CSE 201 Data Structure and Algorithm

Lecture 3 DFS (Revisited) & Topological Sort

DFS(V, E)

- **1.** for each $u \in V$
- **2. do** color[u] \leftarrow WHITE
- 3. $prev[u] \leftarrow NIL$
- 4. time $\leftarrow 0$
- 5. for each $u \in V$
- 6. do if color[u] = WHITE
- 7. then DFS-VISIT(u)

 Every time DFS-VISIT(u) is called, u becomes the root of a new tree in the depth-first forest

DFS-VISIT(u)

1. color[u] \leftarrow GRAY 2. time \leftarrow time+1 3. $d[u] \leftarrow time$ 4. for each $v \in Adj[u]$ **do if** color[v] = WHITE 5. then prev[v] \leftarrow u 6. DFS-VISIT(v) 7. 8. color[u] ← BLACK 9. time \leftarrow time + 1 10. $f[u] \leftarrow time$

time = 1

Example

Example (cont.)

V

3/6

y

W

9/

10/

 \mathcal{Z}

、В

U

1/8

X.

B,

V

3/6

y

B,

W

9/

10/1

 \mathcal{Z}

В

The results of DFS may depend on:

• The order in which nodes are explored in procedure DFS

U

X.

• The order in which the neighbors of a vertex are visited in DFS-VISIT

Edge Classification

- Tree edge (reaches a WHITE vertex):
 - (u, v) is a tree edge if v was first
 discovered by exploring edge (u, v)
- Back edge (reaches a GRAY vertex):
 - (u, v), connecting a vertex u to an ancestor v in a depth first tree
 - Self loops (in directed graphs) are also back edges

Edge Classification

- Forward edge (reaches a BLACK vertex & d[u] < d[v]):
 - Non-tree edges (u, v) that connect a vertex
 u to a descendant v in a depth first tree

- Cross edge (reaches a BLACK vertex & d[u] > d[v]):
 - Can go between vertices in same depth-first tree (as long as there is no ancestor / descendant relation) or between different depth-first trees

Analysis of DFS(V, E)

- **1.** for each $u \in V$
- **2. do** color[u] \leftarrow WHITE
- 3. π**[u]** ← NIL
- 4. time $\leftarrow 0$
- 5. for each $u \in V$
- **6. do if** color[u] = WHITE
- 7. then DFS-VISIT(u)

 $\Theta(V)$ – exclusive of time for DFS-VISIT

Analysis of DFS-VISIT(u)

1.	color[u] ← GRAY	DFS-VISIT is called exactly once for each vertex	
2.	time \leftarrow time+1		
3.	$d[u] \leftarrow time$	ì	
4.	for each $v \in Adj[u]$		
5.	do if color[v] = WHITE Each loop takes		
6.	then π[v] ← u		Adj[v]
7.	DFS-VISIT(v)		
8.	color[u] ← BLACK		
9.	time \leftarrow time + 1 Total: $\Sigma_{v \in V} Adj[v] + \Theta(V) = \Theta(V + E)$		
10.	$f[u] \leftarrow time \Theta(E)$		(E)

Properties of DFS

 u = prev[v] ⇔ DFS-VISIT(v) was called during a search of u's adjacency list

 Vertex v is a descendant of vertex u in the depth first forest ⇔ v is discovered during the time in which u is gray

Parenthesis Theorem

- In any DFS of a graph G, for all u, v, exactly one of the following holds:
- [d[u], f[u]] and [d[v], f[v]] are disjoint, and neither of u and v is a descendant of the other
- [d[v], f[v]] is entirely within
 [d[u], f[u]] and v is a
 descendant of u
- [d[u], f[u]] is entirely within
 [d[v], f[v]] and u is a
 descendant of v

Well-formed expression: parenthesis are properly nested

Other Properties of DFS

Corollary

Vertex v is a proper descendant of u ⇔ d[u] < d[v] < f[v] < f[u]

Theorem (White-path Theorem)

In a depth-first forest of a graph G, vertex v is a descendant of u if and only if at time d[u], there is a path u ⇒ v consisting of only white vertices.

Directed Acyclic Graph

- DAG Directed graph with no cycles.
- Good for modeling processes and structures that have a **partial order**:
 - -a > b and $b > c \Rightarrow a > c$.
 - But may have a and b such that neither a > b nor b > a.
- Can always make a total order (either a > b or b
 > a for all a ≠ b) from a partial order.

Characterizing a DAG

Lemma 22.11

A directed graph G is acyclic iff a DFS of G yields no back edges.

Topological Sort

Topological sort of a directed acyclic graph G = (V, E): a linear order of vertices such that if there exists an edge (u, v), then u appears before v in the ordering.

- Directed acyclic graphs (DAGs)
 - Used to represent precedence of events or processes that have a partial order

a before ba before cb before cWhat aboutb before ca before ca before ca and b?

Topological sort helps us establish a **total order**

Topological Sort

Want to "sort" a directed acyclic graph (DAG).

Think of original DAG as a partial order.

Want a total order that extends this partial order.

Topological Sort - Application

- Application 1
 - in scheduling a sequence of jobs.
 - The jobs are represented by vertices,
 - there is an edge from x to y if job x must be completed before job y can be done
 - (for example, washing machine must finish before we put the clothes to dry). Then, a topological sort gives an order in which to perform the jobs
- Application 2
 - In open credit system, how to take courses (in order) such that, pre-requisite of courses will not create any problem

Topological Sort (Fig – Cormen)

TOPOLOGICAL-SORT(V, E)

- Call DFS(V, E) to compute finishing times f[v] for each vertex v
- When each vertex is finished, insert it onto the front of a linked list
- Return the linked list of vertices

Running time: $\Theta(V + E)$

Readings

- Cormen Chapter 22
- Exercise:
 - 22.4-2 : Number of paths (important)
 - 22.4-3 : cycle (important and we have already solved it)
 - 22.4-5 : Topological sort using degree