
Java Exception
www.andrew-programming.com



What Is Exception?
An exception is an event, 

which occurs during the 

execution of a program, 

that disrupts the normal 

flow of the program's 

instructions.



Catching Exceptions

A method catches an exception 
using a combination of 
the try and catch keywords. 

A try/catch block is placed 
around the code that might 
generate an exception. 

Code within a try/catch block is 
referred to as protected code, 
and the syntax for using 
try/catch looks like the 
following



The Finally Block
● The finally block follows a try block or a 

catch block. A finally block of code 
always executes, irrespective of 
occurrence of an Exception.

● Using a finally block allows you to run 
any cleanup-type statements that you 
want to execute, no matter what 
happens in the protected code.



The Try-Catch-Finally Block



Java Exception Type

Java’s exceptions can be categorized into two types:

• Checked exceptions

• Unchecked exceptions

Unchecked exceptions come in two types:

• Errors

• Runtime exceptions



Checked Exception
Checked exceptions are the type that 

programmers should anticipate and from 

which programs should be able to recover. 

All Java exceptions are checked 

exceptions except those of the Error and 

RuntimeException classes and their 

subclasses.

A checked exception is an exception which 

the Java source code must deal with, 

either by catching it or declaring it to be 

thrown. Checked exceptions are generally 

caused by faults outside of the code itself -

missing resources, networking errors, and 

problems with threads come to mind. 

These could include subclasses of 

FileNotFoundException, 

UnknownHostException, etc.

Name Description

IOException While using file input/output stream 

related exception

SQLException. While executing queries on 

database related to SQL syntax

DataAccessException Exception related to accessing 

data/database

ClassNotFoundException Thrown when the JVM can’t find a 

class it needs, because of a 

command-line error, a classpath 

issue, or a missing .class file

InstantiationException Attempt to create an object of an 

abstract class or interface.



Checked Example Program



Checked Example Program



UnChecked Exception
Unchecked exceptions inherit 
from the Error class or the 
RuntimeException class. Many 
programmers feel that you should 
not handle these exceptions in 
your programs because they 
represent the type of errors from 
which programs cannot 
reasonably be expected to recover 
while the program is running.

When an unchecked exception is 
thrown, it is usually caused by a 
misuse of code - passing a null or 
otherwise incorrect argument.

Name Description

NullPointerException Thrown when attempting to access an 

object with a reference variable whose 

current value is null

ArrayIndexOutOfBound Thrown when attempting to access an 

array with an invalid index value (either 

negative or beyond the length of the 

array)

IllegalArgumentException. Thrown when a method receives an 

argument formatted differently than the 

method expects.

IllegalStateException Thrown when the state of the 

environment doesn’t match the 

operation being attempted,e.g., using a 

Scanner that’s been closed.

NumberFormatException Thrown when a method that converts a 

String to a number receives a String that 

it cannot convert.

ArithmaticException Arithmetic error, such as divide-by-zero.



Unchecked Exceptions Demo



Catching Exception Demo

The following is an 
array declared with 2 
elements. Then the 
code tries to access 
the 3rd element of the 
array which throws 
an exception.



Multiple Catch Blocks

you can have any number of them after a single 

try. If an exception occurs in the protected code, 

the exception is thrown to the first catch block in 

the list. 

If the data type of the exception thrown matches 

ExceptionType1, it gets caught there. If not, the 

exception passes down to the second catch 

statement. 

This continues until the exception either is 

caught or falls through all catches, in which case 

the current method stops execution and the 

exception is thrown down to the previous 

method on the call stack.



Multiple Catch Blocks Demo



Catching Multiple Type of Exceptions

Since Java 7, you can handle more than one exception using a 
single catch block, this feature simplifies the code.



The Throws/Throw Keywords
● If a method does not handle a checked exception, the method must 

declare it using the throws keyword. The throws keyword appears at the 
end of a method's signature.

● You can throw an exception, either a newly instantiated one or an 
exception that you just caught, by using the throw keyword.

● Try to understand the difference between throws and throw 
keywords, throws is used to postpone the handling of a checked exception 
and throw is used to invoke an exception explicitly.



The Throws/Throw Keywords Demo

If a method does not handle a 

checked exception, the method must 

declare it using the throws keyword. 

The throws keyword appears at the 

end of a method's signature.

You can throw an exception, either a 

newly instantiated one or an 

exception that you just caught, by 

using the throw keyword.



The Throws/Throw Keywords Demo
A method can declare that it throws 

more than one exception,

in which case the exceptions are 

declared in a list separated by 

commas. 

For example, the following method 

declares that it throws 

a RemoteException and an 

InsufficientFundsException −



The Finally Block
● The finally block follows a try block or a 

catch block. A finally block of code 
always executes, irrespective of 
occurrence of an Exception.

● Using a finally block allows you to run 
any cleanup-type statements that you 
want to execute, no matter what 
happens in the protected code.



The Finally Block



User-defined Exceptions
You can create your own exceptions in 
Java. Keep the following points in mind 
when writing your own exception 
classes −
● All exceptions must be a child of 

Throwable.
● If you want to write a checked 

exception that is automatically 
enforced by the Handle or Declare 
Rule, you need to extend the 
Exception class.

● If you want to write a runtime 
exception, you need to extend the 
RuntimeException class.



User-defined Exceptions



User-defined Exceptions


