations are performed?



Graph & BFS / Slide 39

39

BFS: Complexity

Data: color[V], prev[V],d[V]

BFS(G) // starts from here

{

for each vertex u  V-{s}

{

color[u]=WHITE;

prev[u]=NIL;

d[u]=inf;

}

color[s]=GRAY;

d[s]=0; prev[s]=NIL;

Q=empty;

ENQUEUE(Q,s);

While(Q not empty)

{

u = DEQUEUE(Q);

for each v  adj[u]{

if(color[v] == WHITE){

color[v] = GREY;

d[v] = d[u] + 1;

prev[v] = u;

Enqueue(Q, v);

}

}

color[u] = BLACK;

}

}

O(V)

O(V)

u = every vertex, but only once

(Why?)

What will be the running time?

Total running time: O(V+E)



Graph & BFS / Slide 40

Breadth-First Search: Properties

BFS calculates the shortest-path distance to 

the source node

 Shortest-path distance (s,v) = minimum number of 

edges from s to v, or  if v not reachable from s

 Proof given in the book (p. 472-5)

BFS builds breadth-first tree, in which paths to 

root represent shortest paths in G

 Thus can use BFS to calculate shortest path from 

one vertex to another in O(V+E) time



Graph & BFS / Slide 41

Application of BFS

Find the shortest path in an 

undirected/directed unweighted graph.

Find the bipartiteness of a graph.

Find cycle in a graph.

Find the connectedness of a graph.



Graph & BFS / Slide 42

Books

Cormen – Chapter 22 – elementary 

Graph Algorithms

Exercise you have to solve:

 22.1-5 (Square)

 22.1-6 (Universal Sink)

 22.2-6 (Wrestler)

 22.2-7 (Diameter)

 22.2-8 (Traverse)


