
CSE 201 

Data Structure and Algorithm

Lecture 3

DFS (Revisited) & Topological Sort
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DFS(V, E)

1. for each u  V

2. do color[u] ← WHITE

3. prev[u] ← NIL

4. time ← 0

5. for each u  V

6. do if color[u] = WHITE

7. then DFS-VISIT(u)

• Every time DFS-VISIT(u) is called, u becomes the 

root of a new tree in the depth-first forest

u v w

x y z
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DFS-VISIT(u)

1. color[u] ← GRAY

2. time ← time+1

3. d[u] ← time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then prev[v] ← u

7. DFS-VISIT(v)

8. color[u] ← BLACK

9. time ← time + 1

10. f[u] ← time
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Example
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Example (cont.)
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The results of DFS may depend on:
• The order in which nodes are explored 

in procedure DFS

• The order in which the neighbors of a 

vertex are visited in DFS-VISIT
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Edge Classification

• Tree edge (reaches a WHITE 

vertex): 

– (u, v) is a tree edge if v was first 

discovered by exploring edge (u, v)

• Back edge (reaches a GRAY 

vertex): 

– (u, v), connecting a vertex u to an 

ancestor v in a depth first tree

– Self loops (in directed graphs) are 

also back edges

1/  
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Edge Classification

• Forward edge (reaches a BLACK 

vertex & d[u] < d[v]): 

– Non-tree edges (u, v) that connect a vertex 

u to a descendant v in a depth first tree

• Cross edge (reaches a BLACK vertex 

& d[u] > d[v]): 

– Can go between vertices in same depth-first 

tree (as long as there is no ancestor / 

descendant relation) or between different 

depth-first trees
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Analysis of DFS(V, E)

1. for each u  V

2. do color[u] ← WHITE

3. [u] ← NIL

4. time ← 0

5. for each u  V

6. do if color[u] = WHITE

7. then DFS-VISIT(u)

(V)

(V) – exclusive  

of time for 

DFS-VISIT
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Analysis of DFS-VISIT(u)

1. color[u] ← GRAY

2. time ← time+1

3. d[u] ← time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v] ← u

7. DFS-VISIT(v)

8. color[u] ← BLACK

9. time ← time + 1

10. f[u] ← time

Each loop takes 

|Adj[v]|

DFS-VISIT is called exactly 

once for each vertex

Total: ΣvV |Adj[v]| + (V) =

(E)

(V + E)
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Properties of DFS

• u = prev[v]  DFS-VISIT(v) was 

called during a search of u’s 

adjacency list

• Vertex v is a descendant of vertex u

in the depth first forest  v is 

discovered during the time in which 

u is gray

1/  2/   

3/  

u v w
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Parenthesis Theorem

In any DFS  of a graph G, for 

all u, v, exactly one of the 

following holds:

1. [d[u], f[u]] and [d[v], f[v]] are 

disjoint, and neither of u and v

is a descendant of the other

2. [d[v], f[v]] is entirely within

[d[u], f[u]] and v is a 

descendant of u

3. [d[u], f[u]] is entirely within

[d[v], f[v]] and u is a 

descendant of v 

3/6 2/9 1/10

4/5 7/8 12/13

uvwx

y z s

11/16

14/15

t
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z

t

v u

y w

x

(s (z (y (x x) y) (w w) z) s) u)(t (v (u u) t)

Well-formed expression: parenthesis are

properly nested
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Other Properties of DFS

Corollary

Vertex v is a proper descendant of u

 d[u] < d[v] < f[v] < f[u]

Theorem (White-path Theorem)

In a depth-first forest of a graph G, vertex 

v is a descendant of u if and only if at time 

d[u], there is a path u  v consisting of 

only white vertices.

1/  2/   

u

v

1/8 2/7 9/12 

4/5 3/6 10/11 

u

v

BF
C

B



Directed Acyclic Graph

• DAG – Directed graph with no cycles.

• Good for modeling processes and structures that 

have a partial order:

– a > b and b > c  a > c.

– But may have a and b such that neither a > b nor b > 

a.

• Can always make a total order (either a > b or b 

> a for all a  b) from a partial order. 



Characterizing a DAG
Lemma 22.11

A directed graph G is acyclic iff a DFS of G yields no back edges.

v u
T T T
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Topological Sort

Topological sort of a directed acyclic graph G = 

(V, E): a linear order of vertices such that if there 

exists an edge (u, v), then u appears before v in 

the ordering.

• Directed acyclic graphs (DAGs)

– Used to represent precedence of events or processes 

that have a partial order

a before b b before c

b before c a before c
a before c

What about

a and b?

Topological sort helps us establish a total order



Topological Sort

Want to “sort” a directed acyclic graph (DAG).

B

E

D

C

A

C EDA B

Think of original DAG as a partial order.

Want a total order that extends this partial order.



Topological Sort - Application

• Application 1

– in scheduling a sequence of jobs. 

– The jobs are represented by vertices, 

– there is an edge from x to y if job x must be 

completed before job y can be done 

• (for example, washing machine must finish before we put the 

clothes to dry). Then, a topological sort gives an order in 

which to perform the jobs

• Application 2

– In open credit system, how to take courses (in order) 

such that, pre-requisite of courses will not create any 

problem

17
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Topological Sort (Fig – Cormen)

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

TOPOLOGICAL-SORT(V, E)

1. Call DFS(V, E) to compute 

finishing times f[v] for each 

vertex v

2. When each vertex is finished, 

insert it onto the front of a 

linked list

3. Return the linked list of 

vertices

1/

2/

3/4

5

6/7

8

9/10

11/

12/
13/14

15

16 17/18

jackettiebeltshirtwatchshoespantsundershortssocks

Running time: (V + E)
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Readings

• Cormen - Chapter 22

• Exercise:

– 22.4-2 : Number of paths (important)

– 22.4-3 : cycle (important and we have already solved 

it)

– 22.4-5 : Topological sort using degree


