
© 2004 Capgemini - All rights reserved

SOLID
- OO DESIGN PRINCIPLES

Andreas Enbohm, Capgemini

© 2009 Capgemini - All rights reserved

13 november 2022Sida 2

Agenda

 What is SOLID Design Principles?

 Code Examples

 Q&A

© 2009 Capgemini - All rights reserved

13 november 2022Sida 3

SOLID

 Introduced by Robert C. Martins (”Uncle Bob”)

 Agile Manifesto

 Author of several books, e.g. ”Clean Code”

http://www.amazon.co.uk/gp/reader/0132350882/ref=sib_dp_pt#reader-link
http://www.amazon.co.uk/gp/reader/0132350882/ref=sib_dp_pt#reader-link

© 2009 Capgemini - All rights reserved

13 november 2022Sida 4

SOLID

 SOLID

- Single Responsibility Principle

- Open Closed Principle

- Liskov Substitution Principle

- Interface Segregation Principle

- Dependency Inverison Principle

 Code becomes more Testably (remember TDD is not only about testing, more

important its about Design)

 Apply ’smart’

- don’t do stuff ’just because of’

- very importad to see the context of the program/code when applying SOLID

- Joel On Software advise – use with common sense!

© 2009 Capgemini - All rights reserved

13 november 2022Sida 5

Single Responsibility Principle

 "There should never be more than one reason for a class to

change." — Robert Martin, SRP paper linked from The Principles

of OOD

 My translation: A class should concentrate on doing one thing and

one thing only

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

© 2009 Capgemini - All rights reserved

13 november 2022Sida 6

Single Responsibility Principle

 Two resposibilities

 Connection Management + Data Communication

interface Modem {

public void dial(String pno);

public void hangup();

public void send(char c);

public char recv();

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 7

Single Responsibility Principle

 Separate into two interfaces

interface DataChannel {

public void send(char c);

public char recv();

}

interface Connection {

public void dial(String phn);

public char hangup();

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 8

Open Closed Principle

 "Software entities (classes, modules, functions, etc.) should be

open for extension, but closed for modification." — Robert Martin

paraphrasing Bertrand Meyer, OCP paper linked from The

Principles of OOD

 My translation: Change a class' behavior using inheritance and

composition

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

© 2009 Capgemini - All rights reserved

13 november 2022Sida 9

Open Closed Principle

// Open-Close Principle - Bad example

class GraphicEditor {

public void drawShape(Shape s) {

if (s.m_type==1)

drawRectangle(s);

else if (s.m_type==2)

drawCircle(s);

}

public void drawCircle(Circle r) {....}

public void drawRectangle(Rectangle r) {....}

}

class Shape {

int m_type;

}

class Rectangle extends Shape {

Rectangle() {

super.m_type=1;

}

}

class Circle extends Shape {

Circle() {

super.m_type=2;

}

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 10

Open Closed Principle – a Few Problems….

 Impossible to add a new Shape without modifying GraphEditor

 Important to understand GraphEditor to add a new Shape

 Tight coupling between GraphEditor and Shape

 Difficult to test a specific Shape without involving GraphEditor

 If-Else-/Case should be avoided

© 2009 Capgemini - All rights reserved

13 november 2022Sida 11

Open Closed Principle - Improved

 // Open-Close Principle - Good example

class GraphicEditor {

public void drawShape(Shape s) {

s.draw();

}

}

class Shape {

abstract void draw();

}

class Rectangle extends Shape {

public void draw() {

// draw the rectangle

}

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 12

Liskov Substitution Principle

 "Functions that use pointers or references to base classes must be

able to use objects of derived classes without knowing it." —

Robert Martin, LSP paper linked from The Principles of OOD

 My translation: Subclasses should behave nicely when used in

place of their base class

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

© 2009 Capgemini - All rights reserved

13 november 2022Sida 13

Liskov Substitution Principle

// Violation of Liskov's Substitution

Principle

class Rectangle

{

int m_width;

int m_height;

public void setWidth(int width){

m_width = width;

}

public void setHeight(int h){

m_height = ht;

}

public int getWidth(){

return m_width;

}

public int getHeight(){

return m_height;

}

public int getArea(){

return m_width * m_height;

}

}

class Square extends Rectangle

{

public void setWidth(int width){

m_width = width;

m_height = width;

}

public void setHeight(int height){

m_width = height;

m_height = height;

}

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 14

Liskov Substitution Principle

class LspTest
{
private static Rectangle getNewRectangle()
{

// it can be an object returned by some factory ...
return new Square();

}

public static void main (String args[])
{

Rectangle r = LspTest.getNewRectangle();
r.setWidth(5);
r.setHeight(10);

// user knows that r it's a rectangle. It assumes that he's able to set the width and
height as for the base class

System.out.println(r.getArea());
// now he's surprised to see that the area is 100 instead of 50.

}
}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 15

Interface Segregation Principle

 "Clients should not be forced to depend upon interfaces that they

do not use." — Robert Martin, ISP paper linked from The Principles

of OOD

 My translation: Keep interfaces small

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

© 2009 Capgemini - All rights reserved

13 november 2022Sida 16

Interface Segregation Principle

 Don’t force classes so implement methods they can’t (Swing/Java)

 Don’t pollute interfaces with a lot of methods

 Avoid ’fat’ interfaces

© 2009 Capgemini - All rights reserved

13 november 2022Sida 17

Interface Segregation Principle

//bad example (polluted interface)

interface Worker {

void work();

void eat();

}

ManWorker implements Worker {

void work() {…};

void eat() {30 min break;};

}

RobotWorker implements Worker {

void work() {…};

void eat() {//Not Appliciable

for a RobotWorker};

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 18

Interface Segregation Principle

 Solution

- split into two interfaces

interface Workable {

public void work();

}

interface Feedable{

public void eat();

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 19

Dependency Inversion Principle

 "A. High level modules should not depend upon low level modules.

Both should depend upon abstractions.

B. Abstractions should not depend upon details. Details should

depend upon abstractions." — Robert Martin, DIP paper linked

from The Principles of OOD

 My translation: Use lots of interfaces and abstractions

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

© 2009 Capgemini - All rights reserved

13 november 2022Sida 20

Dependency Inversion Principle

//DIP - bad example

public class EmployeeService {

private EmployeeFinder emFinder //concrete class, not abstract. Can access a SQL DB for instance

public Employee findEmployee(…) {

emFinder.findEmployee(…)

}

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 21

Dependency Inversion Principle

 Now its possible to change the finder to be a XmEmployeeFinder,

DBEmployeeFinder, FlatFileEmployeeFinder,

MockEmployeeFinder….

//DIP - fixed

public class EmployeeService {

private IEmployeeFinder emFinder //depends on an abstraction, no an implementation

public Employee findEmployee(…) {

emFinder.findEmployee(…)

}

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 22

Q&A

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

http://www.oodesign.com

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://www.oodesign.com/

