
Priority Queue

12/25/2023 1Data Structure and Algorithm

2

Priority Queue

• A priority queue is a collection of elements such that each element has been assigned a

priority.

● A priority queue supports inserting new priorities, and removing the highest priority.

● Two elements with the same priority are processed according to the order in which they

were added to the queue.

Representation of Priority Queue

• Each node in the list has three fields: an information field INFO, a priority number PRN

and a link number Link.

● A node X precedes a node Y in the list when X has higher priority than Y or both have the

same priority but X was added to the list before Y.

2/25/2023 2Data Structure and Algorithm

3

Creation of a Priority Queue

This algorithm creates a priority queue where higher number shows the higher priority.

Algorithm: Create-Priority-Q (Info, Prn, Link, Start, Item, Item_Prn)

1. Set Info[New] := Item and Prn[New] := Item_Prn.

2. If Start = NULL then Start := New and Return.

3. If Prn[Start] < Item_Prn then Set Link[New] := Start and Start := New and Return.

4. Set Save := Start and Ptr := Link[Start]

5. While Ptr ≠ NULL do

6. If Prn[Ptr] = Item_Prn then Link[New] := Link[Ptr] and Link[Ptr]] := New and Return.

7. Else If Prn[PTR]< Item_Prn then Set Link[New]:=Ptr , Link[Save]:= New and Return.

8. Else Ptr := Link[Ptr]

9. Link[Save] := New and Return.

10. Exit

2/25/2023 3Data Structure and Algorithm

4

Deletion of a Priority Queue

This algorithm deletes and processes the element with highest priority.

Algorithm: Delete-Priority-Q(Info, Prn, Link, Start, Item)

1. Set Item := Info[Start].

2. Set Start := Link[Start]

3. Process Item.

4. Return.

Complexity

When a priority queue is implemented with an array, the efficiency of the insertion
operation will be O(n) if the list is sorted.

Again, when a priority queue is implemented with an array, the efficiency of the deletion
operation will be O(n) if the list is unsorted.

2/25/2023 4Data Structure and Algorithm

Priority Queue Implementation Using Heap

- Using a heap, the execution time efficiency of both the enqueue and dequeue operations

in a priority queue is O(logn) because in both insertion and deletion operation we need

only to consider a branch of heap and the maximum height of a branch of a complete tree

is O(logn).

Insertion Operation

1. Add the new value at the end of the array; that corresponds to adding it as a new

rightmost leaf in the tree.

2. Check the new value to the value in its parent. If the parent is smaller, swap the

values, and continue this check-and-swap procedure up the tree until the heap-order

property holds, or reach to the root.

2/25/2023 5Data Structure and Algorithm

Deletion Operation

1. Replace the value in the root with the value at the end of the array. Remove that leaf

from the tree.

2. Check the new root value to the values in its children. If the value in the current node

is less than one of its children, then swap its value with the larger child and continue the

process until the heap-order property holds, or reach to a leaf.

2/25/2023 6Data Structure and Algorithm

7

Deques

• A deque is a linear list in which data elements can be added or removed at either end but not

in the middle.

• This type of queue is also known as dequeue and double-ended queue.

• There are two types of DEQUE.

Input-Restricted Deque – Allow insertions at only one end of the list but deletions at

both ends of the list.

Output-Restricted Deque - Allow insertions at both ends but deletions at only one end of

the list.

•Example:

801002060

0 1 2 3 4 5 6 7

Figure: Example of a Deque

2/25/2023 7Data Structure and Algorithm

8

END!!!!

2/25/2023 8Data Structure and Algorithm

