
1

C Programming for 
Engineers

Structures, Unions 
ICEN 360– Spring 2017
Prof. Dola Saha



2

Structure

Ø Collections of related variables under one name.
Ø Variables of may be of different data types.
Ø struct card {

char *face;
char *suit;

};

Ø Keyword struct introduces the structure definition. 
Ø Members of the same structure type must have unique 

names, but two different structure types may contain 
members of the same name without conflict.

Tag

Members



3

Structure Declaration
Ø struct employee {

char firstName[20];
char lastName[20];
unsigned int age;
char gender;
double hourlySalary;

}; 
Ø struct employee employee1, employee2;
Ø struct employee employees[100];
Ø struct employee {

char firstName[20];
char lastName[20];
unsigned int age;
char gender;
double hourlySalary;

} employee1, employee2, *employeePtr; 



4

Structure Tag

Ø The structure tag name is optional. 
Ø If a structure definition does not contain a structure tag 

name, variables of the structure type may be declared 
only in the structure definition—not in a separate 
declaration.



5

Self Reference
Ø A structure cannot contain an instance of itself. 
Ø A variable of type struct employee cannot be declared in the 

definition for struct employee. 
Ø A pointer to struct employee, may be included. 
Ø For example,

o struct employee2 {
char firstName[20];
char lastName[20];
unsigned int age;
char gender;
double hourlySalary; 
struct employee2 person; // ERROR 
struct employee2 *ePtr; // pointer 

};
Ø struct employee2 contains an instance of itself (person), which is an 

error. 



6

Storage in Memory

Ø Structures may not be compared using operators == and 
!=, because 

§ structure members are not necessarily stored in consecutive bytes of 
memory. 

Ø Computers may store specific data types only on certain 
memory boundaries such as half-word, word or double-
word boundaries. 

Ø A word is a standard memory unit used to store data in a 
computer—usually 2 bytes or 4 bytes. 



7

Storage in Memory
Ø struct example {

char c;
int i;

} sample1, sample2;

Possible storage, but machine dependant



8

Initialization
Ø struct card {

char *face;
char *suit;

};
Ø struct card aCard = {"Three", "Hearts"};

Ø If there are fewer initializers in the list than members in 
the structure, 

§ the remaining members are automatically initialized to 0 
§ or NULL if the member is a pointer. 

Ø Assignment Statement of same struct type
§ struct card aCard1 = aCard2;



9

Accessing Structure Members

Ø the structure member operator (.)—also called the dot 
operator

§ printf("%s", aCard.suit); // displays 
Hearts

Ø the structure pointer operator (->)—also called the arrow 
operator.

§ cardPtr = &aCard;
§ printf("%s", cardPtr->suit); // displays 

Hearts
§ Following are equivalent
o cardPtr->suit
o (*cardPtr).suit



10

Example



11

Structure with Function

Ø Structures may be passed to functions by 
§ passing individual structure members
§ by passing an entire structure
§ by passing a pointer to a structure. 

Ø Functions can return 
§ individual structure members
§ an entire structure
§ a pointer to a structure



12

typedef
Ø The keyword typedef is a way to create synonyms (or 

aliases) for previously defined data types. 
Ø Names for structure types are often defined with typedef

to create shorter type names.
Ø Example:
§ typedef struct card Card;

Card is a synonym for type struct card.	
Ø Example:
§ typedef struct {

char *face;
char *suit;

} Card; 
§ Card myCard, *myCardPtr, deck[52];



13

Card Shuffling Example (1)



14

Card Shuffling Example (2)



15

Card Shuffling Example (3)



16

Card Shuffling Example (4)



17

Card Shuffling Example (5)



18

Classwork Assignment

Ø Write a program to generate data for N students. Use 
structure to create numeric ID and points (max 100) as 2 
separate members. Randomly generate data for N 
students. Display both the ID and the points of the 
student who has received highest point.



19

Union

Ø A union is a derived data type—like a structure—with 
members that share the same storage space. 

Ø For different situations in a program, some variables may 
not be relevant, but other variables are—so a union 
shares the space instead of wasting storage on variables 
that are not being used. 

Ø The members of a union can be of any data type. 
Ø The number of bytes used to store a union must be at 

least enough to hold the largest member. 



20

Definition
Ø union number {

int x;
double y;

};
Ø In a declaration, a union may be initialized with a value of the same 

type as the first union member. 
Ø union number value = {10};
Ø union number value = {1.43}; // ERROR



21

Permitted Operations

Ø The operations that can be performed on a union are: 
§ assigning a union to another union of the same type, 
§ taking the address (&) of a union variable,
§ and accessing union members using the structure member operator 

and the structure pointer operator. 

Ø Unions may not be compared using operators == and != 
for the same reasons that structures cannot be compared.



22

Union Example (1)



23

Union Example (2)



24

Enumeration
Ø Keyword enum, is a set of integer enumeration constants

represented by identifiers. 
Ø Values in an enum start with 0, unless specified otherwise, and are 

incremented by 1. 
Ø For example, the enumeration

o enum months {
JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, 
OCT, NOV, DEC};

creates a new type, enum months, identifiers are set to the 
integers 0 to 11, respectively. 

Ø Example:
§ enum months {

JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, 
SEP, OCT, NOV, DEC}; 

identifiers are set to integers 1 to 12, respectively. 



25

Enumeration Example



26

Enumeration Example Output


