Data Structure and Algorithm

Heap

11/05/08 Data Structure and Algorithm

Heap

® A heap is a complete binary tree except the bottom level adjusted to the left.

 The value of each node is greater than that of its two children. (Max Heap)
* The value of each node is less than that of its two children. (Min Heap)
* Height of the heap 1is log,n.

* Example

Figure: Not a Figure: A Heap

Heap
11/05/08 Data Structure and Algorithm

Heap Implementation

®* We can use an array (due to the regular structure or completeness of binary tree).
* For a node N with location 1, the following factors can be calculated.

1. Left child of N 1s in location (2 * 1).

2. Right child of N is in location (2 * 1+ 1).

3. Parent of N is in location [1/2].

* Example

1 2 3 4 5 6 7 8 ’

Figure: Heap and Its Array Representation

11/05/08 Data Structure and Algorithm

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1 2 3 4 5 6 7 8 9 10

e N —

16(141101 817 (9131241
(b)

Figure 6.1 A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle
at each node in the tree is the value stored at that node. The number above a node is the corresponding
index in the array. Above and below the array are lines showing parent-child relationships; parents
are always to the left of their children. The tree has height three; the node at index 4 (with value 8)
has height one.

11/05/08 Data Structure and Algorithm 4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MAX-HEAPIFY (A, i)

1 [< LEFT(@)
2 r < RIGHT(i)
if | < heap-size[A] and A[l] > A[i]
then largest < |
else largest < i
if r < heap-size[A] and A[r] > A[largest]
then largest < r
if largest # i
then exchange A[i] <> A[largest]
10 MAX-HEAPIFY (A, largest)

11/05/08 Data Structure and Algorithm 5

O OO~ ON U W

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 6.2 The action of MAX-HEAPIFY(A. 2), where heap-size[A] = 10. (a) The initial con-
figuration, with A[2] at node i = 2 violating the max-heap property since it is not larger than
both children. The max-heap property is restored for node 2 in (b) by exchanging A[2] with A[4],
which destroys the max-heap property for node 4. The recursive call MAX-HEAPIFY(A, 4) now

has i = 4. After swapping A[4] with A[9], as shown in (¢}, node 4 is fixed up, and the recursive call
11/05/081 4 x-HEAPIFY(A. 9) yields no (R8-SHUCIULS And.Aloatithim..

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

BUILD-MAX-HEAP(A)

1 heap-size|A] < length[A]
2 fori < |length[A]/2] downto 1
3 do MAX-HEAPIFY (A, 1)

11/05/08 Data Structure and Algorithm 7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

alali]sT2elo[iofia]a 7]

Figure 6.3 The operation of BuiLn-MaX-HEAP, showing the data structure befare the call fo
Mn.'-:-Hl-..fmu-"f in line 3 of BUiLD-MaX-HEAP, (a} A 1-clement inpan arry A and the hi-
nary tree i represems. The figure shows thal the loop index i refers 10 node 5 before the call
M‘.&I-HEAPIFHA. f). () The data struciure that resuls, The loop index 7 for the next iteration
refers to node 4, (el-(e) Subsequent iterations of the for | in BuiLn-MaX-HEAP. Obsery
. : -HEAP. e that
11/05/08 whenever Max-HEarnData-Structure:and ALGOrAM - e bo mas-heaps.

AN The max-heap after BUILD-MAX-HEAP finishes.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

HEAPSORT(A)

I BUILD-MAX-HEAP(A)
2 fori < length[A] downto 2

3 do exchange A[l] < A[i]
4 heap-size[A] < heap-size[A] — 1
5 MAX-HEAPIFY (A, 1)

11/05/08 Data Structure and Algorithm

11/05/08

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(3 @
2 &

f
{2 3

¥ e® ® ®© ©© © © 00 ©

YY) 000 000

E i

) (h}

@
@ &
® 6 o
i 42 48

Ajrj2l3ial7isi0/|10014]16|

((k)

Figure 6.4 The operation of HEAPSORT. (a) The max-heap data structure just after it has been
built by BuiLp-Max-HEAP. (b)}-(j} The max-heap just after each call of MAX-HEAPIFY in line 5,
The value of i at that rilRata:Stru Cikaiand AGArthMemain in the heap. (k) The resulting
sorted ammay A,

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

HEAP-MAXIMUM(A)
1 return A[l]

11/05/08 Data Structure and Algorithm

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

HEAP-EXTRACT-MAX(A)

1 if heap-size[A] < 1

2 then error “heap underflow”

3 max < A[l]

4 A[l] < Alheap-size[A]]

S5 heap-size[A] < heap-size[A] — 1
6 MAX-HEAPIFY (A, 1)

7 return max

11/05/08 Data Structure and Algorithm 12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

HEAP-INCREASE-KEY (A, i, key)
1 ifkey < A[i]

2 then error “new key is smaller than current key”
3 Ali] « key

4 while/ > 1 and A[PARENT(i)] < A[i]

5 do exchange A[i] <> A[PARENT(i)]

6 | < PARENT(i)

11/05/08 Data Structure and Algorithm 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MAX-HEAP-INSERT (A, key)

| heap-size[A] « heap-size[A] + 1
2 Alheap-size[A]] < —o0
3 HEAP-INCREASE-KEY (A, heap-size[A], key)

11/05/08 Data Structure and Algorithm 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 6.5 The operation of HEAP-INCREASE-KEY. (a) The max-heap of Figure 6.4(a) with a
node whose index is i heavily shaded. (b) This node has its key increased to 15. (¢) After one
iteration of the while loop of lines 4-6, the node and its parent have exchanged kevs, and the index i
moves up to the parent. (d) The max-heap after one more iteration of the while loop. At this point,

11/05/08 A[PARENT(i)] = A[i]. The maPaBpSIUEEE AND AQRIDM: e procedure terminates.

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

BUILD-MAX-HEAP(A)

1 heap-size|A] < length[A]
2 fori < |length[A]/2] downto 1
3 do MAX-HEAPIFY (A, 1)

11/05/08 Data Structure and Algorithm 16

