
Traversing a Binary Tree

1

2

Traversing Binary Tree

There are 3 ways of traversing a binary tree T having root R.

1. Preorder Traversing

• Steps:

(a) Process the root R

(b) Traverse the left subtree of R in preorder.

(c) Traverse the right subtree of R in preorder.

• Example:
A

B C

D E F G

H I J

Preorder Traversal of T

A, B, D, H, E, C, F, I, J, G

Figure: Binary Tree T

3

2. Inorder Traversing

• Steps:

(a) Traverse the left subtree of R in inorder.

(b) Traverse the root R.

(c) Traverse the right subtree of R in inorder.

• Example:

A

B C

D E F G

H I J

Inorder Traversal of T

D, H, B, E, A, I, F, J, C, G

Figure: Binary Tree T

4

3. Postorder Traversing

• Steps:

(a) Traverse the left subtree of R in postorder.

(b) Traverse the right subtree of R in postorder.

(c) Traverse the root R.

• Example:

A

B C

D E F G

H I J

Postorder Traversal of T

H, D, E, B, I, J, F, G, C, A

Figure: Binary Tree T

5

Traversal Algorithms Using Stacks

Preorder Traversal Using Stack

Algorithm: Preorder_Traverse(Tree, Root, Stack)

(1) Set Stack[0]=Null and Top=1 and Ptr=Root

(2) Repeat steps (3) to (5) until Ptr ≠ NULL

(3) Process Ptr->Info.

(4) if Ptr->Right ≠ NULL then set Stack[Top]=Ptr->Right and Top=Top+1

(5) If Ptr->Left ≠ NULL then set Ptr=Ptr->Left

else Set Ptr=Stack[Top] and Top=Top-1

(6) Exit.

6

A

B C

D E F G

H I J

Example:

1. Initially Ptr := A and Stack: Ø

2. Proceed down the left-most path rooted at Ptr = A

i. Process A, Push C onto Stack. Stack: Ø, C

ii. Process B, Push E onto Stack. Stack: Ø, C, E

iii. Process D, Push H onto Stack. Stack: Ø, C, E, H

3. Pop the Stack and Set Ptr := H. Stack: Ø, C, E

4. Proceed down the left-most path rooted at Ptr = H

i. Process H

Figure: Binary Tree T

10/23/08 7

5. Pop the Stack and Set Ptr := E and Stack: Ø, C

6. Proceed down the left-most path rooted at Ptr = E

i. Process E

7. Pop the Stack and Set Ptr := C and Stack: Ø

8. Proceed down the left-most path rooted at Ptr = C

i. Process C, Push G onto Stack. Stack: Ø, G

ii. Process F, Push J onto Stack. Stack: Ø, G, J

iii. Process I

9. Pop the Stack and Set Ptr := J and Stack: Ø, G

10. Proceed down the left-most path rooted at Ptr = J

i. Process J

11. Pop the Stack and Set Ptr := G and Stack: Ø

12. Proceed down the left-most path rooted at Ptr = G

i. Process G

13. Pop the Stack and set Ptr := Ø and Exit.

Preorder Traversal of T: A, B, D, H, E, C, F, I, J, G

8

2. Inorder Traversal Using Stack

Algorithm: Inorder_Traverse(Tree, Root, Stack)

(1) Set Stack[0]=NULL and Top=1 and Ptr=Root

(2) Repeat while Ptr ≠ NULL

(a) Set Stack[Top]=Ptr and Top=Top+1

(b) Set PTR=Ptr->Left

(3) Set Ptr=Stack[Top] and Top := Top -1

(4) Repeat steps 5 to 7 while Ptr ≠ NULL

(5) Process Ptr->Info

(6) If Ptr->Right ≠NULL then set Ptr=Ptr->Right and go to step 2.

(7) Set Ptr=Stack[Top] and Top=Top-1

(8) Exit

9

A

B C

D E F G

H I J

Example:

1. Initially Ptr := A and Stack: Ø

2. Proceed down the left-most path rooted at Ptr = A, pushing A, B, D onto Stack.

3. Stack: Ø, A, B, D

4. Pop the Stack and Set Ptr := D. Stack: Ø, A, B

5. Process D. Set Ptr := H. Proceed down the left-most path rooted at Ptr = H, pushing H

onto Stack. Stack: Ø, A, B, H

6. Pop the Stack and Set Ptr := H. Stack: Ø, A, B

7. 6. Process H.

8. Pop the Stack and Set Ptr := B. Stack: Ø, A

9. Process B. Set Ptr:= E .Proceed down the left-most path rooted at Ptr = E, pushing E

onto Stack. Stack: Ø, A, E

Figure: Binary Tree T

10

10. Pop the Stack and Set Ptr := E. Stack: Ø, A

11. Process E.

12. Pop the Stack and Set Ptr := A. Stack: Ø

13. Process A. Set Ptr:= C. Proceed down the left-most path rooted at Ptr = C, pushing C, F, I onto

Stack. Stack: Ø, C, F, I

14. Pop the Stack. Set Ptr := I . Stack: Ø, C, F

15. Process I.

16. Pop the Stack. Set Ptr := F. Stack: Ø, C, F

17. Process F. Set Ptr := J. Proceed down the left-most path rooted at Ptr = J, pushing J

onto Stack. Stack: Ø, C, J

18. Pop the Stack. Set Ptr := J. Stack: Ø, C

19. Process J.

20. Pop the Stack. Set Ptr := C. Stack: Ø

21. Process C. Set Ptr := G. Proceed down the left-most path rooted at Ptr = G, pushing G

onto Stack. Stack: Ø, G

22. Pop the Stack. Set Ptr := G. Stack: Ø

23. Process G.

24. Pop the Stack. Set Ptr := Ø and Exit.

Inorder Traversal of T: D, H, B, E, A, I, F, J, C, G

11

Assignment

Write an algorithm that will traverse a binary tree in postorder traversal using stack. Discuss

the algorithm using example.

12

END!!!

