
2/25/2023 Data Structure and Algorithm 1

Sorting

(Bubble Sort, Insertion Sort, Selection Sort)



2/25/2023 Data Structure and Algorithm 2

Sorting

• Sorting refers to the operation of arranging data in some given order such as increasing 

or decreasing with numerical data or alphabetically with character data.

Comparison Sort

• A comparison sort is a sorting technique that reads the list elements and determines

which of the two elements should occur first in the final sorted list through a single

comparison operation.

• Some of the most well-known comparison sorts include:

1. Bubble Sort                                4. Quicksort

2. Selection Sort                             5. Merge Sort

3. Insertion Sort 6. Heap Sort

• Some examples of sorts which are not comparison sorts include:

1. Counting Sort           2. Radix Sort            3. Bucket Sort



2/25/2023 Data Structure and Algorithm 3

Bubble Sorting

- The bubble sort is the oldest and simplest sort in use. 

- Unfortunately, it is the slowest sorting technique.

- It works by comparing each item in the list with the item next to it, and swapping them if

required. 

- The algorithm repeats this process until it makes a pass all the way through the list without

swapping any items. This causes larger values to "bubble" to the end of the list while smaller

values "sink" towards the beginning of the list.

Algorithm: Bubble_Sort(List, N)

Here List is the collection of items and N is the total no. of items.

1. Repeat steps 2 and 3 for I = 1…... N 

2. Repeat step 3 for J = 1…….N  

3. If  List[J] > List[J+1] then swap(List[J], List[J+1]).

4. End. 



2/25/2023 Data Structure and Algorithm 4

Example

List: 10, 20, 5, 100, 25, 6

1st Pass

10, 5, 20, 25, 6, 100

2nd Pass

5, 10, 20, 6, 25, 100

3rd Pass

5, 10, 6, 20, 25, 100

4th Pass

5, 6, 10, 20, 25, 100

5th Pass

5, 6, 10, 20, 25, 100

6th Pass

5, 6, 10, 20, 25, 100

Sorted List: 5,  6,  10,  20,  25,  100



2/25/2023 Data Structure and Algorithm 5

Complexity of Bubble Sort

For each pass, there are n number of comparisons in bubble sorting. For n items, there

should be n passes. So,

C(n) = n + n +………………..+ n

= n * n

= 0(n2)



2/25/2023 Data Structure and Algorithm 6

Insertion Sort

 Insertion sort is well suited for sorting small data sets or for the insertion of new

elements into a sorted sequence.

 Let a0, ..., an-1 be the sequence to be sorted. At the beginning and after each iteration

of the algorithm, the sequence consists of two parts: the first part a0, ..., ai-1 is already

sorted, the second part ai, ..., an-1 is still unsorted (iє 0, ..., n-1).

 In order to insert element ai into the sorted part, it is compared with ai-1, ai-2 etc.

 When an element aj with aj ≤ ai is found, ai is inserted behind it. If no such element is

found, then ai is inserted at the beginning of the sequence.

 After inserting ai the length of the sorted part has increased by one. In the next

iteration, ai+1 is inserted into the sorted part etc.

 While at the beginning the sorted part consists of element a0 only, at the end it consists

of all elements a0, ..., an-1.



2/25/2023 Data Structure and Algorithm 7

Algorithm: Insertion_Sort( List , N)

Here List is the list of items and N is the total number of items.

1. Repeat steps 2 to 7 for I = 2…..N

2. Set Temp := List [ I ]

3. Set  J := I - 1

4.      Repeat steps  5 and 6 while j ≥ 1 and List[ J ]  > temp

5.               List [ J+1 ] := List [ J ]

6.                Decrement J

7. Set List [ J+1] := Temp

8. End.



2/25/2023 Data Structure and Algorithm 8

Example

Given Set of Items A = {77, 33, 44, 11, 88, 22}

Pass A[1] A[2] A[3] A[4] A[5] A[6]

I=2, J=1 77 33 44 11 88 22
I=3, J=2 33 77 44 11 88 22
I=4, J=3 33 44 77 11 88 22
I=5, J=4 11 33 44 77 88 22
I=6, J=5 11 33 44 77 88 22

Sorted List 11 22 33 44 77 88



2/25/2023 Data Structure and Algorithm 9

Complexity of Insertion Sort

Worst Case

The worst case occurs when the array A is in reverse order and each item can be compared 

with the maximum number (I-1) of comparisons. So,

f(n) = 0+1+2+3…+(n-1) = n(n-1)/2 = 0(n2)

Average Case

On the average case, there will be approximately (I-1)/2 number of comparisons. So,

f(n) = 0+1/2+2/2+3/2…+(n-1)/2 = n(n-1)/4 = 0(n2)



2/25/2023 Data Structure and Algorithm 10

Selection Sort

- Selection is a simple sorting algorithm.

- It works by first finding the smallest element using a linear scan and swapping it into the

first position in the list. Then finding the second smallest element by scanning the remaining

elements, and so on.

Algorithm: Selection_Sort (List, N)

1. Repeat steps 2 to 6 for I = 1 to N

2. Set Min := I

3. Repeat steps 4 and 5 for J = I+1 to N

4. If List [J] < List [Min] then

5. Set Min := J

6. swap( List[ I ], List[Min] )

7. End 



2/25/2023 Data Structure and Algorithm 11

Example

Given Set of Items A = {77, 33, 44, 11, 88, 22}

Pass A[1] A[2] A[3] A[4] A[5] A[6]

I=1, Min=4 77 33 44 88 22

I=2, Min=6 11 33 44 77 88

I=3, Min=6 11 22 44 77 88

I=4, Min=6 11 22 33 77 88

I=5, Min=6 11 22 33 44 88

Sorted Items 11 22 33 44 77 88

11

22

33

44

77



2/25/2023 Data Structure and Algorithm 12

Complexity of Selection Sort

For finding the 1st smallest elements it requires n-1 comparisons, for second

smallest element, n-2 comparisons and so on. So,

f(n) = (n-1) + (n-2) + …… + 2 + 1 = n(n-1)/2 = O(n2)



2/25/2023 Data Structure and Algorithm 13

END


