
Data Structure and Algorithm

Data Structure and Algorithm

Binary Search Trees

Data Structure and Algorithm

Binary Search Trees

● Binary Search Trees (BSTs) are an important

data structure for dynamic sets

● Each element has:

■ key: an identifying field inducing a total ordering

■ left: pointer to a left child (may be NULL)

■ right: pointer to a right child (may be NULL)

■ p: pointer to a parent node (NULL for root)

Data Structure and Algorithm

Binary Search Trees…

● BST property:
key[leftSubtree(x)] key[x] key[rightSubtree(x)]

● Example:

F

B H

KDA

Binary Search Trees :Example

Data Structure and Algorithm

Data Structure and Algorithm

Inorder Tree Walk

● What does the following code do?

● A: prints elements in sorted (increasing) order

Data Structure and Algorithm

Inorder Tree Walk…

● Example:

● How long will a tree walk take?

● Prove that inorder walk prints in

monotonically increasing order

F

B H

KDA

Data Structure and Algorithm

Operations on BSTs: Search

● Given a key and a pointer to a node, returns an

element with that key or NULL:

Data Structure and Algorithm

BST Search: Example

Data Structure and Algorithm

Operations on BSTs: Search…

● Here’s another function that does the same:

● Which of these two functions is more efficient?

Data Structure and Algorithm

Operations on BSTs: Minimum

Data Structure and Algorithm

Operations on BSTs: Maximum

Data Structure and Algorithm

BST Operations: Successor

● What is the successor of node 13? Node 15?

Node 20?

● What are the general rules for finding the

successor of node x? (hint: two cases)

Data Structure and Algorithm

BST Operations: Successor…

● Two cases:

■ x has a right subtree: successor is minimum node

in right subtree

■ x has no right subtree: successor is first ancestor of

x whose left child is also ancestor of x

○ Intuition: As long as you move to the left up the tree,

you’re visiting smaller nodes.

Data Structure and Algorithm

BST Operations: Successor…

Predecessor: similar algorithm

Data Structure and Algorithm

Operations of BSTs: Insert

● Adds an element x to the tree so that the binary

search tree property continues to hold

● The basic algorithm

■ Like the search procedure above

■ Insert x in place of NULL

■ Use a “trailing pointer” to keep track of where you

came from (like inserting into singly linked list)

Data Structure and Algorithm

Operations of BSTs: Insert…

Data Structure and Algorithm

BST Insert: Example

● Example: Insert C

F

B H

KDA

C

Data Structure and Algorithm

BST Search/Insert: Running Time

● What is the running time of TreeSearch() or

TreeInsert()?

● A: O(h), where h = height of tree

● What is the height of a binary search tree?

● A: worst case: h = O(n) when tree is just a

linear string of left or right children

■ We’ll keep all analysis in terms of h for now

■ Later we’ll see how to maintain h = O(lg n)

Data Structure and Algorithm

Sorting With Binary Search Trees

● Informal code for sorting array A of length n:

BSTSort(A)

for i=1 to n

TreeInsert(A[i]);

Inorder-Tree-Walk(root);

● Argue that this is (n lg n)

● What will be the running time in the

■ Worst case?

■ Average case? (hint: remind you of anything?)

Data Structure and Algorithm

Sorting With BSTs…

● Average case analysis

■ It’s a form of quicksort!

for i=1 to n

TreeInsert(A[i]);

InorderTreeWalk(root);

3 1 8 2 6 7 5

5 7

1 2 8 6 7 5

2 6 7 5

3

1 8

2 6

5 7

Data Structure and Algorithm

Sorting with BSTs

● Same partitions are done as with quicksort, but

in a different order

■ In previous example

○ Everything was compared to 3 once

○ Then those items < 3 were compared to 1 once

○ Etc.

■ Same comparisons as quicksort, different order!

○ Example: consider inserting 5

Data Structure and Algorithm

Sorting with BSTs

● Since run time is proportional to the number of

comparisons, same time as quicksort: O(n lg n)

● Which do you think is better, quicksort or

BSTsort? Why?

Data Structure and Algorithm

Sorting with BSTs

● Since run time is proportional to the number of

comparisons, same time as quicksort: O(n lg n)

● Which do you think is better, quicksort or

BSTSort? Why?

● A: quicksort

■ Better constants

■ Sorts in place

■ Doesn’t need to build data structure

Data Structure and Algorithm

BST Operations: Delete

● Deletion is a bit tricky

● 3 cases:

■ x has no children:

○ Remove x

■ x has one child:

○ Splice out x

■ x has two children:

○ Swap x with successor

○ Perform case 1 or 2 to delete it

F

B H

KDA

C
Example: delete K

or H or B

Data Structure and Algorithm

BST Operations: Delete…

Data Structure and Algorithm

BST Delete: Example

Data Structure and Algorithm

BST Operations: Delete…

● Why will case 2 always go to case 0 or case 1?

● A: because when x has 2 children, its

successor is the minimum in its right subtree

● Could we swap x with predecessor instead of

successor?

● A: yes. Would it be a good idea?

● A: might be good to alternate

Data Structure and Algorithm

More BST Operations

● BSTs are good for more than sorting. For

example, can implement a priority queue

● What operations must a priority queue have?

■ Insert

■ Minimum

■ Extract-Min

