
© 2004 Capgemini - All rights reserved

SOLID
- OO DESIGN PRINCIPLES

Andreas Enbohm, Capgemini

© 2009 Capgemini - All rights reserved

13 november 2022Sida 2

Agenda

 What is SOLID Design Principles?

 Code Examples

 Q&A

© 2009 Capgemini - All rights reserved

13 november 2022Sida 3

SOLID

 Introduced by Robert C. Martins (”Uncle Bob”)

 Agile Manifesto

 Author of several books, e.g. ”Clean Code”

http://www.amazon.co.uk/gp/reader/0132350882/ref=sib_dp_pt#reader-link
http://www.amazon.co.uk/gp/reader/0132350882/ref=sib_dp_pt#reader-link

© 2009 Capgemini - All rights reserved

13 november 2022Sida 4

SOLID

 SOLID

- Single Responsibility Principle

- Open Closed Principle

- Liskov Substitution Principle

- Interface Segregation Principle

- Dependency Inverison Principle

 Code becomes more Testably (remember TDD is not only about testing, more

important its about Design)

 Apply ’smart’

- don’t do stuff ’just because of’

- very importad to see the context of the program/code when applying SOLID

- Joel On Software advise – use with common sense!

© 2009 Capgemini - All rights reserved

13 november 2022Sida 5

Single Responsibility Principle

 "There should never be more than one reason for a class to

change." — Robert Martin, SRP paper linked from The Principles

of OOD

 My translation: A class should concentrate on doing one thing and

one thing only

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

© 2009 Capgemini - All rights reserved

13 november 2022Sida 6

Single Responsibility Principle

 Two resposibilities

 Connection Management + Data Communication

interface Modem {

public void dial(String pno);

public void hangup();

public void send(char c);

public char recv();

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 7

Single Responsibility Principle

 Separate into two interfaces

interface DataChannel {

public void send(char c);

public char recv();

}

interface Connection {

public void dial(String phn);

public char hangup();

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 8

Open Closed Principle

 "Software entities (classes, modules, functions, etc.) should be

open for extension, but closed for modification." — Robert Martin

paraphrasing Bertrand Meyer, OCP paper linked from The

Principles of OOD

 My translation: Change a class' behavior using inheritance and

composition

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

© 2009 Capgemini - All rights reserved

13 november 2022Sida 9

Open Closed Principle

// Open-Close Principle - Bad example

class GraphicEditor {

public void drawShape(Shape s) {

if (s.m_type==1)

drawRectangle(s);

else if (s.m_type==2)

drawCircle(s);

}

public void drawCircle(Circle r) {....}

public void drawRectangle(Rectangle r) {....}

}

class Shape {

int m_type;

}

class Rectangle extends Shape {

Rectangle() {

super.m_type=1;

}

}

class Circle extends Shape {

Circle() {

super.m_type=2;

}

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 10

Open Closed Principle – a Few Problems….

 Impossible to add a new Shape without modifying GraphEditor

 Important to understand GraphEditor to add a new Shape

 Tight coupling between GraphEditor and Shape

 Difficult to test a specific Shape without involving GraphEditor

 If-Else-/Case should be avoided

© 2009 Capgemini - All rights reserved

13 november 2022Sida 11

Open Closed Principle - Improved

 // Open-Close Principle - Good example

class GraphicEditor {

public void drawShape(Shape s) {

s.draw();

}

}

class Shape {

abstract void draw();

}

class Rectangle extends Shape {

public void draw() {

// draw the rectangle

}

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 12

Liskov Substitution Principle

 "Functions that use pointers or references to base classes must be

able to use objects of derived classes without knowing it." —

Robert Martin, LSP paper linked from The Principles of OOD

 My translation: Subclasses should behave nicely when used in

place of their base class

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

© 2009 Capgemini - All rights reserved

13 november 2022Sida 13

Liskov Substitution Principle

// Violation of Liskov's Substitution

Principle

class Rectangle

{

int m_width;

int m_height;

public void setWidth(int width){

m_width = width;

}

public void setHeight(int h){

m_height = ht;

}

public int getWidth(){

return m_width;

}

public int getHeight(){

return m_height;

}

public int getArea(){

return m_width * m_height;

}

}

class Square extends Rectangle

{

public void setWidth(int width){

m_width = width;

m_height = width;

}

public void setHeight(int height){

m_width = height;

m_height = height;

}

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 14

Liskov Substitution Principle

class LspTest
{
private static Rectangle getNewRectangle()
{

// it can be an object returned by some factory ...
return new Square();

}

public static void main (String args[])
{

Rectangle r = LspTest.getNewRectangle();
r.setWidth(5);
r.setHeight(10);

// user knows that r it's a rectangle. It assumes that he's able to set the width and
height as for the base class

System.out.println(r.getArea());
// now he's surprised to see that the area is 100 instead of 50.

}
}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 15

Interface Segregation Principle

 "Clients should not be forced to depend upon interfaces that they

do not use." — Robert Martin, ISP paper linked from The Principles

of OOD

 My translation: Keep interfaces small

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

© 2009 Capgemini - All rights reserved

13 november 2022Sida 16

Interface Segregation Principle

 Don’t force classes so implement methods they can’t (Swing/Java)

 Don’t pollute interfaces with a lot of methods

 Avoid ’fat’ interfaces

© 2009 Capgemini - All rights reserved

13 november 2022Sida 17

Interface Segregation Principle

//bad example (polluted interface)

interface Worker {

void work();

void eat();

}

ManWorker implements Worker {

void work() {…};

void eat() {30 min break;};

}

RobotWorker implements Worker {

void work() {…};

void eat() {//Not Appliciable

for a RobotWorker};

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 18

Interface Segregation Principle

 Solution

- split into two interfaces

interface Workable {

public void work();

}

interface Feedable{

public void eat();

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 19

Dependency Inversion Principle

 "A. High level modules should not depend upon low level modules.

Both should depend upon abstractions.

B. Abstractions should not depend upon details. Details should

depend upon abstractions." — Robert Martin, DIP paper linked

from The Principles of OOD

 My translation: Use lots of interfaces and abstractions

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

© 2009 Capgemini - All rights reserved

13 november 2022Sida 20

Dependency Inversion Principle

//DIP - bad example

public class EmployeeService {

private EmployeeFinder emFinder //concrete class, not abstract. Can access a SQL DB for instance

public Employee findEmployee(…) {

emFinder.findEmployee(…)

}

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 21

Dependency Inversion Principle

 Now its possible to change the finder to be a XmEmployeeFinder,

DBEmployeeFinder, FlatFileEmployeeFinder,

MockEmployeeFinder….

//DIP - fixed

public class EmployeeService {

private IEmployeeFinder emFinder //depends on an abstraction, no an implementation

public Employee findEmployee(…) {

emFinder.findEmployee(…)

}

}

© 2009 Capgemini - All rights reserved

13 november 2022Sida 22

Q&A

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

http://www.oodesign.com

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://www.oodesign.com/

