
Quicksort



2

Quicksort I

 To sort a[left...right]:

1. if left < right:

1.1. Partition a[left...right] such that:

all a[left...p-1] are less than a[p], and

all a[p+1...right] are >= a[p]

1.2. Quicksort a[left...p-1]

1.3. Quicksort a[p+1...right]

2. Terminate



3

Partitioning (Quicksort II)

 A key step in the Quicksort algorithm is partitioning the 
array

 We choose some (any) number p in the array to use as a pivot

 We partition the array into three parts:

p

numbers 

less than p

numbers greater than 

or equal to p

p



4

Partitioning II

 Choose an array value (say, the first) to use as the 

pivot

 Starting from the left end, find the first element 

that is greater than or equal to the pivot

 Searching backward from the right end, find the 

first element that is less than the pivot

 Interchange (swap) these two elements

 Repeat, searching from where we left off, until 

done



5

Partitioning

 To partition a[left...right]:

1. Set pivot = a[left], l = left + 1, r = right;

2. while l < r, do

2.1. while l < right & a[l] < pivot , set l = l + 1

2.2. while r > left & a[r] >= pivot , set r = r - 1

2.3. if l < r, swap a[l] and a[r]

3. Set a[left] = a[r], a[r] = pivot 

4. Terminate



6

Example of partitioning

 choose pivot: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6

 search: 4 3 6 9 2 4 3 1 2 1 8 9 3 5 6

 swap: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6

 search: 4 3 3 9 2 4 3 1 2 1 8 9 6 5 6

 swap: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6

 search: 4 3 3 1 2 4 3 1 2 9 8 9 6 5 6

 swap: 4 3 3 1 2 2 3 1 4 9 8 9 6 5 6

 search: 4 3 3 1 2 2 3 1 4 9 8 9 6 5 6 (left > right)

 swap with pivot: 1 3 3 1 2 2 3 4 4 9 8 9 6 5 6



7

The partition method (Java)

static int partition(int[] a, int left, int right) {

int p = a[left], l = left + 1, r = right;

while (l < r) {

while (l < right && a[l] < p) l++;

while (r > left && a[r] >= p) r--;

if (l < r) {

int temp = a[l]; a[l] = a[r]; a[r] = temp;

}

}

a[left] = a[r];

a[r] = p;

return r;

}



8

The quicksort method (in Java)

static void quicksort(int[] array, int left, int right) {

if (left < right) {

int p = partition(array, left, right);

quicksort(array, left, p - 1);

quicksort(array, p + 1, right);

}

}



9

Analysis of quicksort—best case

 Suppose each partition operation divides the array 

almost exactly in half

 Then the depth of the recursion in log2n

 Because that’s how many times we can halve n

 However, there are many recursions!

 How can we figure this out?

 We note that

 Each partition is linear over its subarray

 All the partitions at one level cover the array



10

Partitioning at various levels



11

Best case II

 We cut the array size in half each time

 So the depth of the recursion in log2n

 At each level of the recursion, all the partitions at that 

level do work that is linear in n

 O(log2n) * O(n) = O(n log2n)

 Hence in the average case, quicksort has time 

complexity O(n log2n)

 What about the worst case?



12

Worst case

 In the worst case, partitioning always divides the size n
array into these three parts:

 A length one part, containing the pivot itself

 A length zero part, and

 A length n-1 part, containing everything else

 We don’t recur on the zero-length part

 Recurring on the length n-1 part requires (in the worst 

case) recurring to depth n-1



13

Worst case partitioning



14

Worst case for quicksort

 In the worst case, recursion may be n levels deep (for 

an array of size n)

 But the partitioning work done at each level is still n

 O(n) * O(n) = O(n2)

 So worst case for Quicksort is O(n2)

 When does this happen?

 There are many arrangements that could make this happen

 Here are two common cases:

 When the array is already sorted

 When the array is inversely sorted (sorted in the opposite order)



15

Typical case for quicksort

 If the array is sorted to begin with, Quicksort is 

terrible: O(n2)

 It is possible to construct other bad cases

 However, Quicksort is usually O(n log2n)

 The constants are so good that Quicksort is 

generally the fastest algorithm known

 Most real-world sorting is done by Quicksort



16

Tweaking Quicksort

 Almost anything you can try to “improve” 

Quicksort will actually slow it down

 One good tweak is to switch to a different 

sorting method when the subarrays get small 

(say, 10 or 12)

 Quicksort has too much overhead for small array 

sizes

 For large arrays, it might be a good idea to check 

beforehand if the array is already sorted

 But there is a better tweak than this



17

Picking a better pivot

 Before, we picked the first element of the subarray 
to use as a pivot

 If the array is already sorted, this results in O(n2)
behavior

 It’s no better if we pick the last element

 We could do an optimal quicksort (guaranteed
O(n log n)) if we always picked a pivot value 

that exactly cuts the array in half

 Such a value is called a median: half of the values in the 
array are larger, half are smaller

 The easiest way to find the median is to sort the array 
and pick the value in the middle (!)



18

Median of three

 Obviously, it doesn’t make sense to sort the array 
in order to find the median to use as a pivot

 Instead, compare just three elements of our 
(sub)array—the first, the last, and the middle

 Take the median (middle value) of these three as pivot

 It’s possible (but not easy) to construct cases which will 
make this technique O(n2)

 Suppose we rearrange (sort) these three numbers 
so that the smallest is in the first position, the 
largest in the last position, and the other in the 
middle

 This lets us simplify and speed up the partition loop



19

Final comments

 Quicksort is the fastest known sorting algorithm

 For optimum efficiency, the pivot must be chosen 

carefully

 “Median of three” is a good technique for choosing the 

pivot

 However, no matter what you do, there will be some 

cases where Quicksort runs in O(n2) time



20

The End


