
Quicksort



2

Quicksort I

 To sort a[left...right]:

1. if left < right:

1.1. Partition a[left...right] such that:

all a[left...p-1] are less than a[p], and

all a[p+1...right] are >= a[p]

1.2. Quicksort a[left...p-1]

1.3. Quicksort a[p+1...right]

2. Terminate



3

Partitioning (Quicksort II)

 A key step in the Quicksort algorithm is partitioning the 
array

 We choose some (any) number p in the array to use as a pivot

 We partition the array into three parts:

p

numbers 

less than p

numbers greater than 

or equal to p

p



4

Partitioning II

 Choose an array value (say, the first) to use as the 

pivot

 Starting from the left end, find the first element 

that is greater than or equal to the pivot

 Searching backward from the right end, find the 

first element that is less than the pivot

 Interchange (swap) these two elements

 Repeat, searching from where we left off, until 

done



5

Partitioning

 To partition a[left...right]:

1. Set pivot = a[left], l = left + 1, r = right;

2. while l < r, do

2.1. while l < right & a[l] < pivot , set l = l + 1

2.2. while r > left & a[r] >= pivot , set r = r - 1

2.3. if l < r, swap a[l] and a[r]

3. Set a[left] = a[r], a[r] = pivot 

4. Terminate



6

Example of partitioning

 choose pivot: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6

 search: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6

 swap: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6

 search: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6

 swap: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6

 search: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6

 swap: 4 3 3 1 2 2 3 1 4 9 8 9 6 5 6

 search: 4 3 3 1 2 2 3 1 4 9 8 9 6 5 6 (left > right)

 swap with pivot: 1 3 3 1 2 2 3 4 4 9 8 9 6 5 6



7

The partition method (Java)

static int partition(int[] a, int left, int right) {

int p = a[left], l = left + 1, r = right;

while (l < r) {

while (l < right && a[l] < p) l++;

while (r > left && a[r] >= p) r--;

if (l < r) {

int temp = a[l]; a[l] = a[r]; a[r] = temp;

}

}

a[left] = a[r];

a[r] = p;

return r;

}



8

The quicksort method (in Java)

static void quicksort(int[] array, int left, int right) {

if (left < right) {

int p = partition(array, left, right);

quicksort(array, left, p - 1);

quicksort(array, p + 1, right);

}

}



9

Analysis of quicksort—best case

 Suppose each partition operation divides the array 

almost exactly in half

 Then the depth of the recursion in log2n

 Because that’s how many times we can halve n

 However, there are many recursions!

 How can we figure this out?

 We note that

 Each partition is linear over its subarray

 All the partitions at one level cover the array



10

Partitioning at various levels



11

Best case II

 We cut the array size in half each time

 So the depth of the recursion in log2n

 At each level of the recursion, all the partitions at that 

level do work that is linear in n

 O(log2n) * O(n) = O(n log2n)

 Hence in the average case, quicksort has time 

complexity O(n log2n)

 What about the worst case?



12

Worst case

 In the worst case, partitioning always divides the size n
array into these three parts:

 A length one part, containing the pivot itself

 A length zero part, and

 A length n-1 part, containing everything else

 We don’t recur on the zero-length part

 Recurring on the length n-1 part requires (in the worst 

case) recurring to depth n-1



13

Worst case partitioning



14

Worst case for quicksort

 In the worst case, recursion may be n levels deep (for 

an array of size n)

 But the partitioning work done at each level is still n

 O(n) * O(n) = O(n2)

 So worst case for Quicksort is O(n2)

 When does this happen?

 There are many arrangements that could make this happen

 Here are two common cases:

 When the array is already sorted

 When the array is inversely sorted (sorted in the opposite order)



15

Typical case for quicksort

 If the array is sorted to begin with, Quicksort is 

terrible: O(n2)

 It is possible to construct other bad cases

 However, Quicksort is usually O(n log2n)

 The constants are so good that Quicksort is 

generally the fastest algorithm known

 Most real-world sorting is done by Quicksort



16

Tweaking Quicksort

 Almost anything you can try to “improve” 

Quicksort will actually slow it down

 One good tweak is to switch to a different 

sorting method when the subarrays get small 

(say, 10 or 12)

 Quicksort has too much overhead for small array 

sizes

 For large arrays, it might be a good idea to check 

beforehand if the array is already sorted

 But there is a better tweak than this



17

Picking a better pivot

 Before, we picked the first element of the subarray 
to use as a pivot

 If the array is already sorted, this results in O(n2)
behavior

 It’s no better if we pick the last element

 We could do an optimal quicksort (guaranteed
O(n log n)) if we always picked a pivot value 

that exactly cuts the array in half

 Such a value is called a median: half of the values in the 
array are larger, half are smaller

 The easiest way to find the median is to sort the array 
and pick the value in the middle (!)



18

Median of three

 Obviously, it doesn’t make sense to sort the array 
in order to find the median to use as a pivot

 Instead, compare just three elements of our 
(sub)array—the first, the last, and the middle

 Take the median (middle value) of these three as pivot

 It’s possible (but not easy) to construct cases which will 
make this technique O(n2)

 Suppose we rearrange (sort) these three numbers 
so that the smallest is in the first position, the 
largest in the last position, and the other in the 
middle

 This lets us simplify and speed up the partition loop



19

Final comments

 Quicksort is the fastest known sorting algorithm

 For optimum efficiency, the pivot must be chosen 

carefully

 “Median of three” is a good technique for choosing the 

pivot

 However, no matter what you do, there will be some 

cases where Quicksort runs in O(n2) time



20

The End


