File I/0O

LJDATA CAN BE STORED OR READ FROM FILES. DATA STORED IN
FILES IS OFTEN CALLED

JFILE IS A COLLECTION OF PLACED IN A
PARTICULAR AREA ON THE DISK.

LFie s A THAT DIRECTLY DEALS WITH FILE SYSTEM. FILE

DOESN'T SPECIFY HOW INFORMATION IS RETRIEVED FROM OR
STORED IN FILES, IT DESCRIBES THE OF FILE

(diTs OBJECT IS USED TO OBTAIN OR MANIPULATE THE
INFORMATION ASSOCIATED WITH THE FILE SUCH AS
EfC:

MYDIR = NEW FILE(“C:\\BMH”) ;

NEw FILE (“C:\\BMH\\JUNK.JAVA”) ;

NEWw FIrLE (“C:\\BMH”, “JUNK.Java”) ;

NEW FILE (MYDIR, “JUNK.JAVA”) .

IS A FILE THAT CONTAINS THE LIST OF OTHER FILES AND
DIRECTORIES. WE CAN CALL TO EXTRACT THE LIST OF OTHER
FILES AND DIRECTORIES.

STRING[] LIST()

EXISTS ()
ISDIRECTORY ()
ISFILE ()
CANRERD ()

CANWRITE ()

ISHIDDEN ()

GETNAME ()

CREATENEWF'ILE ()

Import java.io.*;
class Dir

{
PSVM(-)

{ String dir="/java”;
File f1=new File(dir);

» JAVA FILE |/O INVOLVES . YOU WRITE AND
READ DATA TO STREAMS.

» THE PURPOSE OF THE STREAM ABSTRACTION IS TO KEEP
PROGRAM CODE INDEPENDENT FROM PHYSICAL DEVICES.

» THREE STREAM OBJECTS ARE AUTOMATICALLY CREATED
FOR EVERY APPLICATION: , AND

» A STREAM PRESENTS A UNIFORM, EASY-TO-USE, OBJECT
ORIENTED INTERFACE B/W PROGRAM AND |/O DEVICES

> IT1S A PATH ALONG WHICH DATA FLOWS.

STREAMS

« A STREAM IS A SEQUENCE OF DATA. AN I/O STREAM REPRESENTS AN
INPUT SOURCE OR AN OUTPUT DESTINATION.

A STREAM CAN REPRESENT MANY DIFFERENT KINDS OF SOURCES AND
DESTINATIONS, INCLUDING DISK FILES, DEVICES, OTHER PROGRAMS,
AND MEMORY ARRAYS.

STREAMS SUPPORT MANY DIFFERENT KINDS OF DATA, INCLUDING
SIMPLE BYTES, PRIMITIVE DATA TYPES, LOCALIZED CHARACTERS, AND
OBJECTS.

INPUT STREAMS

« A PROGRAM USES AN INPUT STREAM TO READ DATA FROM A
SOURCE, ONE ITEM AT A TIME:

Stream Program

OUTPUT STREAMS

« A PROGRAM USES AN INPUT STREAM TO READ DATA FROM A
SOURCE, ONE ITEM AT A TIME:

Stream

Data

(0011010000)1001000011 {1001010101) Destination

/O STREAMS

VIS: HANDLE [/O OF RAW BINARY DATA.

: HANDLE [/O OF CHARACTER DATA, AUTOMATICALLY
HANDLING TRANSLATION TO AND FROM THE LOCAL CHARACTER SET.

UFFERED STREAMS: OPTIMIZE INPUT AND OUTPUT BY REDUCING THE
NUMBER OF CALLS TO THE NATIVE API "

BYTE STREAMS

PROGRAMS USE BYTE STREAMS TO PERFORM INPUT AND QUTPUT OF 8-13

ALL BYTE STREAM CLASSES ARE DESCENDED FROM INPUTSTREAM AND
OUTPUTSTREAM.,

THERE ARE MANY BYTE STREAM CLASSES. FOR FILE I/O, IT IS CALLED
FILEINPUTSTREAM AND FILEOUTPUTSTREAM.

OTHER KINDS OF BYTE STREAMS ARE USED IN MUCH THE SAME WAY; THEY
DIFFER MAINLY IN THE WAY THEY ARE CONSTRUCTED.

EXAMPLE PROGRAM: COPYBYTES

import java.io.FilelnputStream;
irport java.io.FileQutputStream;

import java.io.IOException;

public class CopyBytes {
public static void main(String[] args) throws IOException

FileInpytStream in = null;
FileOutputStream out = null;

try (
in = new FilelnputStrean(”xanadu.txt”);
out = new FileCutputStrean(“outagain.txt");

int ¢;

while ((c = in.read()) I= -1) {
out.write(c);

}

} finally {(

if (in != null) (
in.close();

}

if (out != null}) {

cut.close():

Input Stream
Xla|n'\aid u
=
\J
_— tead (b) *—

a

Integer Vanable
d

. ' -
= write (b) —
X l a ‘ nla ‘ d|u
Output Slfgem

Simple byte stream input and output.

/O STREAMS

« BYTE STREAMS: HANDLE I/O OF RAW BINARY

« CHARACTER STREAMS: HANDLE I/O OF CHARACTER DATA,
AUTOMATICALLY HANDLING TRANSLATION TO AND FROM THE
LOCAL CHARACTER SET.

« BUFFERED STREAMS: OPTIMIZE INPUT AND OUTPUT BY
REDUCING THE NUMBER OF CALLS TO THE NATIVE APL

CHARACTER STREAMS

« A PROGRAM THAT USES CHARACTER STREAMS IN PLACE OF BYTE
STREAMS AUTOMATICALLY ADAFYS TO THE LOCAL CHARACTER
SET

ALL CHARACTER STREAM CLASSES ARE DESCENDED FROM
READER AND WRITER.

AS WITH BYTE STREAMS, THERE ARE CHARACTER STREAM
CLASSES THAT SPECIALIZE IN FILE I/O: FILEREADER AND
FILEWRITER.

import java.io.FileReader;
import java.io.FlleWriter;
import java.lio.IOException;

public clasa CopyCharacters (

public static void main(Stringl] args) throws IOException {

FileReader inputStrecam null;
rilewriter outputStream nulls

ery {
inputStream = new FileRcader(“"xanadu.txt™);
outputsStroan new FileWriter(characteroutput.txt”™);

int ¢;
while ((c ifputStream.read()) 1 -1) {
ocutputsStream.write(c);

} finally {
if (inputSctream | nall) {

inputStream.close();

if (ocutputStream != nuoll) ({

ocutputStream.close();

/O STREAMS

« BYTE STREAMS: HANDLE [I/O OF RAW BINARY

« CHARACTER STREAMS: HANDLE I/O OF CHARACTER DATA,
AUTOMATICALTV HANNLING TRANSLATION TO AND FROM THE
LOCAL CHARA

UFFERED STREAMS: OPTIMIZE INPUT AND OUTPUT BY
REDUCING THE NUMBER OF CALLS TO THE NATIVE APL.

BUFFERED STREAMS

THE EXAMPLES WE'VE SEEN SO FAR USE UNBUFFERED [/O. THIS MEANS
EACH READ OR WRITE REQUEST IS HANDLED DIRECTLY BY THE
UNDERLYING OS. THIS CAN MAKE A PROGRAM MUCH LESS EFFICIENT,
SINCE EACH SUCH REQUEST OFTEN TRIGGERS DISK ACCESS, NETWORK
ACTIVITY, OR SOME OTHER OPERATION THAT IS

TO REDUCE THIS KIND OF OVERHEAD, THE JAVA PLATFORM IMPLEMENTS
BUFFERED I/O STREAMS. BUFFERED INPUT STREAMS READ DATA FROM A
MEMORY AREA KNOWN AS A BUFFER; THE NATIVE INPUT API IS CALLED
ONLY WHEN THE BUFFER IS . SIMILARLY, BUFFERED OUTPUT
STREAMS WRITE DATA TO A BUFFER, AND THE NATIVE OUTPUT API 18
CALLED ONLY WHEN THE BUFFER IS

Buffer er maddhome block akare byte/char read write kora hoy

>>>A BufferedinputStream adds functionality to another input stream-namely, the
ability to buffer the input and to support the mark and reset methods. When the
BufferedinputStream is created, an internal buffer array is created. As bytes from
the stream are read or skipped, the internal buffer is refilled as necessary from
the contained input stream, many bytes at a time.

>>>]Java.io.BufferedOutputStream class implements a buffered output stream.
By setting up such an output stream, an application can write bytes to the
underlying output stream without necessarily causing a call to the underlying
system for each byte written.

BUFFERED STREAMS

A PROGRAM CAN CONVERT AN UNBUFFERED STREAM INTO A BUFFERED STREAM
USING THE WRAPPING IDIOM, WHERE THE UNBUFFERED STREAM OBIJECT IS
PASSED TO THE CONSTRUCTOR FOR A BUFFERED STREAM CLASS.

CoPYCHARACTERS EXAMPLE TO USE BUFFERED 1/O:

FLUSHING BUFFERED STREAMS:

IT OFTEN MAKES SENSE TO WRITE OUT A BUFFER AT CRITICAL POINTS, WITHOUT
WAITING FOR IT TO FILL. THIS IS KNOWN AS FLUSHING THE BUFFER. FOR E APLE,
PRINTWRITER OBJECT FLUSHES THE BUFFER ON EVERY INVOCATION OF PRINTLN OR
FORMAT.

import
import
import
import
import

java.
Java.
java.i
Java.
java,

LINE-ORIENTED 1/O

« LET'S MODIFY THE COPYCHA

LINE-ORIENTED /0.

TERS EXAMPLE TO USE

EXAMPLE PROGRAM: COPYLINES

FlieReader;
.Filewriter;
.Bufferedreader;
.PrintNriter;
«I0Exception;

public class CopyLines {

public static void main(String()] args) throws

SuffecredReader inputStream = null;

Prin

try

itWriter outputStreanm = null;

{

IoException {

inputsStreanm new Bufferedieader{new FileReader(xanadu.txt”));

outputStream = new Priatwriter(new FileNriter("characteroutput.txt®));

string 1;

while ((l inputStream.readline()) ¢
outputStream.printin(l);

)

n

} finally {

if (inputStream = null) {(
inputStreanm.close|);

}

if (outputStream i= null) {
outputStreanm.cloae();

null) {

/O STREAMS

« BYTE STREAMS: HANDLE /O OF RAW BINARY

« CHARACTER STREAMS: HANDLE I/O OF CHARACTER DATA,
AUTOMATICAL' V HANN_ING TRANSLATION TO AND FROM THE
LOCAL CHARA

« BUFFERED STREAMS: OPTIMIZE INPUT AND OUTPUT BY
REDUCING THE NUMBER OF CALLS TC IVE APL

| Jowva Jong

Byte Stream:
FilelnputStream
FileOutputStream
Char Stream:
FileReader
FileWriter
Buffered Stream:
BufferedReader (new FileReader())
BufferedWriter (new FileWriter()) / PrintWriter (new FileWriter())

