J Quicksort

-

{ Quicksort |

= [0 sort a[left...right]:
1. if left < right:
1.1. Partition a[left...right] such that:
all a[left...p-1] are less than a[p], and
all a[p+1...right] are >= a[p]
1.2. Quicksort a[left...p-1]
1.3. Quicksort a[p+1...right]
2. Terminate

{ Partitioning (Quicksort 1)

= A key step In the Quicksort algorithm is partitioning the
array
= We choose some (any) number p in the array to use as a pivot
= We partition the array into three parts:

p
g J_YJ\ _
N ~
numbers ¥ numbers greater than

less than p or equal to p

{ Partitioning I

Choose an array value (say, the first) to use as the
pivot

Starting from the left end, find the first element
that is greater than or equal to the pivot

Searching backward from the right end, find the
first element that is less than the pivot

Interchange (swap) these two elements

Repeat, searching from where we left off, until
done

{ Partitioning

= To partition afleft...right]:

1. Set pivot = a[left], | = left + 1, r = right;

2. whilel<r, do
2.1. while | < right & a[l] < pivot , setl =1+ 1
2.2. while r > left & a[r] >= pivot , setr=r - 1
2.3.1if L <r, swap a[l] and a[r]

3. Set a[left] = a[r], a[r] = pivot

4, Terminate

{ Example of partitioning

= choose pivot: 436924312189356

= search: 436924312189356
= swap: 433924312189656
= search: 433924312189656
= swap: 433124312989656
= search: 433124312989656
= swap: 433122314989656
= search: 4331223149896506 (left > right)

= swap withpivot: 133122344989656

{ The partition method (Java)

static int partition(int[] a, int left, int right) {
int p = a[left], | = left + 1, r = right;
while (L <r) {
while (l < right && a[l] < p) l++;
while (r > left && a[r] >= p) r--;
if (L<r){
int temp = a[l]; a[l] = a[r]; a[r] = temp;
3
3
a[left] = a[r];
afr] = p;
return r;

{ The quicksort method (in Java)

static void quicksort(int[] array, int left, int right) {
if (left < right) {
int p = partition(array, left, right);
quicksort(array, left, p - 1);
quicksort(array, p + 1, right);

}
}

{ Analysis of quicksort—Dbest case

= Suppose each partition operation divides the array
almost exactly in half

= Then the depth of the recursion in log,n

= Because that’s how many times we can halve n

= However, there are many recursions!
= How can we figure this out?

= We note that
= Each partition is linear over its subarray
= All the partitions at one level cover the array

J Partitioning at various levels

10

{ Best case |l

We cut the array size in half each time
So the depth of the recursion in log,n

At each level of the recursion, all the partitions at that
level do work that is linear in n

O(log,n) * O(n) = O(n log,n)

Hence in the average case, quicksort has time
complexity O(n log,n)

What about the worst case?

11

{ Worst case

= In the worst case, partitioning always divides the size n
array into these three parts:
= A length one part, containing the pivot itself
= A length zero part, and
= A length n-1 part, containing everything else

= We don’t recur on the zero-length part

= Recurring on the length n-1 part requires (in the worst
case) recurring to depth n-1

12

d \Worst case partitioning

13

{ Worst case for quicksort

= In the worst case, recursion may be n levels deep (for
an array of size n)

= But the partitioning work done at each level is still n
= O(n) * O(n) = O(n?)

= So worst case for Quicksort is O(n2)

= When does this happen?

= There are many arrangements that could make this happen

= Here are two common cases:

= When the array is already sorted
= When the array is inversely sorted (sorted in the opposite order)

14

{ Typical case for quicksort

= If the array Is sorted to begin with, Quicksort Is
terrible: O(n?)

= |t is possible to construct other bad cases

= However, Quicksort is usually O(n log,n)

= The constants are so good that Quicksort is
generally the fastest algorithm known

= Most real-world sorting Is done by Quicksort

15

{ Tweaking Quicksort

= Almost anything you can try to “improve”
Quicksort will actually slow it down

= One good tweak Is to switch to a different
sorting method when the subarrays get small
(say, 10 or 12)

= Quicksort has too much overhead for small array
sizes

= For large arrays, it might be a good idea to check
beforehand if the array is already sorted

= But there is a better tweak than this

16

{ Picking a better pivot

= Before, we picked the first element of the subarray
to use as a pivot

= |If the array is already sorted, this results in O(n?)
behavior

= It’s no better if we pick the last element

= We could do an optimal quicksort (guaranteed
O(n log n)) if we always picked a pivot value
that exactly cuts the array in half

= Such a value Is called a median: half of the values in the
array are larger, half are smaller

= The easiest way to find the median is to sort the array
and pick the value in the middle (!)

17

{L Median of three

= Obviously, 1t doesn’t make sense to sort the array
In order to find the median to use as a pivot

= Instead, compare just three elements of our
(sub)array—the first, the last, and the middle
= Take the median (middle value) of these three as pivot
= It’s possible (but not easy) to construct cases which will
make this technigue O(n?)
= Suppose we rearrange (sort) these three numbers
so that the smallest is in the first position, the
largest in the last position, and the other in the
middle

= This lets us simplify and speed up the partition loop

18

{ Final comments

= Quicksort Is the fastest known sorting algorithm

= For optimum efficiency, the pivot must be chosen
carefully

s “Median of three” 1s a good technique for choosing the
pivot

= However, no matter what you do, there will be some
cases where Quicksort runs in O(n?) time

19

20

