
CSE 201

Data Structure and Algorithm

Lecture 3

DFS (Revisited) & Topological Sort

2

DFS(V, E)

1. for each u  V

2. do color[u] ← WHITE

3. prev[u] ← NIL

4. time ← 0

5. for each u  V

6. do if color[u] = WHITE

7. then DFS-VISIT(u)

• Every time DFS-VISIT(u) is called, u becomes the

root of a new tree in the depth-first forest

u v w

x y z

3

DFS-VISIT(u)

1. color[u] ← GRAY

2. time ← time+1

3. d[u] ← time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then prev[v] ← u

7. DFS-VISIT(v)

8. color[u] ← BLACK

9. time ← time + 1

10. f[u] ← time

1/

u v w

x y z

u v w

x y z

time = 1

1/ 2/

u v w

x y z

4

Example

1/ 2/

u v w

x y z

1/

u v w

x y z

1/ 2/

3/

u v w

x y z

1/ 2/

4/ 3/

u v w

x y z

1/ 2/

4/ 3/

u v w

x y z

B

1/ 2/

4/5 3/

u v w

x y z

B

1/ 2/

4/5 3/6

u v w

x y z

B

1/ 2/7

4/5 3/6

u v w

x y z

B

1/ 2/7

4/5 3/6

u v w

x y z

BF

5

Example (cont.)

1/8 2/7

4/5 3/6

u v w

x y z

BF

1/8 2/7 9/

4/5 3/6

u v w

x y z

BF

1/8 2/7 9/

4/5 3/6

u v w

x y z

BF
C

1/8 2/7 9/

4/5 3/6 10/

u v w

x y z

BF
C

1/8 2/7 9/

4/5 3/6 10/

u v w

x y z

BF
C

B

1/8 2/7 9/

4/5 3/6 10/11

u v w

x y z

BF
C

B

1/8 2/7 9/12

4/5 3/6 10/11

u v w

x y z

BF
C

B

The results of DFS may depend on:
• The order in which nodes are explored

in procedure DFS

• The order in which the neighbors of a

vertex are visited in DFS-VISIT

6

Edge Classification

• Tree edge (reaches a WHITE

vertex):

– (u, v) is a tree edge if v was first

discovered by exploring edge (u, v)

• Back edge (reaches a GRAY

vertex):

– (u, v), connecting a vertex u to an

ancestor v in a depth first tree

– Self loops (in directed graphs) are

also back edges

1/

u v w

x y z

1/ 2/

4/ 3/

u v w

x y z

B

7

Edge Classification

• Forward edge (reaches a BLACK

vertex & d[u] < d[v]):

– Non-tree edges (u, v) that connect a vertex

u to a descendant v in a depth first tree

• Cross edge (reaches a BLACK vertex

& d[u] > d[v]):

– Can go between vertices in same depth-first

tree (as long as there is no ancestor /

descendant relation) or between different

depth-first trees

1/ 2/7

4/5 3/6

u v w

x y z

BF

1/8 2/7 9/

4/5 3/6

u v w

x y z

BF
C

8

Analysis of DFS(V, E)

1. for each u  V

2. do color[u] ← WHITE

3. [u] ← NIL

4. time ← 0

5. for each u  V

6. do if color[u] = WHITE

7. then DFS-VISIT(u)

(V)

(V) – exclusive

of time for

DFS-VISIT

9

Analysis of DFS-VISIT(u)

1. color[u] ← GRAY

2. time ← time+1

3. d[u] ← time

4. for each v  Adj[u]

5. do if color[v] = WHITE

6. then [v] ← u

7. DFS-VISIT(v)

8. color[u] ← BLACK

9. time ← time + 1

10. f[u] ← time

Each loop takes

|Adj[v]|

DFS-VISIT is called exactly

once for each vertex

Total: ΣvV |Adj[v]| + (V) =

(E)

(V + E)

10

Properties of DFS

• u = prev[v]  DFS-VISIT(v) was

called during a search of u’s

adjacency list

• Vertex v is a descendant of vertex u

in the depth first forest  v is

discovered during the time in which

u is gray

1/ 2/

3/

u v w

x y z

11

Parenthesis Theorem

In any DFS of a graph G, for

all u, v, exactly one of the

following holds:

1. [d[u], f[u]] and [d[v], f[v]] are

disjoint, and neither of u and v

is a descendant of the other

2. [d[v], f[v]] is entirely within

[d[u], f[u]] and v is a

descendant of u

3. [d[u], f[u]] is entirely within

[d[v], f[v]] and u is a

descendant of v

3/6 2/9 1/10

4/5 7/8 12/13

uvwx

y z s

11/16

14/15

t

1 2 3 4 5 6 7 8 9 10 1311 12 14 15 16

s

z

t

v u

y w

x

(s (z (y (x x) y) (w w) z) s) u)(t (v (u u) t)

Well-formed expression: parenthesis are

properly nested

12

Other Properties of DFS

Corollary

Vertex v is a proper descendant of u

 d[u] < d[v] < f[v] < f[u]

Theorem (White-path Theorem)

In a depth-first forest of a graph G, vertex

v is a descendant of u if and only if at time

d[u], there is a path u  v consisting of

only white vertices.

1/ 2/

u

v

1/8 2/7 9/12

4/5 3/6 10/11

u

v

BF
C

B

Directed Acyclic Graph

• DAG – Directed graph with no cycles.

• Good for modeling processes and structures that

have a partial order:

– a > b and b > c  a > c.

– But may have a and b such that neither a > b nor b >

a.

• Can always make a total order (either a > b or b

> a for all a  b) from a partial order.

Characterizing a DAG
Lemma 22.11

A directed graph G is acyclic iff a DFS of G yields no back edges.

v u
T T T

B

15

Topological Sort

Topological sort of a directed acyclic graph G =

(V, E): a linear order of vertices such that if there

exists an edge (u, v), then u appears before v in

the ordering.

• Directed acyclic graphs (DAGs)

– Used to represent precedence of events or processes

that have a partial order

a before b b before c

b before c a before c
a before c

What about

a and b?

Topological sort helps us establish a total order

Topological Sort

Want to “sort” a directed acyclic graph (DAG).

B

E

D

C

A

C EDA B

Think of original DAG as a partial order.

Want a total order that extends this partial order.

Topological Sort - Application

• Application 1

– in scheduling a sequence of jobs.

– The jobs are represented by vertices,

– there is an edge from x to y if job x must be

completed before job y can be done

• (for example, washing machine must finish before we put the

clothes to dry). Then, a topological sort gives an order in

which to perform the jobs

• Application 2

– In open credit system, how to take courses (in order)

such that, pre-requisite of courses will not create any

problem

17

18

Topological Sort (Fig – Cormen)

undershorts

pants

belt

socks

shoes

watch

shirt

tie

jacket

TOPOLOGICAL-SORT(V, E)

1. Call DFS(V, E) to compute

finishing times f[v] for each

vertex v

2. When each vertex is finished,

insert it onto the front of a

linked list

3. Return the linked list of

vertices

1/

2/

3/4

5

6/7

8

9/10

11/

12/
13/14

15

16 17/18

jackettiebeltshirtwatchshoespantsundershortssocks

Running time: (V + E)

19

Readings

• Cormen - Chapter 22

• Exercise:

– 22.4-2 : Number of paths (important)

– 22.4-3 : cycle (important and we have already solved

it)

– 22.4-5 : Topological sort using degree

