
1

CSE301 –

Combinatorial Optimization

Articulation Points, Bridges &

Biconnected Components

2

Connectivity/Biconnectivity for Undirected Graph

A node and all the nodes reachable from it compose a

connected component. A graph is called connected if it has

only one connected component.

Since the function visit() of DFS visits every node that is

reachable and has not already been visited, the DFS can easily

be modified to print out the connected components of a graph.

Two connected components

3

In actual uses of graphs, such as networks, we need to

establish not only that every node is connected to every other

node, but also there are at least two independent paths

between any two nodes. A maximum set of nodes for which

there are two different paths is called biconnected.

{H,I,J} and {A,B,C,E,F} are

biconnected.

Connectivity/Biconnectivity

4

Connectivity/Biconnectivity

Another way to define this concept is that there are no single

points of failure, no nodes that when deleted along with any

adjoining arcs, would split the graph into two or more

separate connected components. Such a node is called an

articulation point.

If a graph contains no articulation points, then it is

biconnected. If a graph does contain articulation points, then

it is useful to split the graph into the pieces where each piece

is a maximal biconnected subgraph called a biconnected

component.

5

Three biconnected components

Articulation points

Connectivity/Biconnectivity

6

Finding Articulations

• Problem:

– Given any graph G = (V, E), find all the

articulation points.

– Possible strategy:

• For all vertices v in V:

Remove v and its incident edges

Test connectivity using a DFS.

• Execution time: (n(n+m)).

• Can we do better?

7

Finding Articulation Points

• A DFS tree can be used to discover articulation

points in (n + m) time.

8

A

B

C

D

E

F

G
H

I

Can you characterize D ?

G

A

B

C

D

E

F

H

I

A

B

C

D

EF

G

H

I

9

Depth First Search number

B

D E

A C F
G =(V, E)

B

D

E

A

C

F

Any relation between Discovery time and articulation point ?

1

2

3

4 6

A B C D E F
1 2 3 9 6 4

9

10

w’

B

D

E

A

C

F

1

2

3

4 6

v

Assume that (a,b)  a  b

Tree edge : (a,b) a < b

Back edge : (a,b) a > b

If there is a back edge from x

to a proper ancestor of v,

then v is reachable from x.

9

w

x

11

Finding Articulation Points

• A DFS tree can be used to discover articulation points

in (n + m) time.

– We start with a program that computes a DFS tree labeling

the vertices with their discovery times.

– We also compute a function called low(v) that can be used

to characterize each vertex as an articulation or non-

articulation point.

– The root of the DFS tree will be treated as a special case:

• The root has a d[] value of 1.

12

Finding Articulation Points
• The root of the DFS tree is an articulation point if and only

if it has two or more children.

– Suppose the root has two or more children.

• Recall that back edges never link vertices between two different subtrees.

• So, the subtrees are only linked through the root vertex and its removal will

cause two or more connected components (i.e. the root is an articulation

point).

– Suppose the root is an articulation point.

• This means that its removal would produce two or more connected

components each previously connected to this root vertex.

• So, the root has two or more children.

13

Definition of low(v)

– Definition. The value of low(v) is the discovery time of the vertex
closest to the root and reachable from v by following zero or more
tree edges downward, and then at most one back edge.

– We can efficiently compute Low by performing a postorder traversal
of the depth-first spanning tree.

low[v] = min{

d[v],

lowest d[w] among all back edges (v,w)

lowest low[w] among all tree edges (v,w)

}

– In English: low(v) < d[v] indicates if there is another way
to reach v which is not via its parent

14

Low(v)

• Observe that if there is a back edge from

somewhere below v to above v in the tree, then

low(v) < d[v]

• Otherwise low(v) = d[v] Root

v

w

back edges

15

Finding Articulation Points
• Let v be a non-root vertex of the DFS tree T.

• Then v is an articulation point of G if and only if

there is a child w of v with low(w) >= d[v].

16

Data: color[V], time, prev[V],d[V], f[V], low[V]

DFS(G) // where prog starts

{

for each vertex u  V

{

color[u] = WHITE;

prev[u]=NIL;

low[u]=inf;

f[u]=inf; d[u]=inf;

}

time = 0;

for each vertex u  V

if (color[u] == WHITE)

DFS_Visit(u);

}

Articulation Points: Pseudocode

17

DFS_Visit(v)

{ color[v]=GREY;time=time+1;d[v] = time;

low[v]= d[v];

for each w  Adj[v]{

if(color[w] == WHITE){

prev[w]=u;

DFS_Visit(w);

if low[w] >= d[v]

record that vertex v is an articulation

if (low[w] < low[v]) low[v] := low[w];

}

else if w is not the parent of v then

//--- (v,w) is a BACK edge

` if (d[w] < low[v]) low[v] := d[w];

}

color[v] = BLACK; time = time+1; f[v] = time;

}

Articulation Points: Pseudocode

18

Special Case

– When “v” is a root of the DFS tree, you have to check it
manually.

19

Source

– Mark Allen Weiss – Data Structure and Algorithm
Analysis in C
• Articulation Point

– Exercise:

• Cormen – Exercise 22-2

• What is bridge? How can it be detected?

