
C Programming

Lecture 4 : Variables , Data Types

Lecture notes : courtesy of Ohio Supercomputing Center, science and technolgy support

First Program

 C is case sensitive.

 End of each statement must be marked with a semicolon (;).

 Multiple statements can be on the same line.

 White space (e.g. space, tab, enter, …) is ignored.

#include <stdio.h>

int main()

{

/* My first program */

printf("Hello World! \n");

return 0;

}

Output :

Hello World!

First Program

 The C program starting point : main().

 main() {} indicates where the program actually starts and ends.

 In general, braces {} are used throughout C to enclose a block of

statements to be treated as a unit.

 COMMON ERROR: unbalanced number of open and close curly

brackets!

#include <stdio.h>

int main()

{

/* My first program */

printf("Hello World! \n");

return 0;

}

Output :

Hello World!

First Program

 #include <stdio.h>
 Including a header file stdio.h

 Allows the use of printf function
 For each function built into the language, an associated header file

must be included.

 printf() is actually a function (procedure) in C that is used for

printing variables and text

Output :

Hello World!

#include <stdio.h>

int main()

{

/* My first program */

printf("Hello World! \n");

return 0;

}

First Program

 Comments
 /* My first program */
 Comments are inserted between “/*” and “*/”
 Or, you can use “//”
 Primarily they serve as internal documentation for program

structure and function.

Output :

Hello World!

#include <stdio.h>

int main()

{

/* My first program */

printf("Hello World! \n");

return 0;

}

Why use comments?

 Documentation of variables, functions and algorithms

 Ex) for each function, explain input and output of the

function, and what the function does.

 Describes the program, author, date, modification

changes, revisions,…

Header Files

 Header files contain definitions of functions and variables

 Preprocessor #include insert the codes of a header file into the

source code.

 Standard header files are provided with each compiler

 To use any of the standard functions, the appropriate header file

should be included.
 Ex) to use printf() function , insert #include <stdio.h>

 In UNIX, standard header files are generally located in the

/usr/include subdirectory

Header Files

 The use of brackets <> informs the compiler to search

the compiler’s include directories for the specified file.

 The use of the double quotes “” around the filename

informs the compiler to start the search in the current

directory for the specified file.

#include <string.h>

#include <math.h>

#include “mylib.h”

Second Program

#include <stdio.h>

#define TAXRATE 0.10

int main () {

float balance;

float tax=0.0; /* declaration + initialization */

char rate=‘A’;

int credit_no=1;

balance = 72.10;

tax = balance * TAXRATE;

printf("The tax on %.2f is %.2f\n",balance, tax);

printf(“CREDIT RATE : %d/%c\n”, credit_no, rate);

return 0;

}

Output :

The tax on 72.10 is 7.21

CREDIT RATE : 1/A

Names in C

 Identifiers (variable name)
 Must begin with a character or underscore(_)
 May be followed by any combination of characters, underscores,

or digits(0-9)
 Case sensitive
 Ex) summary, exit_flag, i, _id, jerry7

 Keywords
 Reserved identifiers that have predefined meaning to the C

compiler. C only has 29 keywords.
 Ex) if , else, char, int, while

Symbolic Constants

 Names given to values that cannot be changed.

 Use preprocessor directive #define

 Symbols which occur in the C program are replaced by

their value before actual compilation

#define N 3000

#define FALSE 0

#define PI 3.14159

#define FIGURE "triangle"

Declaring Variables

 Variable
 Named memory location where data value is stored
 Each variable has a certain type (e.g. int, char, float, …)
 Contents of a variable can change
 Variables must be declared before use in a program
 Declaration of variables should be done at the opening brace of a

function in C. (it is more flexible in C++)

 Basic declaration format
 data_type var1, var2, …;

 Examples)

int i,j,k;

float length, height;

Data Types

 char : 1 byte, capable of holding one character (ascii code)

 int : 4 byte (on 32bit computer) integer

 float : single-precision floating point

 double : double-precision floating point

type size min value max value

char 1byte -27 = -128 27-1 = 127

short 2byte -215 = -32,768 215-1 = 32,767

int 4byte -231 = -2,147,483,648 231-1 = 2,147,483,647

long 4byte -231 = -2,147,483,648 231-1 = 2,147,483,647

• Min/Max values are defined in <limit.h> header file

unsigned type

 Use when representing only positive numbers

Data type size min max

unsigned char 1byte 0 28-1 = 255

unsigned short 2 byte 0 216-1 = 65,535

unsigned int 4byte 0 232-1 = 4,294,967,295

Negative integer representation

 signed

 first bit represents the sign of a number

 Rest of bits represent the value of a number

 Negative integer number
 Represented as 2’s complement

number Bit representation

+5 00000101

1’s complement of 5 11111010

2’s complement of 5 11111011

-5 11111011

floating point
 real number : significant number + position of decimal point

 Decimal point(.) can be placed anywhere relative to the significant

digits of the number

 This position is indicated separately in the internal representation

 Advantage of floating point representation
 Support much wider range of values
 Representing 314159265358979.3 vs 3.141592653589793

type size min max

float 4 byte
(7 significant numbers)
-1.0E+38

(7 significant numbers)
1.0E+38

double 8 byte
(15 significant numbers)
-1.0E+308

(15 significant numbers)
1.0E+308

Ascii Code

Escape character

 Starts with backslash(\)

 Indicate special meaning and interpretation

Escape character meaning

\b backspace

\t tab

\n newline

\r formfeed

\" double quote

\' single quote

\\ back slash

code.c

output:

a 97

A 65

1 49

$ 36

+ 43

a 97

A 65

1 49

$ 36

+ 43

getchar() , putchar()

 int getchar()

 Defined in <stdio.h>,
 Get one character input from keyboard and return the ascii value

 int putchar(int c)

 Defined in <stdio.h>
 prints one character provided as a parameter

#include <stdio.h>

int main()

{

int c;

printf(“keyboard input (one character?)”);

c=getchar();

printf(“character input : %c\n”,c);

printf(“ascii code : %d\n”, c);

return 0;

}

Output :
character input : A

ascii code : 65

korea.c

#include <stdio.h>

int main()

{

short no_univ = 276;

int population = 48295000;

long budget = 237000000000000L;

printf(“korea info\n”);

printf(“univ no : %d\n”, no_univ);

printf(“population : %d\n”, population);

printf(“budget : %d\n”, budget);

return 0;

}

Output :

korea info

univ no : 276

putpulation: 48295000

budget: -590360576

Overflow?

 (integer type) overflow
 occurs when storing a value that is bigger than what can be

stored.

 Ex) 2,147,483,647 (= 2
31

-1) + 1 = ?
01111111 11111111 11111111 11111111

+ 00000000 00000000 00000000 00000001

--

10000000 00000000 00000000 00000000

#include <stdio.h>

int main()

{

int a=2147483647;

printf("%d,%d\n",a,a+1);

return 0;

}

