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Passing Arrays to Functions
Ø To pass an array argument to a function, specify the array’s 

name without any brackets. 
Ø For example, 

int hourlyTemperatures[HOURS_IN_A_DAY];
modifyArray(hourlyTemperatures, HOURS_IN_A_DAY);

the function call passes array hourlyTemperatures and its size 
to function modifyArray. 

Ø The name of the array evaluates to the address of the first 
element of the array. 

Ø The called function can modify the element values in the 
callers’ original arrays. 
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Passing Array to Functions (1)
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Passing Array to Functions (2)
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Passing Array to Functions (3)
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Passing Array to Functions (4)
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Memory location of Arrays

Ø array, &array and &array[0] have the same value, 
namely 0012FF78
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Protecting Array Elements 

Ø Function tryToModifyArray is defined with 
parameter const int b[], which specifies that array b
is constant and cannot be modified. 

Ø The output shows the error messages produced by the 
compiler—the errors may be different for your compiler. 
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Classwork Assignment

Ø Search an Array: Write a program to initialize an array of 
size S with an initializer list. Also get a value for num1
from user. Pass the array as well as num1 to a function. 
Within the function, check each element of array whether 
it matches num1. If it matches, return 1, else return 0 to 
the main function.
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Binary Search – searching in a sorted array

Ø The linear searching method works well for small or 
unsorted arrays. 

Ø However, for large arrays linear searching is 
inefficient. 

Ø If the array is sorted, the high-speed binary search 
technique can be used. 

Ø The binary search algorithm eliminates from 
consideration one-half of the elements in a sorted 
array after each comparison. 
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Binary Search – searching in a sorted array
Ø The algorithm locates the middle element of the array and 

compares it to the search key. 
Ø If they’re equal, the search key is found and the index of 

that element is returned. 
Ø If they’re not equal, the problem is reduced to searching 

one-half of the array. 
Ø If the search key is less than the middle element of the 

array, the first half of the array is searched, otherwise the 
second half of the array is searched. 
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Demo

Ø Demo from Princeton
https://www.cs.princeton.edu/courses/archive/fall06/cos226/demo/demo-
bsearch.ppt
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Binary Search – C code (1)
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Binary Search – C code (2)
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Binary Search – C code (3)



16

Binary Search – C code (4)
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Binary Search – C code (5)
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Binary Search – C code (6)
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Binary Search – C code (7)
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Multidimensional Arrays
Ø Arrays in C can have multiple indices. 
Ø A common use of multidimensional arrays is to represent 

tables of values consisting of information arranged in 
rows and columns. 

Ø Multidimensional arrays can have more than two indices. 

3x4 Array
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Initialization
Ø Where it is defined
§ Braces for each dimension
o int b[2][2] = {{1, 2}, {3, 4}};

§ If there are not enough initializers for a given row, the remaining 
elements of that row are initialized to 0. 

o int b[2][2] = {{1}, {3, 4}};
§ If the braces around each sublist are removed from the array1

initializer list, the compiler initializes the elements of the first row 
followed by the elements of the second row. 

o int b[2][2] = {1, 2, 3, 4};
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Multidimensional Array Example Code (1)
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Multidimensional Array Example Code (2)
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Two Dimensional Array Manipulation

Ø Example
§ studentGrades[3][4]
§ Row of the array represents a student.
§ Column represents a grade on one of the four exams the students took during the 

semester. 

Ø The array manipulations are performed by four functions. 
§ Function minimum determines the lowest grade of any student for the semester. 
§ Function maximum determines the highest grade of any student for the semester. 
§ Function average determines a particular student’s semester average. 
§ Function printArray outputs the two-dimensional array in a neat, tabular format.
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2D Array Manipulation Code (1)
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2D Array Manipulation Code (2)
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2D Array Manipulation Code (3)
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2D Array Manipulation Code (4)
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2D Array Manipulation Code (5)
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2D Array Manipulation Code (6)
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2D Array Manipulation Code (7)
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Classroom Assignment

Ø Matrix Addition/Subtraction – two matrices should have 
same number of rows and columns.

https://en.wikipedia.org/wiki/Matrix_addition

Addition Subtraction
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Variable Length Array
Ø In early versions of C, all arrays had constant size. 
Ø If size is unknown at compilation time
§ Use dynamic memory allocation with malloc

Ø The C standard allows a variable-length array 
§ An array whose length, or size, is defined in terms of an 

expression evaluated at execution time. 
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Variable Length Array Code (1)
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Variable Length Array Code (2)
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Variable Length Array Code (3)
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Variable Length Array Code (4)
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Variable Length Array Code (5)


