Test of Significance and related terms

Md. Golam Rabbani Associate Professor Dept of Statistics University of Dhaka

Outline

- 1. Preliminaries
- 2. Test of Significance
- 3. Null and Alternative Hypotheses
- 4. Type-I and Type-II error
- 5. Power of the test
- 6. Level of Significance
- 7. P-Value

Preliminaries

- Population \equiv all possible values
- Sample \equiv a portion of the population
- Statistical inference = generalizing from a sample to a population with calculated degree of certainty
- Two forms of statistical inference
 - Hypothesis testing
 - Estimation
- Parameter \equiv a characteristic of population, e.g., population mean μ
- Statistic = calculated from data in the sample, e.g., sample mean ()

Preliminaries..

Sampling Distributions of a Mean

• The **sampling distributions of a mean (SDM)** describes the behavior of a sampling mean

Fig. sdm&se68%.ai

Test of Significance

The test which is done for testing the research hypothesis against the null hypothesis.

OR

Test of significance is a formal procedure for comparing observed data with a claim (also called a hypothesis) whose truth we want to assess.

Hypothesis Testing

- Is also called *significance testing*
- Tests a claim about a parameter using evidence (data in a sample
- The technique is introduced by considering a onesample z test
- The procedure is broken into four steps
- *Each* element of the procedure must be understood

Hypothesis Testing Steps

- A. Null and alternative hypotheses
- B. Test statistic
- C. P-value and interpretation
- D. Significance level (optional)

Null and Alternative Hypotheses

- Convert the research question to null and alternative hypotheses
- The **null hypothesis (H**₀) is a claim of "no difference in the population"
- The **alternative hypothesis** (*H*_a) claims "*H*₀ is false"
- Collect data and seek evidence against H_0 as a way of bolstering H_a (deduction)

Illustrative Example: "Body Weight"

The problem: In the 1970s, 20–29 year old men in the U.S. had a mean μ body weight of 170 pounds. Standard deviation σ was 40 pounds. We test whether mean body weight in the population now differs.

- Null hypothesis $H_{0:} \mu = 170$ ("no difference")
- The alternative hypothesis can be either H_{a:} μ > 170 (one-sided test) or

 $H_{a:} \mu \neq 170$ (two-sided test)

Test Statistic

This is an example of a one-sample test of a mean when σ is known. Use this statistic to test the problem:

$$z_{\text{stat}} = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}}$$

where $\mu_0 \equiv$ population mean assuming H_0 is true

and
$$SE_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

11

Illustrative Example: z statistic

- For the illustrative example, $\mu_0 = 170$
- We know $\sigma = 40$
- Take an SRS of *n* = 64. Therefore

$$SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{40}{\sqrt{64}} = 5$$

• If we found a sample mean of 173, then

$$z_{\text{stat}} = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}} = \frac{173 - 170}{5} = 0.60$$

12

Illustrative Example: z statistic

If we found a sample mean of 185, then

$$z_{\text{stat}} = \frac{\bar{x} - \mu_0}{SE_{\bar{x}}} = \frac{185 - 170}{5} = 3.00$$

Errors in Hypothesis Testing

	Truth	
Decision	N u l l h y p o th e s i s	A ltern a tive h y p o th e s i s
Donot rejectnull	O K	TYPE II ERROR
Reject null	TYPE I ERROR	O K

Definitions: Types of Errors

- **Type I error**: The null hypothesis is rejected when it is true.
- **Type II error**: The null hypothesis is not rejected when it is false.
- There is always a chance of making one of these errors. We'll want to minimize the chance of doing so!

Type II Error and Power

- "Power" of a test is the probability of rejecting null when alternative is true.
- "Power" = 1 P(Type II error)
- To minimize the P(Type II error), we equivalently want to maximize power.
- But power depends on the value under the alternative hypothesis ...

Type II Error and Power

Power of a z test

$$1 - \beta = \Phi\left(-z_{1-\frac{\alpha}{2}} + \frac{\mid \mu_0 - \mu_a \mid \sqrt{n}}{\sigma}\right)$$

where

 $\Phi(z)$ represent the cumulative probability of Standard Normal Z

 μ_0 represent the population mean under the null hypothesis

 μ_{a} represents the population mean under the alternative hypothesis

Calculating Power: Example

A study of n = 16 retains H_0 : $\mu = 170$ at $\alpha = 0.05$ (two-sided); σ is 40. What was the power of test's conditions to identify a population mean of 190?

$$1 - \beta = \Phi \left(-z_{1 - \frac{\alpha}{2}} + \frac{|\mu_0 - \mu_a| \sqrt{n}}{\sigma} \right)$$
$$= \Phi \left(-1.96 + \frac{|170 - 190| \sqrt{16}}{40} \right)$$
$$= \Phi (0.04)$$
$$= 0.5160$$

Level of Significance

- Probability of making type-I error.
- ... by making significance level α small.
- Common values are α = 0.01, 0.05, or 0.10.
- "How small" depends on seriousness of Type I error.
- Decision is not a statistical one but a practical one.

P-value

- The *P*-value answer the question: What is the probability of the observed test statistic or one more extreme when H₀ is true?
- This corresponds to the tail of the Standard Normal distribution beyond the z_{stat.}
- Convert *z* statistics to *P*-value :

For $H_a: \mu > \mu_0 \Rightarrow P = \Pr(Z > z_{stat}) = right-tail beyond <math>z_{stat}$ For $H_a: \mu < \mu_0 \Rightarrow P = \Pr(Z < z_{stat}) = left tail beyond <math>z_{stat}$ For $H_a: \mu \neq \mu_0 \Rightarrow P = 2 \times one-tailed P$ -value