
1

C Programming for 
Engineers

Arrays
ICEN 360– Spring 2017
Prof. Dola Saha



2

Compiling your own code

1

2



3

Compiling your own code

Ø pwd – print work directory
Ø cd directory_name – change directory
Ø ls – list the content of current directory

3



4

Linking with Math Library

Ø gcc –o object_filename c_file.c –lm
§ -l link to the library
§ -lm is specific for math

Ø Run the object file
§ ./object_filename

4



5

Array 

Ø Arrays are data structures consisting of related data 
items of the same type. 

Ø A group of contiguous memory locations that all have the 
same type. 

Ø To refer to a particular location or element in the array
§ Array’s name 
§ Position number of the particular element in the array



6

Example Array



7

Array indexing

Ø The first element in every array is the zeroth element. 
Ø An array name, like other identifiers, can contain only 

letters, digits and underscores and cannot begin with 
a digit.

Ø The position number within square brackets is called 
an index or subscript. 

Ø An index must be an integer or an integer expression
§ array_name[x], array_name[x+y], etc. 

Ø For example, if a = 5 and b = 6, then the statement
o c[a + b] += 2;

adds 2 to array element c[11]. 



8

Array in memory

Ø Array occupies contiguous space in memory
Ø The following definition reserves 12 elements for integer 

array c, which has indices in the range 0-11.
o int c[12];

Ø The definition 
o int b[100]; double x[27];

reserves 100 elements for integer array b and 27 
elements for double array x.

Ø Like any other variables, uninitialized array elements 
contain garbage values.



9

Initializing array

Output



10

Use of size_t

Ø Notice that the variable i is declared to be of type 
size_t, which according to the C standard represents 
an unsigned integral type. 

Ø This type is recommended for any variable that 
represents an array’s size or an array’s indices. 

Ø Type size_t is defined in header <stddef.h>, which 
is often included by other headers (such as 
<stdio.h>). 

Ø [Note: If you attempt to compile Fig. 6.3 and receive 
errors, simply include <stddef.h> in your program.]



11

Initializing with initializer list

Output



12

Initializing with fewer initializers

Ø If there are fewer initializers than elements in the array, 
the remaining elements are initialized to zero. 

Ø Example:
// initializes entire array to zeros
int n[10] = {0}; 

Ø The array definition 
o int n[5] = {32, 27, 64, 18, 95, 14}; 

causes a syntax error because there are six initializers 
and only five array elements.



13

Initializing without array size

Ø If the array size is omitted from a definition with an 
initializer list, the number of elements in the array will be 
the number of elements in the initializer list. 

Ø For example, 
o int n[] = {1, 2, 3, 4, 5};

would create a five-element array initialized with the 
indicated values. 



14

Initializing to even list

Output



15

Preprocessor

Ø The #define preprocessor directive is introduced in 
this program. 

Ø #define SIZE 5
§ defines a symbolic constant SIZE whose value is 5. 

Ø A symbolic constant is an identifier that’s replaced with 
replacement text by the C preprocessor before the 
program is compiled. 

Ø Using symbolic constants to specify array sizes makes 
programs more modifiable. 



16

Adding elements of an array



17

Classwork Assignment

Ø Initialize an array of size with an initializer list and find 
the maximum element.



18

Using Arrays to Summarize Poll (1)



19

Using Arrays to Summarize Poll (2)



20

Histogram with Array elements (1)



21

Histogram with Array elements (1)



22

Character Arrays & String Representation
Ø Store strings in character arrays. 
Ø So far, the only string-processing capability we have is 

outputting a string with printf. 
Ø A string such as "hello" is really an array of individual 

characters in C.
Ø A character array can be initialized using a string literal. 
Ø For example, 

o char string1[] = "first";
initializes the elements of array string1 to the 
individual characters in the string literal "first". 



23

Size of Character Array
Ø In this case, the size of array string1 is 

determined by the compiler based on the length of 
the string. 

Ø The string "first" contains five characters plus a 
special string-termination character called the null 
character. 

Ø Thus, array string1 actually contains six elements. 
Ø The character constant representing the null 

character is '\0'. 
Ø All strings in C end with this character. 



24

Character Array Indexing
Ø The preceding definition is equivalent to 

o char string1[] = 
{'f', 'i', 'r', 's', 't', '\0'};

Ø Because a string is really an array of characters, we can 
access individual characters in a string directly using 
array index notation. 

Ø For example, string1[0] is the character 'f' and 
string1[3] is the character 's'.



25

Scanning string
Ø We also can input a string directly into a character array from the 

keyboard using scanf and the conversion specifier %s. 
Ø For example, 

o char string2[20];

creates a character array capable of storing a string of at most 19 
characters and a terminating null character. 

Ø The statement
o scanf("%19s", string2);

reads a string from the keyboard into string2. 
Ø The name of the array is passed to scanf without the preceding &

used with nonstring variables. 
Ø The & is normally used to provide scanf with a variable’s location

in memory so that a value can be stored there. 



26

Scanning string
Ø Function scanf will read characters until a space, tab, 

newline or end-of-file indicator is encountered. 

Ø The string2 should be no longer than 19 characters to 
leave room for the terminating null character. 

Ø If the user types 20 or more characters, your program may 
crash or create a security vulerability. 

Ø For this reason, we used the conversion specifier %19s so 
that scanf reads a maximum of 19 characters and does not 
write characters into memory beyond the end of the array 
string2. 



27

Memory Management in Scanning String

Ø It’s your responsibility to ensure that the array into which 
the string is read is capable of holding any string that the 
user types at the keyboard. 

Ø Function scanf does not check how large the array is. 

Ø Thus, scanf can write beyond the end of the array. 

Ø You can use gets(text) to get the text from user.



28

Printing String

Ø A character array representing a string can be output with 
printf and the %s conversion specifier.

Ø

Ø The array string2 is printed with the statement
o printf("%s\n", string2);

Ø Function printf, like scanf, does not check how 
large the character array is. 

Ø The characters of the string are printed until a 
terminating null character is encountered.



29

Treating Character Arrays as String (1)



30

Treating Character Arrays as String (2)



31

Self Review Assignment

Ø String Comparison: Write a program to get string1
and string2 from user. Then compare each element 
iteratively to find if they are same or different. Finally, 
display if the two strings matched or not.



32

Passing Arrays to Functions
Ø To pass an array argument to a function, specify the array’s 

name without any brackets. 
Ø For example, 

int hourlyTemperatures[HOURS_IN_A_DAY];
modifyArray(hourlyTemperatures, HOURS_IN_A_DAY);

the function call passes array hourlyTemperatures and its size 
to function modifyArray. 

Ø The name of the array evaluates to the address of the first 
element of the array. 

Ø The called function can modify the element values in the 
callers’ original arrays. 



33

Passing Array to Functions (1)



34

Passing Array to Functions (2)



35

Passing Array to Functions (3)



36

Passing Array to Functions (4)



37

Protecting Array Elements 

Ø Function tryToModifyArray is defined with 
parameter const int b[], which specifies that array b
is constant and cannot be modified. 

Ø The output shows the error messages produced by the 
compiler—the errors may be different for your compiler. 


