
1

C Programming for
Engineers

Arrays & Pointers
ICEN 360– Spring 2017
Prof. Dola Saha

2

Classroom Assignment

Ø Matrix Addition/Subtraction – two matrices should have
same number of rows and columns.

https://en.wikipedia.org/wiki/Matrix_addition

Addition Subtraction

3

Variable Length Array
Ø In early versions of C, all arrays had constant size.
Ø If size is unknown at compilation time
§ Use dynamic memory allocation with malloc

Ø The C standard allows a variable-length array
§ An array whose length, or size, is defined in terms of an

expression evaluated at execution time.

4

Variable Length Array Code (1)

5

Variable Length Array Code (2)

6

Variable Length Array Code (3)

7

Variable Length Array Code (4)

8

Variable Length Array Code (5)

9

Ø If A is a 𝑛×𝑚 matrix and B is a𝑚×𝑝 matrix, then
Matrix Multiplication is given by following formula

Matrix Multiplication

https://en.wikipedia.org/wiki/Matrix_multiplication

10

Matrix Multiplication - Illustrated

11

Random Number Generation

Ø The rand function generates an integer between 0 and
RAND_MAX (a symbolic constant defined in the
<stdlib.h> header).

§ i = rand();

Ø To get a range of values, use remainder operation.
§ i = rand()%N; // random values in {0 to N-1}

12

Random Number Generation Code

13

Pseudorandom numbers

Ø Function rand generates pseudorandom numbers.
Ø Calling rand repeatedly produces a sequence of

numbers that appears to be random.
Ø Randomizing
§ A program conditioned to produce a different sequence of random

numbers for each execution
§ Accomplished with the standard library function srand.

Ø Function srand() takes an unsigned integer argument
and seeds function rand() to produce a different
sequence of random numbers for each execution of the
program.

14

Randomizing with a seed

15

Randomize without providing a seed
Ø To randomize without entering a seed each time, use a statement like

srand(time(NULL));

Ø The function prototype for time is in <time.h>.	

16

Classroom Assignment

Ø Use Random Number generation to assign random values
to two nxm matrices (A and B), then add / subtract the
matrices and print the result matrix.

17

What does the code do?

 Exercises 9

ANS: The program recursively sums the elements in a.

6.18 What does the following program do?

ANS: The program recursively outputs the values of a in reverse order.

Result is 55

1 // ex06_18.c
2 // What does this program do?
3 #include <stdio.h>
4 #define SIZE 10
5
6 // function prototype
7 void someFunction(const int b[], size_t startIndex, size_t size);
8
9 // function main begins program execution

10 int main(void)
11 {
12 int a[SIZE] = { 8, 3, 1, 2, 6, 0, 9, 7, 4, 5 }; // initialize a
13
14 puts("Answer is:");
15 someFunction(a, 0, SIZE);
16 puts("");
17 }
18
19 // What does this function do?
20 void someFunction(const int b[], size_t startIndex, size_t size)
21 {
22 if (startIndex < size) {
23 someFunction(b, startIndex + 1, size);
24 printf("%d ", b[startIndex]);
25 }
26 }

Answer is:
5 4 7 9 0 6 2 1 3 8

18

Pointers

Ø Pointers are variables whose values are memory
addresses.

Ø A variable name directly references a value, and a pointer
indirectly references a value.

Ø Referencing a value through a pointer is called
indirection.

19

Declaring Pointers
Ø Pointers must be defined before they can be used.
Ø The definition

o int *countPtr, count;
specifies that variable countPtr is of type int * (i.e., a pointer
to an integer).

Ø The variable count is defined to be an int, not a pointer to an
int.

20

Initializing Pointers
Ø Pointers should be initialized when they’re defined or they

can be assigned a value.
Ø A pointer may be initialized to NULL, 0 or an address.
Ø A pointer with the value NULL points to nothing.
Ø NULL is a symbolic constant defined in the <stddef.h>

header (and several other headers, such as <stdio.h>).
Ø Initializing a pointer to 0 is equivalent to initializing a

pointer to NULL, but NULL is preferred.
Ø When 0 is assigned, it’s first converted to a pointer of the

appropriate type.
Ø The value 0 is the only integer value that can be assigned

directly to a pointer variable.

21

Pointer Operator
Ø The &, or address operator, is a unary operator that returns the

address of its operand.
Ø Example definition

o int y = 5;
int *yPtr;

the statement
o yPtr = &y;

assigns the address of the variable y to pointer variable yPtr.
Ø Variable yPtr is then said to “point to” y.

Graphical Representation

Memory Representation

22

Indirection (*) Operator

Ø The unary * operator, commonly referred to as the
indirection operator or dereferencing operator, returns
the value of the object to which its operand (i.e., a
pointer) points.

Ø Example:
o printf("%d", *yPtr);

prints the value of variable that yPtr is pointing to
In this case it is y, whose value is 5.

Ø Using * in this manner is called dereferencing a pointer.

23

Using & and *

24

Pass by value

25

Pass by reference – simulating with Pointer

26

Pass by value (1)

27

Pass by value (2)

28

Pass by value (3)

29

Pass by reference (1)

30

Pass by reference (2)

