
2/25/2023 Data Structure and Algorithm 1

Mergesort

2/25/2023 Data Structure and Algorithm 2

Merge Sort

• Merge sort is a comparison sorting technique.

• This technique follows the divide-and-conquer approach.

• It maintains the following 3 steps:

1. Divide: Divide N-element sequence to be sorted into two subsequences of

about N/2 elements each and sort the two subsequences recursively .

2. Conquer: Merge the two sorted subsequences to produce the sorted result.

• Merge sort uses the “merge” step to combine two sorted sublists to create one single

sorted list.

• Suppose A is a sorted list with R elements and B is another sorted list with S elements.

After merging there is only a single sorted list C with N=R+S elements.

2/25/2023 Data Structure and Algorithm 3

Mergesort(List, N)

(1) Msort (List, TempList, 0, N-1)

(2) End

Msort(List, TempList, Left, Right)

(1) If Left < Right do steps 2 to 5

(2) Set Center = (Left+Right)/2

(3) Msort (List, Temp List,Left,Center)

(4) Msort (List,TempList,Center+1,Right)

(5) Merge(List,TempList,Left,Center+1,Right)

(6) End

Merge(List,TempList,Lpos,Rpos,RightEnd)

(1) Set LeftEnd = Rpos-1 and TmpPos = Lpos

(2) NumElement = RightEnd – Lpos + 1

(3) While Lpos<=LeftEnd && Rpos<=RightEnd

(4) If List [Lpos] <= List [Rpos] then

(5) TmpList[TmpPos++]=List [Lpos++]

(6) Else

(7) TmpList[TmpPos++]=List [Rpos++]

(8) While Lpos <= LeftEnd

(7) TmpList[TmpPos++] = List [Lpos++]

(10) While Rpos <= RightEnd

(11) TmpList[TmpPos++] = List [Rpos++]

(12) For I = 0 to NumElement do step 13

(13) List [RightEnd--]=TmpList [RightEnd--]

(14) End

Mergesort Algorithm

2/25/2023 Data Structure and Algorithm 4

Example:

Suppose Array A = 5, 2, 4, 7, 1, 3, 2, 6. Sort the array using Mergesort.

5 2 4 1 7 3 2 6

5 2 4 1 7 3 2 6

5 2 4 1 7 3 2 6

5 2 4 1 7 3 2 6

1 2 2 3 4 5 6 7

1 2 4 5 2 3 6 7

2 5 1 4 3 7 2 6

2/25/2023 Data Structure and Algorithm 5

Example:

Suppose Array A = 38, 27, 43, 3, 9, 82 and 10. Sort the array using Mergesort.

2/25/2023 Data Structure and Algorithm 6

Complexity of Merge-Sort

Let T(N) be the number of comparisons needed to sort N elements using merge

sort. This algorithm requires at most logN passes. Moreover, each pass merges

a total of N elements and each pass will require at most N comparisons. So, for

all cases, T(N) = 0(NlogN).

Recurrence Relation for Mergesort

T(1) = 1 For N = 1

T(N) = 2T(N/2) + N Otherwise

2/25/2023 Data Structure and Algorithm 7

T(N) = 2T(N/2) + N is equivalent to O(Nlog2N)

Solution:

T(N) = 2T(N/2) + N

T(N/2) = 2T(N/4) + N/2

T(N/4) = 2T(N/8) + N/4

……………………..

T(2) = 2T(1) + 2

T(N) = 2KT(N/2K) + K.N

By using 2K = N, it is obtained as

T(N) = NT(1) + NLog2N = N + NLog2N = O(NLog2N)

So, T(N) = 2T(N/2) + N is equivalent to O(Nlog2N).

2/25/2023 Data Structure and Algorithm 8

END

