Java Exception

e \WWW.ANAreW-programming.Com s

What Is Exception?

An exception is an event,

which occurs during the (
execution of a program, =
S

that disrupts the normal

flow of the program's —X(Ce Dt | On

Instructions.

Catching Exceptions

A method catches an exception
using a combination of
the try and catch keywords.

A try/catch block is placed
around the code that might
generate an exception.

Code within a try/catch block is
referred to as protected code,
and the syntax for using
try/catch looks like the
following

Syntax

try {
// Protected code

} catch (ExceptionName el) {
// Catch block

The Finally Block

e The finally block follows a try block or a
catch block. A finally block of code

Syntax

try {
// Protected code

always executes, irrespective of } catch (ExceptionTypel el) {
occurrence of an Exception. /4 Catch block

e Using a finally block allows you to run d ijcza::cs‘l’zii"”pez U
any cleanup-type statements that you R
want to execute, no matter what // Catch block
happens in the protected code. Minally {

// The finally block always executes.

The Try-Catch-Finally Block

class ExcepTest { Qutput

void main(String argsl]) { Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3
int all int[2]; First element value: 6

{ The finally statement is executed
System.out.println("Access element three :" + al[3]);
(ArrayIndexOutOfBoundsException e) {

Note the following —

System.out.println("Exception thrown e);
{ 7+ A catch clause cannot exist without a try statement.

alo] 6;))
System.out.printin("First elesent value: * +al8l}: It is not compulsory to have finally clauses whenever a try/catch block

System.out.println("The finally statement is executed"); is present.

7 The try block cannot be present without either catch clause or finally
clause.

2 Any code cannot be present in between the try, catch, finally blocks.

Java Exception Type

(Object]

Throwable

Java’s exceptions can be categorized into two types:
» Checked exceptions

* Unchecked exceptions

Unchecked exceptions come in two types:

RunTime Exception

e Errors

VirtualMachineError

* Runtime exceptions

ArrayindexOutOfBound
sException

Y L) L)

Y Y
UnChecked Checked UnChecked

Checked Exception

Checked exceptions are the type that
programmers should anticipate and from
which programs should be able to recover.
All Java exceptions are checked
exceptions except those of the Error and
RuntimeException classes and their
subclasses.

A checked exception is an exception which
the Java source code must deal with,
either by catching it or declaring it to be
thrown. Checked exceptions are generally
caused by faults outside of the code itself -
missing resources, networking errors, and
problems with threads come to mind.
These could include subclasses of
FileNotFoundException,

Name

IOEXxception

SQLEXxception.

DataAccessException

ClassNotFoundException

InstantiationException

Description

While using file input/output stream
related exception

While executing queries on
database related to SQL syntax

Exception related to accessing
data/database

Thrown when the JVM can’t find a
class it needs, because of a
command-line error, a classpath
issue, or a missing .class file

Attempt to create an object of an
abstract class or interface.

Checked Example Program

package exception.trycatchresourcedemo.checkedexception;
import java.io.x;

class Main {
public static void main(String[] args) {
FileReader file = null; —

file = new FileReader(fileName: "A.txt™);

BufferedReader fileInput = new BufferedReader(file);

// Print first 3 lines of file "C:\test|a.txt"
for (int counter = @; counter < 3; counter++)

System.out.println(fileInput.readLine());
fileInput.close();

package exception.trycatchresourcedemo.checkedexception;
import java.io.x;

class Main {
public static void main(String[] args) {
FileReader file = null;
try {
file = new FileReader(fileName: "A.txt");
BufferedReader fileInput = new BufferedReader(file);

// Print first 3 lines of file "C:\test\a.txt"
for (int counter = @; counter < 3; counter++)

System.out.println(fileInput.readLine());
fileInput.close();

} catch (FileNotFoundException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

Checked Example Program

package exception.trycatchresourcedemo.checkedexception;
import java.io.x;

class Main {
public static void main(String[] args) {

FileReader file = null; _

file = new FileReader(fileName: "A,txt");

BufferedReader fileInput = new BufferedReader(file);

// Print first 3 lines of file "C:|test\a.txt"
for (int counter = @; counter < 3; counter++)

System.out.println(fileInput.readLine());
fileInput.close();

package exception.trycatchresourcedemo.checkedexception;
import java.io.x;

class Main {
public static void main(String[] args) throws Exception {
FileReader file = null;

file = new FileReader(fileName: "A,txt");

BufferedReader fileInput = new BufferedReader(file);

// Print first 3 lines of file "C:\test\a.txt"
for (int counter = @; counter < 3; counter++)

System.out.println(fileInput.readLine());
fileInput.close();

UnChecked Exception

Unchecked exceptions inherit
from the Error class or the
RuntimeException class. Many
programmers feel that you should
not handle these exceptions in
your programs because they
represent the type of errors from
which programs cannot
reasonably be expected to recover
while the program is running.

When an unchecked exception is
thrown, it is usually caused by a
misuse of code - passing a null or
otherwise incorrect argument.

Name

NullPointerException

ArraylndexOutOfBound

lllegalArgumentException.

lllegalStateException

NumberFormatException

ArithmaticException

Description

Thrown when attempting to access an
object with a reference variable whose
current value is null

Thrown when attempting to access an
array with an invalid index value (either
negative or beyond the length of the
array)

Thrown when a method receives an
argument formatted differently than the
method expects.

Thrown when the state of the
environment doesn’t match the
operation being attempted,e.qg., using a
Scanner that’'s been closed.

Thrown when a method that converts a
String to a number receives a String that
it cannot convert.

Arithmetic error, such as divide-by-zero.

Unchecked Exceptions Demo

fSERRESovo~ouswnkr

e
N oW

import java.util.Scanner;
public class RunTimeExceptionDemo {
public static void main(String[] args) {
//Reading user input
Scanner inputDevice = new Scanner(System.in);
System.out.print("Please enter your age- Numeric value: ");
int age = inputDevice.nextInt();
if (age>18){
System.out.println("You are authorized to view the page");
//0ther business logic
}else {
System.out.println("You are not authorized to view page");
//0ther code related to logout

Output:
. roblems | @ Javadoc (@ Dec
< d> RunTimeExceptionDemo [Java Application] C:\Program |

Please enter your age- Numeric value: 1@
I ou are not authorized to view page

If User enters non-numeric value, program ends in error/exceptional condition.

[£. Problems | @ Javadoc (&) Declaration
i RunTi i 1 ication] C:\Program Files\Java)jre6\bin\; 07-Apr-2013

Please enter your age- Numeric value: ten
[xception in thread "main” java.util.InputMismatchException

at java.util.Scanner.throwFor(Unknown Source)

at java.util.Scanner.next(Unknown Source)

at java.util.Scanner.nextInt(Unknown Source)

at java.util.Scanner.nextInt(Unknown Source)

at exceptiondemo.RunT onDemo . main (RunT: onDemo. java:11)

Catching Exception Demo

The following is an
array declared with 2
elements. Then the
code tries to access
the 3rd element of the

System.out.println("Access element three :" + a[3]);

array WhICh thrOWS }catch(ArrayIndexOutOfBoundsException e) {

an exception. System.out.println("Exception thrown :" + e);

}
System.out.println("Out of the block");

import java.io.*;
public class ExcepTest {
public static void main(String args[]) {

try {
int a[] = new int[2];

1
2
3
4
5
6
7
8
9

Output

Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3
Out of the block

Multiple Catch Blocks

you can have any number of them after a single Syntax
try. If an exception occurs in the protected code,
the exception is thrown to the first catch block in try {
the list. // Protected code
If the data type of the exception thrown matches } catch (ExceptionTypel el) {
ExceptionTypel, it gets caught there. If not, the // Catch block
exception passes down to the second catch } catch (ExceptionType2 €2) {
statement.
// Catch block
This continues until the exception either is } catch (ExceptionType3 e3) {
caught or falls through all catches, in which case // Catch block

the current method stops execution and the
exception is thrown down to the previous
method on the call stack.

Multiple Catch Blocks Demo

try {
file = new FileInputStream(fileName);
x = (byte) file.read();
} catch (IOException i) {
i.printStackTrace();
return -1;
} catch (FileNotFoundException f) // Not valid! {
f.printStackTrace();
return -1;

}

Catching Multiple Type of Exceptions

Since Java 7, you can handle more than one exception using a
single catch block, this feature simplifies the code.

catch (IOException|FileNotFoundException ex) {
logger.log(ex);

throw ex;

The Throws/Throw Keywords

e If a method does not handle a checked exception, the method must
declare it using the throws keyword. The throws keyword appears at the
end of a method's signature.

e You can throw an exception, either a newly instantiated one or an
exception that you just caught, by using the throw keyword.

e Tryto understand the difference between throws and throw
keywords, throws is used to postpone the handling of a checked exception
and throw is used to invoke an exception explicitly.

The Throws/Throw Keywords Demo

If a method does not handle a
checked exception, the method must
declare it using the throws keyword.
The throws keyword appears at the
end of a method's signature.

You can throw an exception, either a
newly instantiated one or an
exception that you just caught, by
using the throw keyword.

import java.io.x*;
public class className {

}

public void deposit(double amount) throws RemoteException {
// Method implementation
throw new RemoteException();

}

// Remainder of class definition

The Throws/Throw Keywords Demo

A method can declare that it throws Example

more Fhan one exceptlon,. import java.io.*;

in which case the exceptions are public class className {

declared in a list Separated by public void withdraw(double amount) throws RemoteException,
commas InsufficientFundsException {

// Method implementation
}

// Remainder of class definition

For example, the following method }
declares that it throws

a RemoteException and an
InsufficientFundsException -

The Finally Block

e The finally block follows a try block or a
catch block. A finally block of code

Syntax

try {
// Protected code

always executes, irrespective of } catch (ExceptionTypel el) {
occurrence of an Exception. /4 Catch block

e Using a finally block allows you to run d ijcza::cs‘l’zii"”pez U
any cleanup-type statements that you R
want to execute, no matter what // Catch block
happens in the protected code. Minally {

// The finally block always executes.

The Finally Block

class ExcepTest { Qutput

void main(String argsl]) { Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3
int all int[2]; First element value: 6

{ The finally statement is executed
System.out.println("Access element three :" + al[3]);
(ArrayIndexOutOfBoundsException e) {

Note the following —

System.out.println("Exception thrown e);
{ 7+ A catch clause cannot exist without a try statement.

alo] 6;))
System.out.printin("First elesent value: * +al8l}: It is not compulsory to have finally clauses whenever a try/catch block

System.out.println("The finally statement is executed"); is present.

7 The try block cannot be present without either catch clause or finally
clause.

2 Any code cannot be present in between the try, catch, finally blocks.

User-defined Exceptions

. . We can define our own Exception class as below —
You can create your own exceptions in

Java. Keep the following points in mind class MyException extends Exception {
when writing your own exception }
classes -
® All exceptions must be a child of
Throwable.
® If you want to write a checked
exception that is automatically
enforced by the Handle or Declare
Rule, you need to extend the
Exception class.
® |f you want to write a runtime
exception, you need to extend the
RuntimeException class.

User-defined Exceptions

Example

// File Name InsufficientFundsException.java
import java.io.x;

public class InsufficientFundsException extends Exception {
private double amount;

public InsufficientFundsException(double amount) {
this.amount = amount;

}

public double getAmount() {

return amount;

}

// File Name CheckingAccount.java
import java.io.x*;

public class CheckingAccount {
private double balance;
private int number;

public CheckingAccount(int number) {
this.number = number;
Iy

public void deposit(double amount) {
balance += amount;

public void withdraw(double amount) throws InsufficientFundsException {
if(amount <= balance) {
balance -= amount;
telse {
double needs = amount - balance;
throw new InsufficientFundsException(needs);
}
}

public double getBalance() {
return balance;

public int getNumber() {
return number;

User-defined Exceptions

// File Name BankDemo. java
public class BankDemo {

public static void main(String [] args) {

s
}

CheckingAccount ¢ = new CheckingAccount(101);
System.out.println("Depositing $500...");
c.deposit(500.00);

try {
System.out.println("\nWithdrawing $100...");
c.withdraw(100.00);
System.out.println("\nWithdrawing $600...");
c.withdraw(600.00);
} catch (InsufficientFundsException e) {
System.out.println("Sorry, but you are short $" + e.getAmount());
e.printStackTrace();

b

Output

Depositing $500...
Withdrawing $100...

Withdrawing $600...
Sorry, but you are short $200.0
InsufficientFundsException
at CheckingAccount.withdraw(CheckingAccount.java:25)

at BankDemo.main(BankDemo.java:13)

