C Programming for
Engineers

UNIVERSITY

Structures, Unions Ay

ICEN 360- Spring 201/
Prof. Dola Saha

UNIVERSITYATALBANY
State University of New York

Structure

>

Collections of related variables under one name.

> Variables of may be of different data types.

>

struct card<{ m
char *face;
char *suit;

¥

Keyword struct introduces the structure definition.

Members of the same structure type must have unique
names, but two different structure types may contain
members of the same name without conflict.

UNIVERSITYATALBANY
State University of New York

Structure Declaration

> struct employee {
char firstName[20];
char lastName[20];
unsigned int age;
char gender;
double hourlySalary;

}s
> struct employee employeel, employee2;
> struct employee employees[100];

> struct employee {
char firstName[20];
char lastName[20];
unsigned int age;
char gender;
double hourlySalary;
} employeel, employee2, *employeePtr;

UNIVERSITYATALBANY

State University of New York

Structure Tag

> The structure tag name is optional.

> If a structure definition does not contain a structure tag
name, variables of the structure type may be declared

only in the structure definition—not in a separate
declaration.

UNIVERSITYATALBANY
State University of New York

Self Reference

> A structure cannot contain an instance of itself.

> Avariable of type struct employee cannot be declared in the
definition for struct employee.

> Apointerto struct employee, may be included.

> Forexample,

o struct employee2 {
char firstName[20];
char lastName[20];
unsigned int age;
char gender;
double hourlySalary;
struct employee2 person; // ERROR
struct employee2 *ePtr; // pointer

};
> struct employee2 contains an instance of itself (person), which is an
error.

UNIVERSITYATALBANY

State University of New York

Storage in Memory

> Structures may not be compared using operators == and

I=_because

= structure members are not necessarily stored in consecutive bytes of
memory.

> (Computers may store specific data types only on certain
memory boundaries such as half-word, word or double-
word boundaries.

> A word is a standard memory unit used to store data in a
computer—usually 2 bytes or 4 bytes.

UNIVERSITYATALBANY

State University of New York

Storage in Memory

> struct example {
char c;
int 1i;
} samplel, sample2;

Byte
0 1 2 3 4 5 6 7

01100001 00000000 00000000 00000000 01100001

Possible storage, but machine dependant

UNIVERSITYATALBANY

State University of New York

Initialization

> struct card {
char *face;
char *suit;
}s
> struct card aCard = {"Three", "Hearts"};
> If there are fewer initializers in the list than members in
the structure,
= the remaining members are automatically initialized to 0
= or NULL if the member is a pointer.

> Assignment Statement of same struct type
= struct card aCardl = aCard2;

UNIVERSITYATALBANY

State University of New York

Accessing Structure Members

> the structure member operator (.)—also called the dot
operator
= printf("%s", aCard.suit); // displays
Hearts
> the structure pointer operator (->)—also called the arrow
operator.
= cardPtr = &aCard;
= printf("%s", cardPtr->suit); // displays
Hearts
= Following are equivalent
o cardPtr->suit

o (*cardPtr).suit
UNIVERSITYATALBANY

State University of New York

Example

#include <stdio.h>

struct card {
char *face; // define pointer face

4

5

6 // card structure definition

7

8

9 char *suit; // define pointer suit

10 };

11

12 1int main(void)

13 {

14 struct card aCard; // define one struct card variable

15

16 // place strings into aCard

17 aCard.face = "Ace";

18 aCard.suit = "Spades";

19

20 struct card *cardPtr = &aCard; // assign address of aCard to cardPtr
21

22 printf("%s%s%s\n%s%s%s\n%s%s%s\n", aCard.face, " of ", aCard.suit,
23 cardPtr->face, " of ", cardPtr->suit,

24 (*cardPtr).face, " of ", (*cardPtr).suit);

25 }

Ace of Spades
Ace of Spades
Ace of Spades

Structure with Function

> Structures may be passed to functions by
= passing individual structure members
= by passing an entire structure
= by passing a pointer to a structure.

» Functions can return
= ndividual structure members

= an entire structure
= 3 pointer to a structure

UNIVERSITYATALBANY

State University of New York

11

typedef

> The keyword typedef is a way to create synonyms (or
aliases) for previously defined data types.

> Names for structure types are often defined with typedef
to create shorter type names.

> Example:
= typedef struct card Card;

Card is a synonym for type struct canrd.

> Example:

= typedef struct {
char *face;
char *suit;
} Card;

= Card myCard, *myCardPtr, deck[52];

UNIVERSITYATALBANY

State University of New York

12

Card Shuffling Example (1)

Vo ~NOTUBDLE WN=

WIN=0WVOO~NONUND WNm=

// Fig. 10.3: fig10_03.c

// Card shuffling and dealing program using structures
#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define CARDS 52
#define FACES 13

// card structure definition

struct card {
const char *face; // define pointer face
const char *suit; // define pointer suit

}s
typedef struct card Card; // new type name for struct card

// prototypes

void fillDeck(Card * const wDeck, const char * wFacel[],
const char * wSuit[]);

void shuffle(Card * const wDeck);

void deal(const Card * const wDeck);

UNIVERDIL YALALBANY

State University of New York

13

Card Shuffling Example (2)

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

int main(void)

{
Card deck[CARDS]; // define array of Cards

// initialize array of pointers

const char *face[] = { "Ace", "Deuce", "Three", "Four"™, "Five",
IIS_iXII, IlSevenll’ 'IEight”, llN_i nell’ llTenll,
"Jack", "Queen", "King"};

// initialize array of pointers
const char *suit[] = { "Hearts", "Diamonds"™, "Clubs", "Spades"};

srand(time(NULL)); // randomize

fil1Deck(deck, face, suit); // load the deck with Cards
shuffle(deck); // put Cards in random order
deal(deck); // deal all 52 Cards

UNIVERSITYATALBANY

State University of New York

14

Card Shuffling Example (3)

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

// place strings into Card structures
void fillDeck(Card * const wDeck, const char * wFace[],
const char * wSuit[])
{
// loop through wDeck
for (size_t 1 = 0; 1 < CARDS; ++1) {
wDeck[i].face = wFace[i % FACES];
wDeck[i1].suit = wSuit[i / FACES];

}

// shuffle cards
void shuffle(Card * const wDeck)

{

// loop through wDeck randomly swapping Cards
for (size_t i = 0; i < CARDS; ++1) {
size_t J = rand() % CARDS;
Card temp = wDeck[i];
wDeck[i] = wDeck[j];
wDeck[j] = temp;
}
}

UNIVERDILIL XY A ALDAINYX

State University of New York

10

ard Shuffling Example

66 // deal cards
67 void deal(const Card * const wDeck)

68 {

69 // loop through wDeck

70 for (size_t i = 0; i < CARDS; ++1) {

71 printf("%5s of %-8s%s", wDeck[i].face , wDeck[i].suit ,

72 G+ %4a?2" " "\n");

73 }

74 }

'C3 UNIVERSITYATALBANY 16

A1 State University of New York

Card Shuffling Example (5)

Three
Five
Jack

Queen
King

Seven

Six
Deuce
Ten
Four
Ace
Ace
Ace

of
of
of
of
of
of
of
of
of
of
of
of
of

Hearts
Hearts
Spades
Clubs
Hearts
Diamonds
Hearts
Clubs
Spades
Diamonds
Clubs
Hearts
Spades

Jack
Eight
Four
Three
Eight
Nine
Deuce
Nine
King
Six
Jack
Ten
Nine

of
of
of
of
of
of
of
of
of
of
of
of
of

Clubs
Spades
Hearts
Diamonds
Hearts
Spades
Diamonds
Hearts
Diamonds
Spades
Hearts
Diamonds
Diamonds

Three
Three
Deuce
Eight
Queen
Five
Five
Seven
Ten
Five
Ten
Nine
Seven

Spades
Clubs
Hearts
Diamonds
Hearts
Clubs
Spades
Hearts
Hearts
Diamonds
Clubs
Clubs
Spades

Six
Deuce
Six
King
Seven
Eight
Four
Four
Jack
Ace
Queen
King
Queen

Diamonds
Spades
Clubs
Clubs
Clubs
Clubs
Clubs
Spades
Diamonds
Diamonds
Diamonds
Spades
Spades

UNIVERSITYATALBANY

State University of New York

17

C

>

lasswork Assignment

Write a program to generate data for N students. Use
structure to create numeric ID and points (max 100) as 2
separate members. Randomly generate data for N
students. Display both the ID and the points of the
student who has received highest point.

UNIVERSITYATALBANY
State University of New York

18

Union

> Aunion is a derived data type—like a structure—with
members that share the same storage space.

> For different situations in a program, some variables may
not be relevant, but other variables are—so a union
shares the space instead of wasting storage on variables
that are not being used.

> The members of a union can be of any data type.

> The number of bytes used to store a union must be at
least enough to hold the [argest member.

UNIVERSITYATALBANY 19
State University of New York

Definition

> union number {
int x;
double vy;
}s5
> Inadeclaration, a union may be initialized with a value of the same
type as the first union member.
> union number value = {10};

> union number value = {1.43}; // ERROR

UN IVE RSITYATALBANY

tate University of New York

20

Permitted Operations

> The operations that can be performed on a union are:
= assigning a union to another union of the same type,
= taking the address (&) of a union variable,

= and accessing union members using the structure member operator
and the structure pointer operator.

> Unions may not be compared using operators == and !=
for the same reasons that structures cannot be compared.

UNIVERSITYATALBANY 21

State University of New York

Union Example (1)

I // Fig. 10.5: figl0_05.c
2 // Displaying the value of a union in both member data types
3 #include <stdio.h>
4
5 // number union definition
6 union number {
7 int x;
8 double vy;
9 I
10
Il 1int main(void)
12 {
13 union number value; // define union variable
14
15 value.x = 100; // put an integer into the union
16 printf("%s\n%s\n%s\n %d\n\n%s\n %f\n\n\n",
17 "Put 100 in the integer member",
18 "and print both members.",
19 "int:", value.Xx,
20 "double:", value.y);

'C3 UNIVERSITYATALBANY 22

A1 State University of New York

Union Example (2)

21

22 value.y = 100.0; // put a double into the same union
23 printf("%s\n%s\n%s\n %d\n\n%s\n %f\n",

24 "Put 100.0 in the floating member",

25 "and print both members.",

26 "int:", value.x,

27 "double:", value.y);

28 }

Put 100 in the integer member
and print both members.
int:

100

double:
-92559592117433136000.000000

Put 100.0 in the floating member
and print both members.
int:

0

double:
100.000000

State University of New York

Enumeration

> Keyword enum, is a set of integer enumeration constants
represented by identifiers.

> Values in an enum start with 0, unless specified otherwise, and are
incremented by 1.

> For example, the enumeration

o enum months {
JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,
OCT, NOV, DEC};

creates a new type, enum months, identifiers are set to the
integers 0 to 11, respectively.

> Example:

= enum months {
JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC};

identifiers are set to integers 1 to 12, respectively.
UNIVERSITYATALBANY 24

State University of New York

Enumeration Example

cvwvwoO~NOTUBNDLEWN=

N N == o o o e e e o -
-0 VWO NONUKNDLE WN=-

// Fig. 10.18: figl0_18.c
// Using an enumeration
#include <stdio.h>

// enumeration constants represent months of the year
enum months {
JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC

LiE
int main(void)
{
// initialize array of pointers
const char *monthName[] = { "", "January", "February", "March",
"April", "May", "June", "July", "August", "September", "October",
"November", "December" };
// loop through months
for (enum months month = JAN; month <= DEC; ++month) {
printf("%2d%11s\n", month, monthName[month]);
}
}

UNIVERSITYATALBANY 25

State University of New York

Enumeration Example Output

January
February
March
April
May

June
July
August
September
October
November
December

el
ROWVWONOU D WN R

=
N

UNIVERSITYATALBANY

State University of New York

26

