
2/25/2023 Data Structure and Algorithm 1

Counting Sort & Radix Sort

2/25/2023 Data Structure and Algorithm 2

Counting Sort

• Counting sort is a sorting algorithm which takes the advantage of

knowing the range of the numbers in the input array A to be sorted.

• It uses this range to create an array C of this length. Each index i

in C is then used to count how many elements in A have a value

less than i. The counts stored in C can then be used to put the

elements in A into their right position in the resulting sorted array.

• If the minimum and maximum values of A (range of numbers)

are not known, an initial pass of the data will be necessary to find

these.

2/25/2023 Data Structure and Algorithm 3

Algorithm: Counting_Sort(A, B, C, k)

Here A[1,…n] is the input array having the range of items 0…k. B[1,…n] is the output

array. C[0….k] is the temporary storage.

1. for i = 0 to k do C[i] := 0 [Initialize array C]

2. for j = 1 to length[A] [C[i] contains the no. of elements equal to i]

3. do C[A[j]] := C[A[j]]+1

4. for i = 1 to k [C[i] contains the no. of elements less than or equal to i]

5. do C[i] := C[i]+ C[i-1]

6. for j = length[A] to 1

7. do B[C[A[j]]] := A[j]

8. C[A[j]] := C[A[j]]-1

9. End.

2/25/2023 Data Structure and Algorithm 4

Example

Given A[8] = 30320352

0 13202

B[5] =

N = 8 and k = 5

1 2 3 4 5 6 7 8

C[5] =

0 1 2 3 4 5

1 2 3 4 5 6 7 8

Steps:

1. for j = 1 to 8 do C[A[j]] := C[A[j]]+1.

C[5] =

0 1 2 3 4 5

0 13202

2/25/2023 Data Structure and Algorithm 5

2. for i = 1 to 5 do C[i] := C[i] + C[i-1]

C[5] =

0 1 2 3 4 5

7 87422

3. for j = 8 to 1 do B[C[A[j]]] := A[j] and C[A[j]] := C[A[j]]-1

C[5] =

0 1 2 3 4 5

7 864223B[5] =

1 2 3 4 5 6 7 8
for j = 8

for j = 7

C[5] =

0 1 2 3 4 5

7 8642130B[5] =

1 2 3 4 5 6 7 8

2/25/2023 Data Structure and Algorithm 6

for j = 6

C[5] =

0 1 2 3 4 5

7 85421330B[5] =

1 2 3 4 5 6 7 8

for j = 5

C[5] =

0 1 2 3 4 5

7 853213320B[5] =

1 2 3 4 5 6 7 8

for j = 4

C[5] =

0 1 2 3 4 5

7 8532033200B[5] =

1 2 3 4 5 6 7 8

2/25/2023 Data Structure and Algorithm 7

for j = 3

C[5] =

0 1 2 3 4 5

7 84320333200B[5] =

1 2 3 4 5 6 7 8

for j = 2

C[5] =

0 1 2 3 4 5

7 743205333200B[5] =

1 2 3 4 5 6 7 8

for j = 1

C[5] =

0 1 2 3 4 5

7 7432153332200B[5] =

1 2 3 4 5 6 7 8

Sorted Output: 53332200

1 2 3 4 5 6 7 8

2/25/2023 Data Structure and Algorithm 8

Complexity of Counting Sort

Problem of Counting Sort

The length of the counting array C must be at least equal to the

range of the numbers to be sorted (that is, the maximum value

minus the minimum value plus 1). This makes counting sort

impractical for large ranges in terms of time and memory need.

Counting sort has a running time of Θ(n+k), where n and k are

the lengths of the arrays A (the input array) and C (the counting

array), respectively. In order for this algorithm to be efficient, k

must not be too large compared to n. As long as k is O(n), the

running time of the algorithm is Θ(n).

2/25/2023 Data Structure and Algorithm 9

Radix Sort

•A radix sort is a sorting algorithm that can rearrange a set of items

based on the processing of part of the items’ keys in such a way that

items are eventually sorted alphabetically or in either ascending or

descending order.

• Classifications of radix sort:

1. Least Significant Digit (LSD) radix sort

Start from the least significant digit and move the processing towards the

most significant digit.

2. Most Significant Digit (MSD) radix sort

Start from the most significant digit and move the processing towards the

least significant digit.

2/25/2023 Data Structure and Algorithm 10

• For decimal number, the radix is 10 i.e. 10 buckets are required.

• For alphabetic information, the radix is 26.

• In radix sort, the total number of passes needed for sorting depends

on the maximum number of digits or letters present in the given

items. For example, suppose given items are 1020, 3, 22, 393, 200.

For rearranging these items, 4 passes are required in radix sort.

•Example:

Suppose given items are as follows:

348, 143, 361, 423, 53, 128, 321, 543, 366, 202

Sort the given items using LSD Radix Sort.

2/25/2023 Data Structure and Algorithm 11

366366

202202

543543

321321

128128

053053

423423

361361

143143

348348

9876543210Input

Pass 1: The units digits are sorted into bins.

2/25/2023 Data Structure and Algorithm 12

348348

128128

366366

543543

053053

423423

143143

202202

321321

361361

9876543210Input

Pass 2: The tens digits are sorted into bins.

2/25/2023 Data Structure and Algorithm 13

361361

366366

053053

348348

543543

143143

128128

423423

321321

202202

9876543210Input

Pass 3: The tens digits are sorted into bins.

Sorted Output: 53, 128, 143, 202, 321, 348, 361, 366, 423, 543

2/25/2023 Data Structure and Algorithm 14

Complexity of Radix Sort

Suppose a list of n items A1, A2….An is given. Let d denote the radix and each

item Ai is represented by means of s of digits. That is, Ai = di1di2……dis.

The radix sort will require s passes. So the number C(n) of comparisons is

bounded as follows:

C(n) <= d * s * n = O(s*n)…………………………………..(1)

In worst case, s = n, so C(n) = O(n * n) = O(n2).

In best case, s = logdn, so C(n) = O(nlogdn).

2/25/2023 Data Structure and Algorithm 15

Thank You

