CSE 201 Data Structure and Algorithm

Lecture 3 DFS (Revisited) & Topological Sort

DFS(V, E)

- **1. for** each $u \in V$
- **2. do** color[u] ← WHITE
- 3. prev[u] \leftarrow NIL
- 4. time $\leftarrow 0$
- **5. for** each $u \in V$
- **6. do if** color[u] = WHITE
- **7. then** DFS-VISIT(u)

Every time DFS-VISIT(u) is called, u becomes the root of a new tree in the depth-first forest

DFS-VISIT(u)

1. $color[u] \leftarrow GRAY$ 2. time \leftarrow time+1 3. $d[u] \leftarrow time$ **4. for** each $v \in Adj[u]$ $\mathbf{5.}$ **do if** color $[v] = W$ HITE **6. then** $prev[v] \leftarrow u$ 7. DFS-VISIT(v) 8. color[u] ← BLACK 9. time \leftarrow time + 1 10. $f[u] \leftarrow time$

time = 1

x y z

Example

Example (cont.)

 $1/8$ \rightarrow $2/7$) (9/

 B^{\prime}

x y z

u v w

4/5 3/6 10/

C

 $1/8$ \rightarrow $2/7$) (9/

 B

x y z

u v w

4/5 3/6 10/11

C

B

The results of DFS may depend on:

 \mathcal{A}

- The order in which nodes are explored in procedure DFS
- The order in which the neighbors of a vertex are visited in DFS-VISIT

Edge Classification

- **Tree edge** (reaches a WHITE vertex)**:**
	- $-$ (u, v) is a tree edge if v was first discovered by exploring edge (u, v)
- **Back edge** (reaches a GRAY vertex)**:**
	- (u, v), connecting a vertex u to an ancestor v in a depth first tree
	- Self loops (in directed graphs) are also back edges

Edge Classification

- **Forward edge** (reaches a BLACK vertex & d[u] < d[v])**:**
	- Non-tree edges (u, v) that connect a vertex u to a descendant v in a depth first tree

- **Cross edge** (reaches a BLACK vertex & d[u] > d[v])**:**
	- Can go between vertices in same depth-first tree (as long as there is no ancestor / descendant relation) or between different depth-first trees

Analysis of DFS(V, E)

- **1. for** each $u \in V$
- **2. do** color[u] ← WHITE
- 3. $\pi[u] \leftarrow \text{NIL}$
- 4. time $\leftarrow 0$
- **5. for** each $u \in V$
- **6. do if** color[u] = WHITE
- **7. then** DFS-VISIT(u)

$$
\Big\{\Theta(V)
$$

 $\Theta(V)$ – exclusive of time for DFS-VISIT

Analysis of DFS-VISIT(u)

Properties of DFS

 $u = prev[v] \Leftrightarrow$ DFS-VISIT(v) was called during a search of u's adjacency list

• Vertex v is a descendant of vertex u in the depth first forest \Leftrightarrow v is discovered during the time in which u is gray

Parenthesis Theorem

- In any DFS of a graph G, for all u, v, exactly one of the following holds:
- 1. $[d[u], f[u]]$ and $[d[v], f[v]]$ are disjoint, and neither of u and v is a descendant of the other
- 2. $[d[v], f[v]]$ is entirely within $[d[u], f[u]]$ and v is a descendant of u
- 3. [d[u], f[u]] is entirely within $[d[v], f[v]]$ and **u** is a descendant of v

Well-formed expression: parenthesis are properly nested

Other Properties of DFS

Corollary

Vertex v is a proper descendant of u \Leftrightarrow d[u] < d[v] < f[v] < f[u]

$1/8$ \rightarrow 2/7 9/12 $4/5$ \leftarrow 3/6 10/11 *u v* $B /$ C B

Theorem (White-path Theorem)

In a depth-first forest of a graph G, vertex v is a descendant of u if and only if at time $d[u]$, there is a path $u \Rightarrow v$ consisting of only white vertices.

Directed Acyclic Graph

- DAG Directed graph with no cycles.
- Good for modeling processes and structures that have a **partial order:**
	- $-$ *a > b* and *b > c* \Rightarrow *a > c*.
	- But may have *a* and *b* such that neither *a > b* nor *b > a*.
- Can always make a **total order** (either *a > b* or *b* $> a$ for all $a \neq b$) from a partial order.

Characterizing a DAG

Lemma 22.11

A directed graph *G* is acyclic iff a DFS of G yields no back edges.

Topological Sort

Topological sort of a directed acyclic graph G = (V, E): a linear order of vertices such that if there exists an edge (u, v), then u appears before v in the ordering.

- Directed acyclic graphs (DAGs)
	- Used to represent precedence of events or processes that have a **partial order**

a before b \vert , \vert b before c b before c | $\overline{}$ a before c a before c What about a and b?

Topological sort helps us establish a **total order**

Topological Sort

Want to "sort" a directed acyclic graph (DAG).

Think of original DAG as a **partial order**.

Want a **total order** that extends this partial order.

Topological Sort - Application

- Application 1
	- in scheduling a sequence of jobs.
	- The jobs are represented by vertices,
	- there is an edge from *x* to *y* if job *x* must be completed before job *y* can be done
		- (for example, washing machine must finish before we put the clothes to dry). Then, a topological sort gives an order in which to perform the jobs
- Application 2
	- In open credit system, how to take courses (in order) such that, pre-requisite of courses will not create any problem

Topological Sort (Fig – Cormen)

TOPOLOGICAL-SORT(V, E)

- 1. Call DFS(V, E) to compute finishing times f[v] for each vertex v
- 2. When each vertex is finished, insert it onto the front of a linked list
- 3. Return the linked list of vertices

Running time: $\Theta(V + E)$

Readings

- Cormen Chapter 22
- Exercise:
	- 22.4-2 : Number of paths (important)
	- 22.4-3 : cycle (important and we have already solved it)
	- 22.4-5 : Topological sort using degree