CRAPTER 3 PROJLCT Hhuautmlu;m\wctprs 73

relatively simple project might require the following work lasks for the customer com-
¥ - _—W
munication activily:

F T

A Develop list of clarilication issues.

.r!-.- -

*. A Meel with cuslomer Lo address clarification issues.

3. Joinly develop a sltatement ol scope,

——— —

. Review the statement of scope with all concerned,

-
e

5. Modify the stalement of scope as recuired.

These evenls might occur over a period of less than 48 hours. They represent a process

decomposition that is appropriate for the small, relatively simple project.

; - - . fe
Now, we consider a more complex project, which has a broader scope and 5“‘1[
" % : £ k; i
significant business impact. Such a project might require the following Wﬁrﬁ L

the customer communication activity:

-

__¥. Review the cuslomer request,

2 plan and schedule a formal, facilitated meeting with the customer

4 solution and existing approaches

3. cConduct research to specify the propose
| da fof the formal meeting.

4. Prepare a “working document” and an agen

5. Conduct the meeling. |
' function, and behavioral leatures

6. Jointly develop mini-specs that reflect data,
L of the soltware
7. Review each mini-spec for correctness, Consistency, and lack of ambiguity.

8. Assemble the mini-specs into a scoping document.
9. Review Lhe scoping document with all concerned.

10. Modify the scoping document as required.

|

Both projects perform the framework activity that we call “customer communica-
tion,” but the first project team performed haif as many software engineering work

tasks as the second.

435 THE PROJECT '

']
ik th: in order lo manage a successiul soltware project, wa m.iust und;rﬂand whal can go
A wrong (so that problems can be avolded) and how to do it rlght. an .ﬂ:ﬂm ehet _
“At loast 7 of I_H on soltware projects, John Reel [REE99) defines ten signs tt!ﬂ},. . a}:;! M :L 1-'_:-._'...' Wor- . e
- g::i mation systems project is in jeopardy: B , ‘«H e -
g B * their customer's needs.
ik, P X. Soflware people don'l understand the | e

Ti - Tl sy .
e 1"‘ .:I"

I .._'.:.Il.. I:.IT! Iy Tad

I
- ..".

W o hne of code & 2. The product scope is poorly defined.

-:l-l _3. Changes are managed poorly.

Wbﬁ:ﬂufi E

A broad orray of resources
thai con help both
neophyte and expenenced
project managers con be
found a!
www.pmi.org,

- www, 4pm.com, ond
www.projectmanage

mant.(om

- JECTS
PART TWO MANAGING SDFT\‘I’A::-'_'E.-FE&

4. The chosen technology changes.
50 Business needs change [or are ill-de fined).
J"' Deadlines are unrealistic.

','." Users are resistant,
ﬂ sponsorship is lost [or was never properly obtained].

'} The project team lacks people with appropriate skills.
10. Managers [and practitioners| avoid best practices and lessons learned.

. jaded industry professionals often refer to the 90-90 rule when discussing partic-

ularly difficult software projects: The first 90 percent of a system absorbs 90 percent
of the allotted effort and time. The last 10 percent takes the other 90 percent of the
allotted effort and time [ZAH94]. The seeds that lead to the 90-90 rule are contained

in.the signs noted in the preceeding list.

But enough ngatn.w1t;;.|rT How does a manager act to avoid the pmblems just nutedr"'

Reel [REEFY] suggests a five- parl COMMONSense approach to software prc:}ecf

.l—-——.-—_.____

(Start on the right foot. This is accomplished by working hard (very hard)
to understand the problem that is to be solved and then setting realistic
objects and expectations for everyone who will be involved in the project. it
is reinforced by building the right team (Section 3.2.3) and giving the team
the autonomy, authority, and technology needed to do the job.

2 ‘Maintain momentum. Many projects get off to a good start and then
slowly disi{nttgrate. To maintain momentum, the project manager must pro-
vide incentives to keep lurnover of personnel to an absolute minimum, the

team should emphasize quality in every task it performs, and senior manage- -

ment should do everything possible to stay out of the team’s way.”

~3. Track progress. For a software project, progress is tracked as work prod-
ucls (e.g., specifications, source code, sets of test cases) are produced and
approved (using formal technical reviews) as part ol a quality assurance

_ 4. Make smart decisions. In essence, the decisions of the project manager

activity. In addition, software process and project measures (Chapler 4) can
be collacted and used Lo assess progress against averages developed for the

software development organization.

and the software team should be to “keep it simple.” Whenever possibie,

decide to use commercial off-the-shelf software or exlstmg mwm COIT ;_;,L, s

nents, decide to avoid custom interfaces when standard a

TS

7 The implication of this statement is that b d 10 a minimu
ings are eliminated, and _._..; e :".'

c
HAPTER 3 PROJICT MANAGEMENT CONCEPTS '

available. decide 10 identify and then avoid obvio

cate more time than you think is needed (o
need every minute) &

us risks, and decide to alio-
complex or risky tasks (you'l

+ Cond i
f uct a postmortem analysis. Establish a consistent mechanism for

extracti ' - :
| . ;. ng lessons learned for cach project. Evaluate the planned and actual
§ sChedules, collect and a::iaiyze software project metrics, gel feedback from
tleam members and customers and record findings in written form.

t (3.6 THE W'HH PRINCIPLE ¥

In an excellent paper on software process and projecls, Barry Boehm [BOE96] states:
“you need an organizing principle that scales down o provide simple iproject] plans ot
simple projects.” Boehm suggests an approach that addresses project objectives, mile-
stones and schedules, responsibilities, management and technical approaches, and
required resources. He calls it the WWWWWHIH principle, aller a sceries of quesuons that
lead to a definition of key project characleristics and the resultant project plan:

-. j— why is the system being developed? The answer 1O this guestion enabies
sead :‘:ﬁ“l all parties to assess the validity of business r€asons for the s?ﬂware work. Slgted
answered in order in another way, does the business purposc justify the expenditure of people, me,
o develop @ and money?
project plan? what will be done, by when? The answers 0 these questions help the leam

lo establish a project schedule by identifying key project tasks and the milestones
that are required by the customer.

who is responsible for a function? Earlier in this chapter, we noted that the
role and responsibility of each member of the software team must be defined.
The answer 1o this question helps accomplish Lhis.

Where are they organizationally located? Nol all roles and responsibilities

reside within the soltware team itself. The customer, users, and other stake-
holders also have responsibilities.

How will the job be done technically and managerially? Once product
scope is established, a management and technical strategy for the project must ey
be defined. ey
How much of each resource is needed? The answer to this question is derived | .
by developing estimates (Chapler 5) based on answers to earlier questions. ghis

Bochm's WoHH principle 1s applicable regardless of the size or complexity of a soft-
ware project. The questions noled provide an ¢xcellent planning outline for the proj-
ect manager and the soltware team. 3 £4 S Y

A e R SR L S .

¥ - e 3 . = L 7
A et £
-t T ST e

i,

ol -
- -‘l

L H

o
i i".ﬂ 'l ...ﬂla- gt o

&

SOUTWARE PROCESS AND PROJECT METRICS y,

CHRAPTER 4

can be used finitions of the term can become confus

ing. within the software t*nginﬂcring context, a measure pmwdcﬁ a quantitative indi-
cation of the extent, amount, dimension, capacity, o size of some attribute of a product
of Process. Measurement 15 the acl of determining a measure, The IEEE Standard
Glossary of Softwarc Engineering Tenns [IEE93] delines meiric as “a quantitative mea-
sure of the degree 10 which a sysltem, component, 0t Process possesses a given

either as a noun of a verb, de

altribute.”

Q.m'e: when a single data point has Been collected (e.g., the number of errors uncovered
“Noteveythicz == in the review of a single module), a measure has been established. Measurement
(on be (o= sccurs as the resull of the collection of one or MOre data points (e.g., a number of
- module reviews are investigated 1o collect measures of the number of errors for each).
?T £ A software metric relates the individual measures in some way (e.g., the average
_— number of errors found per review or the average number of errors found per per-
Albert Einsiein son-hour expended on reviews.!

A software engineer collecls measures and develops metrics so that indicators
will be obtained. An indicator is a metric or combination of metrics that provide insight
into the software process, a software project, or the product itself [RAG95]. An indi-
cator provides insight that enables the project manager or software engineers 10
adjust the process, the project, or the process to make things better.

For example, four software teams arc working on a large software project. Each
team must conduct design reviews bul is allowed to select the type-of review that it
will use. Upon examination of the metric, errors found per person-hour expended,
the project manager notices that the two teams using more formal review methods
exhibit an errors found per person-hour expended that is 40 percent higher than the

other teams. Assuming all other paramelers equal, this provides the project manager
with an indicator that formal review methods may provide a higher return on time
investment than another, less formal review approach. She may decide to suggest
that all teams use the more formal approach. The metric provides the manager with
insight. And insight leads 10 informed decision making.

l 12 METRICS IN THE PROCESS AND PROJECT DOMAINS l

Measurement is commonplace in the engineering world. We measure power con-
sumption, weight, physical dimensions, temperature, voltage, signal-to-noise ratio
the list is almost endless. Unfortunately, measurement is far less common in the soft-
ware engincering world. We have trouble agreeirig on what to measure and trouble
evaluating measures that are collected. |

L "“ }

i L] ¥ & ya R i
AN Ny Glimoii S el

- T = A 4, -,I.j #11 4 p-, gk F

'-"l" | L J T e Catr]

pl] ;S F i F 4 .'*‘L i
-y] § -]] > L
i %

[|
r ¥
e
-

-'F;'lrl

: | | another measure, person-hou o
i ‘If": Bl &y Y
i .':'--'.3.- pian

WebRef
A comprebeneve sofiwore
metics gadebook (on be
downkootied bom

wwwivv.nasa.gov/

WG/ resources/
WASA-GB-001-

2N
p -

The skill ond
mahvotion of the

' peophe doing the work
are the mos! important
factors that nfluence
soltwore quolity.

How da |

maasect the
effectiveness of o
seftware process?

PART TWO MANAGING JOFTWARE PROJECTS

Metrics should be collected so that proce

. ss and product indicators can be ascer-
lained. Process indicators enable a sollware

1 _ _ engineering organization o gain insight
mto the ethcacy of an existing process (i.e., the paradigm, soflware engineering tasks,

work products, and mileslones). They enable managers and practitioners Lo assess
what works and what doesn’l. Process metrics are collected across all projects and
over long periods of time. Their intent is to provide indicators that lead te long-term
sollware process improvement.

Project indicators enable a soltware ‘prn]'{:t;i manager o (1) assess the stalus of an
ongoing project, (2) track potential risks, (3) uncover problem areas before they go

“critical,” (4) adjust work llow or lasks, and (5) evaluate the project leam’s ability to
control quality ol soflware work producls.

In some cases, the same software metrics can be used Lo determine project aﬂ‘i
.) o : m an
then process indicators. In fact, measures that are collected by a project ::a ih
_ : : _ : i 1o thOsSC W
converted into metrics (or use during a project can also be BERFEIEREE

il . ' . of the same
responsibility for software process improvement. For this reason, many
nlﬂ/mﬂ s are used in both the process and project domain.
'

43,1 Process Metrics and Software Process Improvement
=

The only rational way o improve any process is L0 measurc spm?mc altrl.bl;u:: :ri T;
process, develop a set of mea ningful metrics based on these aunbptes, an =
the melrics to provide indicators that will lead to a strategy for 1tnprqvemen |
belore we discuss software metrics and their impact on software process improve- |
ment, it is important to note that process is only one of a nujrnber of '*cnntrnlla?‘m fac-
lors in improving software quality and organizational performance '.PAU'M} |

Referring to Figure 4.1, process sits at the center of a lriangle connecting three |

factors that have a profound influence on software quality and organizational per-
formance. The skill and motivation of people has been shown [BOE81] o be the sin-
gle most influential factor in quality and performance. The complexity of the product
can have a substantial impact on quality and team performance. The technology (i.e.,
the software engineering methods) that populate the process also has an impact.
In addition, the process triangle exists within a circle of environmental conditions
that include the development environment (e.g., CASE tools), business condi-
tions (e.g., deadlines, business rules), and customer characleristics (¢.g., €ase of
communication).

We measure the efficacy of a software process indirectly That is{we derive a set
of metrics based on the outcomes that can be derived from the process. OULCOMES
include measures of errors uncovered before release of the software, defects deliv-
ered to and reported by end-users, work products delivered (productivity), human
effort expended, calendar time expended, schedule conformance, and other rnt._ta—
sures){We also derive process metrics by measuring the characteristics of specific

Syt ™ I g b L W Al --:1- ."'-_- SieH

-

; f"‘l'
Py
. Al e e g
- o LI ’
f 1 ¥ P -
- w aag® Rwp ; LY
o T

v &
] X Fa]

el
. L’

r. rod PO R .l.r.l:'J‘
4 | A 1.:‘..'_ . I.r =
o

a5 AND PROJECT METRICS

e FTWARE piCE

product

CHAPTER &

Business ,'k Ny
Cusone conditions ‘_//r __., %
characteristics '

— —

Technology | /

Dwaicrpma n!
environment

performing the umbrella activities and the generic software engineering attiviﬁes)
described in Chapter 2. '

Grady [GRA92] argues that there are "private and public” uses for dilferent types
of process data, Esccausr: it is natural that individual software engineers might be sen-
sitive to the use of melrics collected on an individual basis, these data should be pri-
vale to the individual and serve as an indicator for the individual only. Examples of
privale metrics include defect rates (by individual), defect rates (by module), and errors
found during d::uclnpment?

The “private process dala” philosophy conforms well with the personal software
process approach proposed by Humphrey [HUM95]. Humphrey describes the approach

in the following manner:

The personal software process (PSP) 15 @ structured sel of process descrigtions, measure-

ments, and methods that can help engineers to improve their personal performance. 1t pro- |
vides the forms, scripts, and standards thal help them estimale and plan their work. It shows ‘1
them how lo define processes and how lo measure their quality and productivity. A funda-

mental PSP principle is that everyone is different and that a methed that is effective for one

engineer may nol be suitable for another. The PSP thus helps engineers 10 measure and

irack their own work so they can find the methods that are best for them.

Humphrey recognizes thaléf:}ﬂware process improvement can and should begin al
the individual level| Privale process data can serve as an important driver as the indi-

vidual software engineer works 1o improve.
Some process metrics are private Lo the software project team but public to all

team members] Exampies include defects reported for major software functions that

R R A T LTI VBTN)y :
B Tl o v ety L) ‘}: "‘-"%";

PART Tw
© MANAGINg SOPTWARE PROJECTS

have b
¢en developed by a numbe; of practitioners)

mcal ﬂ-“u'icw:;,' and lines of code or fun g “13), errars found during formal tech-
data are reviewed by the team 1o unco 'On poinls per module and function.2 These
3 mance. uncover indicators that can Improve team perfor-
| [Pubﬁ P oA it W et s
ﬁ; i Z:f:; ’: E.L“Efflll:';’ assimilate information that origi nally was private to indi-
POINT al m‘t’]‘ Project level defect rates (absolulely not attributed to an individ-
Public metics angble U0+ €11OTL, calendar times, and related dqla are coilecled and evaluated in an attempt
:h oagan 2atio to Lo uncover indicators (hat can Improve organizational process performance.

Sollware process TV
vare process metrics can provide significant benefit as an organization works

wmm ¥ q L . i

hmm:: Lo |mlpm'-.iL its overall level of process maturit}a Hﬂw::xrcr,(l_il-;c all metrics, these can
ond tocticl changes be ITII&U:-;-L’L!. t:rczfting more problems than they snlvc:) Grady [GRA92] suggesls a "soll-
dueng 0 software ware. metrics etiquette” that is appropriate for both managers and practitioners as
progedt. th{-‘}" Institute a pPracess melrics program

* Use common sense and organizalional sensitivity when interpreling metrics
dala.
* Provide regular feedback to the individuals and leams who collecl measures

and metrics.

3} What |
m guidelines « Don't use melrics lo appraise individuals, \
should be applied » Work with practitioners and teams lo set clear goals and metrics that will be |
Wbt we onllact used to achieve them \

software melrics? il -,
e Never use metrics 1o threaten individuals or teams, 'E

« Metrics data thatl indicate a problem area should not be considered “nega- |
tive.” These dala are merely an indicator for process improvement.

* Don’l obsess on a single metric to the exclusion of other important metrics.

As an organization becomes more comfortable with the collection and use of

process metrics, the derivation of simple indicators gives way to a more rigorous

WebRef approach called statistical software process improvement (SSPI). In essence, SSPI uses

S5Pt ond ofhes quokly software failure analysis lo collect information about all errors and defects? encoun-

wleted indormation & lered as an application, system, or product is developed and used. Failure analysis
Aamericon Socety o works in the lollowing manner:

of
MMI 1. All errors and defects are categorized by origin (e.g., flaw in specification,
flaw in logic, nonconformance to standards).
2. The cosl lo correcl each error and defect is recorded. _. E
i

2 Sec Sutnns 4 A and 4.3.2 for detailed discussions of LOC and function point metrics. | :
3 As we discuss In Chapter 8, an error is some flaw in a soflware engincering work product or deliv- i
erable that is uncovered by sofiware engineers before Lhe soltware is delivered to the eataser & S0 Ty

defect is a llaw that is uncovered aller delivery o the end-user. oo

» 1ECT METRILS

CHAPTER 4 SOFTWARL PROUISS AMNLD PHEY

il i N approach laken t
desien quality and to provide indicators that will influence the app 0 Code

g 1 lest

we a3 wenerabion anu &5 g | _ : ey . £
wetrics during the t?hr intent of project metrics is twotold. | irsl, these MEnCs J4ic usc:*;{:rd:'i;ﬂtnﬂm
progect itsell? the development schedule by making the adjustments necessary (0 av ys and

and risks. Second, project metrics are used Lo assess

cessary, modify the technical

miligate polential problems
an ongoing basis and, when nec

product qualily on
approach to improve quality
As quality improves, delects are minimized, a

the amount of rework required during the projec

reduction in overall project cosl. ;
Another model of software project metrics [HET93] suggests that every project

should measure:

» Inputs—measures of the resources (€.8,, people, environment; required to do

L 9

nd as the defect count goes down,
L is also reduced. This leads to a

the work.

s+ Outputs—measures of the deliverables or work products created during the
sollware engineerng process. |

e Results—measures that indicate the effectiveness of the deliverables.

In actualily, this model can be applied to both process and project. In the project con-
text, the madel can be applied recursively as each framework activity occurs. There-
fore the outpul from one activity becomes input to the next. Resuills metrics can be
) used to provide an indication of the usefulness of work products as they flow from

77 one ramework aclivity (or task) to the next.

% // - e N7 =
‘%ﬁ*&al 1.3 SOFTWARE MEASUREMEN T4

B

Measurcments in Lthe physical world can be categorized in two ways. direct measures
(e.g.. the length of a bolt) and indirect measures (e.g., the "quality* of bolts produced,
measured by counting rejects). Software melrics can be categorized similarly.
Lthcthms_urﬂs of the soltware engineering process include cost and effort applied.
Whatisthe Direct measures of the product include lines of code (LOC) produced, execution speed,
hmﬁmmd memory size, and defects reported over some sel period of time. Indirect measures of
isdirect 3 the prc{ducl include functionality, quality, complexity, efficiency, reliability, maintain-
ability_and many other "-abilitics™ that are discussed in Chapter 19.
: “{'ﬁ_ﬂ_cggl and elfort required to build software, the number of lines of code pro-
duted, and other direct measures are relatively easy to collect, as long as specific
conventions for measurement are established in advance. However, the quality and

|
. . i
functionality of software or its efficiency or maintainability are more difficult to assess |
and can be measured only indirectly, 3 ‘

We have already partitioned the software metrics domain into process, project, *}
l

and product metrics. We have also noted that product metrics that are private 1o an
- - s, R T R T . Y
oty gy Lot k. ‘- !-""."': y L s - i . -I - i g o !
A ‘, B SN e ST L

PART TWO MWANAGING SOFTWARE PROJECTS

l ']m i]- [--‘ N -u[¥ T4 A N pm!u. “I a. h“i?finq

Lo the soltw, :
= SC II.WJIT{.‘ O Banizatlon as a whole. But how does an organization combine met
s that come from different individuals or projects? o

To dlustrate s corpeicles)
rate, we consider a simple example. Individuals on two different project

('Amaﬂ.

icams record and categori: o
i Because mony faclors A) o gorize all errors that they ind during the software process. Ind
P e jlhun.:: are then combined lo develop leam measures. Team A fourd 342
work, don’t use L"_"J'ﬁ during the sollware process prior to release. Team B found 184 errors. All other
;.nﬁm 10 Compore things heing equal, which leam is more effective in uncovering errors throughout the

indinduals orteams. process? Because we do not know the size or complexity of the projects, we cannol
answer this question. However, il the measures are normalized, it is possible to Cre-
¢ software metrics thal enable comparison to broader organizational averages.

\(/é{:ll Size-Oriented Metrics
S
size-oriented soflware metrics are derived by normalizing quality and/or uctiv-

: ity measures by considering the sizc of the softlware that has been produced) if a sofl -
ware organization maintains simple records, a table of size-oriented meas.urera-m::h

E:::::: as the one shown in Figure 4.4, can be created. The table lisis each software devel-
the past ew ycars and corresponding

opment project that has becn completed over

collect 1o derive _ : .
siza-oriented measures for that project. Referring o the table entry (Figure 4.4) lor project alpha:
melrics? 12.100 lines of code were developed wilh 24 person-months of effort at a cost of

$168,000. it should be noted that the effort and cost recorded in the tabie represent
all software engineering activities (analysis, design, code, and test), not just coding.
Eurther information for project alpha indicales that 365 pages of documentation were
developed, 134 errars were recorded before the software was released, and 29 defects

Live O

| P Y ' ' i RS R
Project | LOC | Effort $(000) | Pp. doc. | Errors Defects | People
_L*'- =
alpha 12,100 24 168 3635 134 29 3
beta 27,200 &2 440 1224 321 Bo -
gamma 20,200 43 4 1050 256 &4 &
L L L [L]
- . -

K{ IGURE 4.4

3 Sze-oriented
metrics

o
.r .

W = e e e
- T s

poJECT METRICS 89

CHAPTER 4 SOrTWARL pROCESS ANDF

o customer within the first year of operation

aller releasc 1o (1 |
flware for project alpha.

were encountered | ;
ed on the 1.1uw=_l.n:+pm't*nt:1qf softyva

Three people WOk &g S AL T

j ier to develop nmtncﬁ that can be ElR‘iITI‘-IH.ﬁaE\ﬂ‘LUIlh siinilar metrics from other

naracr i : - ey _
jeuts, we choose ines of dode as vur normalization value. From theyrudimeniary
i Ao " : ‘g 20-Off S evel

)d;na contained in the table, a 5¢! of simple size-orienied metncs can d oped

=
s tm“ - (lm' each project:

o Errors per KLOC (thousand lines of code).
/ Defects? per KLOC.

: o $per LOC. C
s Page ol documentation per KL{JC.,‘)

in addition, other interesting metrics can be computed:

« Errors per person-month.
* LOC per person-month.
» % per page of documentation.

Size-oriented melrics are nol universally accepted as the best way to measure the
process ol soltware development JON86]. Most of the controversy 51'.&!1'1'15 around the
use of lines of code as a key measure. Proponents of the LOC measure claim that LOC
POINT is an "arlifact” of all software development projects that can be easily counted, that
| . many existing software estimation models use LOC or KLOC as a key input, and that
i;wﬂﬁ a large body of literature and data predicated on LOC already exists. On the other
debote oo mﬂ hand, opponents argue thal LOC measures are programming language dependent,
volidity ond that they penalize well-designed but shorter programs, that they cannot easily accom-
cpplicondity continves. modate nonprocedural languages, and that their use in estimation requires a level of
detail that may be difficult to achieve {i.e., the planner must estimate the LOC to be

prm}u;pd long before analysis and design have been completed).

;}gyg Function-Qriented Metrics

‘*\% K |
Funclion-orienled soflware meltrics use -f: measure of the Tunctionality delivered by
the application as a normalization valu_g; Einccgunctiﬂnatily' cannot be measured

?

o> directly, it must be derived indirectly using other direct mﬂaauresj Function-oriented
WebRef metrics were lirst proposed by Albrecht JALB79], who suggeslﬂdphﬁmeasurﬂ called the
Empiensio Junction poirifgunction points are derived using an empirical reféliunship based on

somghesonfnctor — countable (direc 'S | i :
it st i U. mcasures of soflware’s informalion domain and assessments of
soflware fumpiexn}f_}

www.ifpug.oy ol :
| u.numn prlnls arc computed [IFP94] by completing the table shown in Figure 4.5
G-we information domain characteristics are determined and counts are provided in

4 A def | ,
defect occurs when quality assurance activities (e.g., formal technical reviews) fail 1o uncover

%,

POINT
| umeton Xt} OFE
sesoved om duex]
e of e
pérmghon gomoR

PART TWO MANAGING SOPTWART PROJECTS

Weighting foctor

Measurement parameter Count Simple Average Complex
MNumbe: ol user inputs I x 3 4 . o -

Mumber of user outpuls l:-. 4 5 7 -

Ll

| L

Number ol user inquinies : ¢ .3 4 - - D
e

et

Number of hies : i R 10 18 .

Mbllf 'l..',.llf tl'l'rnm.' 1|‘||‘q-[h_p,-_¢5 I w 3 F | Lo -
Count totol -l I

the appropriaie tabie location. information duiiain values are defined in the foliow-

ing manner.>

/ Number of user inputs. Lach uscl mput that pi avides distincl apphcation:
I onented dala lo the soltweic 15 counted inputs should be distinguished from

inguiries, which are counic d separalcly
'é' Number of user outpuls. Fach user ouiput that provides application-
ariented information 1o he user is counted, In this context outpul refers o

reports, screens, Crror MESSAEes, ¢ o, individual data ilems within a report
are not counted separalely

f Number of user inquiries. Aninquiry 15 defined as an on-line inpui that
results in the gencration of some immediate soltwate response in the lorm of
an on-line output. Each distincl Inquiry 15 counted

’L Number of files. Each logical master file fie, 2 logical grouping of dala that

may be one part of a large dalabase or a separaie file) is counted.

/ Number of external interfaces. All machine readable interfaces (e g.. daia
files on slorage mcdmi that arc used 1o ransmit imformation to another sys-
tem are cc:unlcd}

Once these data have been collected. a complexity, value is associated with each
count Organizations that use function point methods develop critena for determin-
ing whether a particular entry is simple, average, or complex. Nonetheless, the deter-
mination of complexity is somewhal subjective.

Eru computle function points (P}, the following relationship is used:

FP » count total x 065+ 001 X LN) 4-1)

- 0 ?1
PROCESS AND PLROJECT METRICS

CHAPTIR 4 SOFTWARE

" KLY curent values® based on responses to the
The F, (i = 1 to 14) arc complexily adjustiment valu 5))

following questions JARTBS]
system reguird reliable hackup and recoviry?

i. Doeslhe
2. Are data communications required?

3. Are there distributed processing funclions?

4. Is performance critical? :

5. Will the syslem run in an exisling, heavily utilize

6. Does the system require on-line data entry?

7. Does the on-line data entry require the input transaction o be built over multiple

screens or operalions?

8. Are the master files updaled on-line?

9. Are the inputs, outputs, files, or inquiries complex? R
10. Is the internal processing complex? | S i h
11. Isthe code designed to be reusable?

12. Are conversion and installation included in the design?
13. isthe system designed for mulliple installations in different organizations?
14. Is the application designed lo facilitate change and casc of use by the user?

d operational environment?

Each of these questions is answered using a scale that ranges from 0 (not important
or applicable) lo 5 (absolutcly essential). The constant values in Equation {4-1) and
lhe weighting faclors that are applied to information domain counts are determined
empirically,

Once function points have been calculated, they are used in a manner analogous ol

to LOC as a way to normalize measures for software produclivity, quality, and other
attributes.

e Errors per FP.
* Defects per FP.
s $perfFp

* Pages of documenltation per FP.

* FP per person-month.

35)‘ %33 Extended Function Point Metrics
POINT he function point measure was originally designed to be applied to business infor-

Exending function mation systems applications. To accommodate these applications, the data dimen-
s e used for sion (the informalion domain values discussed previously) was emphasized to the
ogineery, I,W"v exclusion of the functional and behavioral (control) dimensions. For this rf:aéun, the
function point measure was inadequale for many engineering and embeddéd sys-
lems (which emphasize function and control). A number of extensions to the basic
function point measure have been proposed to remedy this situation.

cﬁ function point extension called feuture points JON91], is a supersel of the function
point measure that can be applied 1o systems and enginecring software applicatinns;)

s i I - by anhlhad 2
. | =l & LNy i '\.-_ ! n Wi .I 7 . ‘1‘?’*}-&'
L a 5t et bl K] b ¥ ¥ il) - - l"'. 3 i F o 5
N Ly e s 1l ey Py Kz -
\ Ly AR
T

CHRAPTER
4 SOFTWARE PROCESS AND PROJECT METRICS
95
\0 these questions |
g 1.31 eahﬁnns IS an emphatic "No!" The reason for this response i
N Ay vence productivity, making for *apples and oranges® o
casily misinterpreted. 8¢5 comparisons that can

Function po '
A points .ulm LOC based metrics have been found (0 be rejalively accu
prediciors of sollware development effort and cost. However In order o use

- b i ‘al i’t‘tb1l 'r-lﬁ 'E.II 11--Lil [i b

:IH_/'?“J.S METRICS FOR SOFTWARE QUALITY

e overriding goal of sollware engineering is to produce a high-quality system, appli-
calion, or product. To achieve this goal, software engineers musl apply eflective meih-
ads coupled with modern tools within the context of a mature software processjin
addition, a wood sollware enginect (and good sollware engineerng managers) must
¢« it sourco of measure i high quality is Lo be realized

AR o0 “‘{_’""'_""‘ rhe quality of a system, application, ot product is only as good as the requirements

] rphaiee foje thut describe the]:I-IHI"“..'IH. the tTL‘hi_ﬂ” that models the sotution, e code that-leads

-J":';r: :‘.‘lt‘!f'f,';‘..!' CIml hl'f

il (0 an excecutable program, and the tests thal exercise the soltware Lo uncovet t:rmrs.:5

vwwgualityworld, 4 (00 soNware engiieer uses measu rement Lo assess the quality of the analysis and
om g

desien models, the source code, and the test cases that have been created as the soft-
wate is engineeted. 10 accomplish this real-time quahly assessment, the engineer
must use technical measures (Chapters 19 and 24) 10 evaluate quality in objective,

‘rather than subjective wiys.

m The project manager must also evaluate qualily as the project progresscs. Private
:uim ::::m 4 etrics collected by individual soflware engineers arc assimilated to provide projecl-

arsuROnce OCtivibs | level results, Although many quality measures cail be collected, the primary thrust at
preseetod in Choglet 8. e project level 1s to measure CIrors and defects. Metrics derived from these mea-
sures provide an indication ot the effectiveness of individual and group software quai-
ity assurance and control activities.

Metrics such as work product (e.g., requirements or design) erTors per function
point, errors uncovered per review hour, and errors uncovered per testing hour pro-
vide insight into the efficacy of each of the activities implied by the metric. Error data

can also be used Lo compute the defect removal efficiency (DRE) for each process frame-
work activity. DRE is discussed in Section 4.5.3.

¥ S

¥4.5.1 AnOverview of Factors That Alfect Quality

Over 25 years ago, McCall and Cavano [MCC78] defined a set of quality factors that

were a fhirst step toward the development of metrics for soltware quality. {These fac-

tors assess soflware from three distinct poinis of view: (1) product opera (using

it), (2) product revision (changing it), and (3) product transition (modifying it to work %
51nmeirwork.ﬂwmnhmd:acﬁhtm R e

\ -
T T A *

in a different environment; 1.¢., *porting” it).

qOFTWANE pROJECTS

PART TWO MANAGING .II
they call a framework) and other |

ese qualily factors (what

Wi h
ationshi between L . sh#
e . pecring [Process:

sollwarc cngl

L]

project managel 10 identily what
iy addivon to its func-
h laclors as main-

aspects of the

A vide

First, the [ramework pro ‘ | i
qgmu i, are important. Thesc qualilics arc attributes of the sofk

lional correciness and pe hich have life cycle implications. Suf-; g
: - : ienificant e CyCic
tainability and portabilily have been s years to have sig

5 a mechanisim lar the

rformance w
hown in recent

:

j ¥ - | '

'“}":1' &Iy the fra uantitatively assessing how well the
CCOTIGHY,

development is progressing relative 10]

hirdly, the framework provides for

mework provides a means for . .
he qualily goals established). .

more interaction of QA personnel throughout the

development effort ..
Lastly, . . - qualily assurance
tfy’jbetteri standards to be enforced in i

personal can usc indications ol poor quality Lo heip iden-

he luture.)

(75 A detailed discussion of McCall and Cavano's ramework, as well as other quality fac-
'ﬁ.ﬁ- tors, is presented in Chapler 19. Il is interesting to nole that nearly every aspect of
POINT computing has undergone radical change as the years have passed since McCall and

Surprisingl, the focols avano did their seminal work in 1978. But the attributes that provide an indication .
ﬁhﬂim: of software quality remain the same.

are the same factors what does this mean? If a software organization adopts a sct of quality {actors as

thot contioue fo define. & “checklist” for assessing software quality, it is likely that software built today will et

?“f“""“ qualty F”hf’ still exhibit quality well into the first few decades of this century. Even as compuling
et decnd of this architectures undergo radical change (as they surely will), software that exhibits high

century. . 2 . . .
ity/in operation, transition, and revision will continue to serve its users well.

Measuring Quality
Afthough there are many measures ol soflware quality, correctness, maintainability;
integrity, and usability provide useful indicalors for the project team. Gilb [GILB8] sug-

:{J
gests definitions and measures for each.

Jé;rectness. A program must operate correctly or it provides little value to
its users. Correctness is the degree to which the software performs ils
required function. The mosl common measure for correciness 15 defects per
KLOC, where a defect is defined as a verified lack of conformance to require-
ments. when considering the overall quality of a software product, defects
are those problems reported by a user of the program after the program has
been released for general use. For quality assessment purposes, defects are
counted over a standard period of lime, Lypically one year.

\ Maintainability. Software maintenance accounts for more effort than any

il other software engineering aclivity. Maintainability is the ease with which a
program can be corrected if an error is encountered, adapted if its environ-

ment Changcs or enhanced if the customer desires a change in require-

o Sl | [Wl e s _,‘-:-. .
o g il i e
S g e ke e

3 il - 5 ¥ el =

CHAPTER & SOFTWARE PROCTSS AND 580 /ECT METSCS o7

ments. There is no way to measure maintainability dircctly: therefore, we
must use indirect measures. A simple time-orienicd metric is mea-time-io-
change (MTTC). the time it takes 1o analyze the change request, design an
appropriate modification, implement the change, Lest it, and distribute the
change to ail users. On average, programs (hat are mainiainabie will have a
lower MTTC (for equivalent types of changes) than programs that are not

mainlainable !

Hitacht [TAIS 1] has used a cost-onented metric for mainiainabiity called
Nvkige—the cost to correct defects encountered after the software has been
released Lo its end users. When the ratio of sposlage Lo overall project cost
(1Or many projects) is plotled as a lunclion of Ume_a Mmanager can determine
whether the overal! mamtainability of software procuced by a software

development organization is improving. Aclions can then be taken in
response Lo the insight gained from this information

~Afitegrity. Sollware integrity has become increasingly important in the age

of hackers and firewalls. This attribute measures a system'’s ability 10 with-
siand attacks (both accidental and intentional) lo its securily Altacks can be
made on ail three components of software: programs, data, and documents.
To measure integnity, iwo additional attributes must be defined: threat and
securnly. Threur is Lhe probability (which can be estimated or derived from
empirical evidence) that an attack of a specific type will occur within a given
fime. Secunity is the probability (which can be estimated or derived from
empirical cvidence) that the attack of a specific type will be repelied. The
integrity of' a syslem can then be defined as

integrity = summation (1 - threat) x (I - securitvy]

where threal and securily are summed over each ype of attack.
v~Usability. The calch phrase “user-friendliness” has become ubiquitous in
discussions of software products. If a program is not user-friendly, it is often
doomed 1o failure, even if the funclions that it periorms are valuable. Usabil-
ity is an atiempt Lo quantify user-friendliness and can be measured in terms
of four characteristics: (1} the physical and or intellectual skill required to
learn the system, (2) the lime required 1o become moderately efficient in the
use of the system, (3) the net increase in productivity (over the approach that | |
the sysiem replaces) measured when the System is used by someone who is - ;, SR s
moderately efficicnt, and (4) a subjective assessment (sometimes obtained
through a questionnaire) of users attitudes toward the system. Detailed dis-
cussion of this topic is contained in Chapter 15.

F
il

The tour [actars just described are only a sampling of those that have been proposed gy
as measures for software quality. Chapler 19 considers Lhis topic in mimai_dﬂm. g

e 5 Detect Removal Efficiency

2

ad A AGIHNLS SO TWARE PRO. (AW

PART TWO

41 both the project and process level is defeat
PRE). In essence, DRE 18 4 measure of the filtering ability of gual-
vities as they are applied throughout all process frame-

A quality metrk thal proviges beneht

removal effCiency i
ity assurance and controil acl
work activitics.

when considered for a project

manner

as a whole, DRE is defined in the foliowing

DRE = E/(E + D) (4-4)

where E is the number of errors found before delivery of the software to the end-user

and D is the number of defects found after delivery.
The ideal value for DRE is 1. That is. no defects are found in the software. Realis-

tically, D will be greater than 0, but the value of DRE can still approach 1. As E increases
!rnr a given value of Dy the overall value of DRE begins O approach 1. In fact, as E
increases, it is likely that the final value of D will decrease (crrors are filtered out before
they become defects). If used as a metric that provides an indicator of the filtering abil-
ity jr:rf quality control and assurance activities, DRE encourages a sollware project leam
10 institute techniques for finding as many errors as possible before delivery. |
DRE can also be used within the project 1o assess a team's ability to find errors
before they are passed (o the next framework activity or softwaré engineering task

For example, the requirements analysis task produces an analysis model that can be
that are not found during the review

U DS s omenspe reviewed to find and correct errors. Those errors
:Sm of the analysis model arc passed on to the design task (where they may or may not
DRE i bow dhring be found). When used in this context, we redefine DRE as :
:‘::‘ﬁ DRE, = Ei/(E; + Ejut (4-5) |
imgroving e woy you WhETE E; is the number of errors found during softwarc engineering activity i and
::;W E;,; isthe aumber of errors found during software engineering activity i+1 thal are 1
—— traceable to errors thal were not discovered in software €n ineering activity I. |
gineering aclivity | L
A quality objective for a software team {Of an individual software engineer) 1510
achieve DRE, that approaches 1. That is, errors should be fltered out before they are \
passed on {0 the next activity
TR e —
4.6 INTEGRATING METRICS WITHIN THE SOFTWARE |
¢

PROCESS
The majority of software developers still do not méasﬁfc, aﬁd_s-.ad’!.j,r, most have little
desire to begin. AS W€ noted earlier in this chapter, the problem s cultural. Atlempt- 1—

ing to collect measures where none
resistance. "Why dowe need to do this?* asksa harried
the point,” complains an overworked practiioner.

In this section, W€ consider some aguments for so

approach for instituting a metrics collection program

project manager. "} don't see

tware metrics and present an
within a software engincernng

had been collected in the past often precipitates :

b

v

El
g

