
CSE 301

Combinatorial Optimization

Graph & BFS (revisit)

Graph & BFS / Slide 2

Graphs

Extremely useful tool in modeling problems

Consist of:

Vertices

Edges D

E

A

C

F
B

Vertex

Edge

Vertices can be

considered “sites”

or locations.

Edges represent

connections.

Graph & BFS / Slide 3

Application

Air flight system

• Each vertex represents a city

• Each edge represents a direct flight between two cities

• A query on direct flights = a query on whether an edge exists

• A query on how to get to a location = does a path exist from A to B

• We can even associate costs to edges (weighted graphs), then

ask “what is the cheapest path from A to B”

Graph & BFS / Slide 4

Definition
 A graph G=(V, E) consists a set of vertices, V, and a set

of edges, E.

 Each edge is a pair of (v, w), where v, w belongs to V

 If the pair is unordered, the graph is undirected;

otherwise it is directed

{c,f}

{a,c}{a,b}

{b,d} {c,d}

{e,f}

{b,e}

An undirected graph

Graph & BFS / Slide 5

Definition

Complete Graph

 How many edges are there in an N-vertex

complete graph?

Bipartite Graph

 What is its property? How can we detect it?

Path

Tour

Degree of a vertices

 Indegree

 Outdegree

 Indegree+outdegree = Even (why??)

Graph & BFS / Slide 6

Graph Variations

Variations:

A connected graph has a path from every

vertex to every other

 In an undirected graph:
Edge (u,v) = edge (v,u)

No self-loops

 In a directed graph:
Edge (u,v) goes from vertex u to vertex v, notated uv

Graph & BFS / Slide 7

Graph Variations

More variations:

A weighted graph associates weights with

either the edges or the vertices
E.g., a road map: edges might be weighted w/ distance

A multigraph allows multiple edges between

the same vertices
E.g., the call graph in a program (a function can get

called from multiple points in another function)

Graph & BFS / Slide 8

Graphs

We will typically express running times

in terms of |E| and |V| (often dropping

the |’s)

 If |E|  |V|2 the graph is dense

 If |E|  |V| the graph is sparse

If you know you are dealing with dense

or sparse graphs, different data

structures may make sense

Graph & BFS / Slide 9

Graph Representation

 Two popular computer representations of

a graph. Both represent the vertex set

and the edge set, but in different ways.

1. Adjacency Matrix

Use a 2D matrix to represent the graph

1. Adjacency List

Use a 1D array of linked lists

Graph & BFS / Slide 10

Adjacency Matrix

 2D array A[0..n-1, 0..n-1], where n is the number of vertices in
the graph

 Each row and column is indexed by the vertex id
 e,g a=0, b=1, c=2, d=3, e=4

 A[i][j]=1 if there is an edge connecting vertices i and j; otherwise,
A[i][j]=0

 The storage requirement is Θ(n2). It is not efficient if the graph
has few edges. An adjacency matrix is an appropriate
representation if the graph is dense: |E|=Θ(|V|2)

 We can detect in O(1) time whether two vertices are connected.

Graph & BFS / Slide 11

Simple Questions on Adjacency Matrix

Is there a direct link between A and B?

What is the indegree and outdegree for
a vertex A?

How many nodes are directly connected
to vertex A?

Is it an undirected graph or directed
graph?

Suppose ADJ is an NxN matrix. What
will be the result if we create another
matrix ADJ2 where ADJ2=ADJxADJ?

Graph & BFS / Slide 12

Adjacency List

 If the graph is not dense, in other words, sparse, a
better solution is an adjacency list

 The adjacency list is an array A[0..n-1] of lists, where
n is the number of vertices in the graph.

 Each array entry is indexed by the vertex id

 Each list A[i] stores the ids of the vertices adjacent to
vertex i

Graph & BFS / Slide 13

Adjacency Matrix Example

2

4

3

5

1

7

6

9

8

0 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 1 0 1

2 0 1 0 0 1 0 0 0 1 0

3 0 1 0 0 1 1 0 0 0 0

4 0 0 1 1 0 0 0 0 0 0

5 0 0 0 1 0 0 1 0 0 0

6 0 0 0 0 0 1 0 1 0 0

7 0 1 0 0 0 0 1 0 0 0

8 1 0 1 0 0 0 0 0 0 1

9 0 1 0 0 0 0 0 0 1 0

Graph & BFS / Slide 14

Adjacency List Example

2

4

3

5

1

7

6

9

8

0 0

1

2

3

4

5

6

7

8

9

2 3 7 9

8

1 4 8

1 4 5

2 3

3 6

5 7

1 6

0 2 9

1 8

Graph & BFS / Slide 15

 The array takes up Θ(n) space

 Define degree of v, deg(v), to be the number of edges incident to
v. Then, the total space to store the graph is proportional to:

 An edge e={u,v} of the graph contributes a count of 1 to deg(u)
and contributes a count 1 to deg(v)

 Therefore, Σvertex vdeg(v) = 2m, where m is the total number of
edges

 In all, the adjacency list takes up Θ(n+m) space
 If m = O(n2) (i.e. dense graphs), both adjacent matrix and adjacent

lists use Θ(n2) space.

 If m = O(n), adjacent list outperform adjacent matrix

 However, one cannot tell in O(1) time whether two vertices are
connected

Storage of Adjacency List


v

v
vertex

)deg(

Graph & BFS / Slide 16

Adjacency List vs. Matrix

Adjacency List
 More compact than adjacency matrices if graph has few

edges

 Requires more time to find if an edge exists

Adjacency Matrix
 Always require n2 space

This can waste a lot of space if the number of edges are sparse

 Can quickly find if an edge exists

Graph & BFS / Slide 17

Path between Vertices

A path is a sequence of vertices (v0, v1,
v2,… vk) such that:

 For 0 ≤ i < k, {vi, vi+1} is an edge

Note: a path is allowed to go through the same vertex or the
same edge any number of times!

The length of a path is the number of
edges on the path

Graph & BFS / Slide 18

Types of paths

A path is simple if and only if it does

not contain a vertex more than

once.

A path is a cycle if and only if v0= vk
The beginning and end are the same vertex!

A path contains a cycle as its sub-path if

some vertex appears twice or more

Graph & BFS / Slide 19

Path Examples

1. {a,c,f,e}

1. {a,b,d,c,f,e}

1. {a, c, d, b, d, c, f, e}

2. {a,c,d,b,a}

1. {a,c,f,e,b,d,c,a}

Are these paths?

Any cycles?

What is the path’s length?

Graph & BFS / Slide 20

Graph Traversal

 Application example

Given a graph representation and a vertex s

in the graph

 Find paths from s to other vertices

Two common graph traversal algorithms
 Breadth-First Search (BFS)

 Find the shortest paths in an unweighted graph

 Depth-First Search (DFS)

 Topological sort

 Find strongly connected components

Graph & BFS / Slide 21

BFS and Shortest Path Problem

 Given any source vertex s, BFS visits the other

vertices at increasing distances away from s. In doing

so, BFS discovers paths from s to other vertices

 What do we mean by “distance”? The number of

edges on a path from s

2

4

3

5

1

7

6

9

8

0

Consider s=vertex 1

Nodes at distance 1?

2, 3, 7, 91

1

1

1
2

22

2

s

Example

Nodes at distance 2?

8, 6, 5, 4

Nodes at distance 3?

0

Graph & BFS / Slide 22

Graph Searching

Given: a graph G = (V, E), directed or

undirected

Goal: methodically explore every vertex

and every edge

Ultimately: build a tree on the graph

Pick a vertex as the root

Choose certain edges to produce a tree

Note: might also build a forest if graph is

not connected

Graph & BFS / Slide 23

Breadth-First Search

“Explore” a graph, turning it into a tree

One vertex at a time

Expand frontier of explored vertices across

the breadth of the frontier

Builds a tree over the graph

Pick a source vertex to be the root

 Find (“discover”) its children, then their

children, etc.

Graph & BFS / Slide 24

Breadth-First Search

Every vertex of a graph contains a color at

every moment:

 White vertices have not been discovered
All vertices start with white initially

 Grey vertices are discovered but not fully explored
They may be adjacent to white vertices

 Black vertices are discovered and fully explored
They are adjacent only to black and gray vertices

Explore vertices by scanning adjacency list of

grey vertices

Graph & BFS / Slide 25

25

Breadth-First Search: The Code

Data: color[V], prev[V],d[V]

BFS(G) // starts from here

{

for each vertex u  V-

{s}

{

color[u]=WHITE;

prev[u]=NIL;

d[u]=inf;

}

color[s]=GRAY;

d[s]=0; prev[s]=NIL;

Q=empty;

ENQUEUE(Q,s);

While(Q not empty)

{

u = DEQUEUE(Q);

for each v  adj[u]{

if (color[v] ==

WHITE){

color[v] = GREY;

d[v] = d[u] + 1;

prev[v] = u;

Enqueue(Q, v);

}

}

color[u] = BLACK;

}

}

Graph & BFS / Slide 26

Breadth-First Search: Example

















r s t u

v w x y

Vertex r s t u v w x y

color W W W W W W W W

d
       

prev nil nil nil nil nil nil nil nil

Graph & BFS / Slide 27

Breadth-First Search: Example





0











r s t u

v w x y

sQ:

vertex r s t u v w x y

Color W G W W W W W W

d


0
     

prev nil nil nil nil nil nil nil nil

Graph & BFS / Slide 28

Breadth-First Search: Example

1



0

1









r s t u

v w x y

w rsQ:

vertex r s t u v w x y

Color G B W W W G W W

d 1 0
  

1
 

prev s nil nil nil nil s nil nil

Graph & BFS / Slide 29

Breadth-First Search: Example

1



0

1

2

2





r s t u

v w x y

t xw rsQ:

vertex r s t u V w X y

Color G B G W W B G W

d 1 0 2
 

1 2


prev s nil w nil nil s w nil

Graph & BFS / Slide 30

Breadth-First Search: Example

1

2

0

1

2

2





r s t u

v w x y

vt xw rsQ:

vertex r s t u v w x y

Color B B G W G B G W

d 1 0 2


2 1 2


prev s nil w nil r s w nil

Graph & BFS / Slide 31

Breadth-First Search: Example

1

2

0

1

2

2

3



r s t u

v w x y

uvt xw rsQ:

vertex r s t u v w x y

Color B B B G G B G W

d 1 0 2 3 2 1 2


prev s nil w t r s w nil

Graph & BFS / Slide 32

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

yuvt xw rsQ:

vertex r s t u v w x y

Color B B B G G B B G

d 1 0 2 3 2 1 2 3

prev s nil w t r s w x

Graph & BFS / Slide 33

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

yuvt xw rsQ:

vertex r s t u v w x y

Color B B B G B B B G

d 1 0 2 3 2 1 2 3

prev s nil w t r s w x

Graph & BFS / Slide 34

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

yuvt xw rsQ:

vertex r s t u v w x y

Color B B B B B B B G

d 1 0 2 3 2 1 2 3

prev s nil w t r s w x

Graph & BFS / Slide 35

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

yuvt xw rsQ:

vertex r s t u v w x y

Color B B B G B B B B

d 1 0 2 3 2 1 2 3

prev s nil w t r s w x

Graph & BFS / Slide 36

36

BFS: The Code (again)

Data: color[V], prev[V],d[V]

BFS(G) // starts from here

{

for each vertex u  V-

{s}

{

color[u]=WHITE;

prev[u]=NIL;

d[u]=inf;

}

color[s]=GRAY;

d[s]=0; prev[s]=NIL;

Q=empty;

ENQUEUE(Q,s);

While(Q not empty)

{

u = DEQUEUE(Q);

for each v  adj[u]{

if (color[v] ==

WHITE){

color[v] = GREY;

d[v] = d[u] + 1;

prev[v] = u;

Enqueue(Q, v);

}

}

color[u] = BLACK;

}

}

Graph & BFS / Slide 37

37

Breadth-First Search: Print Path

Data: color[V], prev[V],d[V]

Print-Path(G, s, v)

{

if(v==s)

print(s)

else if(prev[v]==NIL)

print(No path);

else{

Print-Path(G,s,prev[v]);

print(v);

}

}

Graph & BFS / Slide 38

Amortized Analysis

Stack with 3 operations:

Push, Pop, Multi-pop

What will be the complexity if “n”

operations are performed?

Graph & BFS / Slide 39

39

BFS: Complexity

Data: color[V], prev[V],d[V]

BFS(G) // starts from here

{

for each vertex u  V-

{s}

{

color[u]=WHITE;

prev[u]=NIL;

d[u]=inf;

}

color[s]=GRAY;

d[s]=0; prev[s]=NIL;

Q=empty;

ENQUEUE(Q,s);

While(Q not empty)

{

u = DEQUEUE(Q);

for each v  adj[u]{

if(color[v] == WHITE){

color[v] = GREY;

d[v] = d[u] + 1;

prev[v] = u;

Enqueue(Q, v);

}

}

color[u] = BLACK;

}

}

O(V)

O(V)

u = every vertex, but only once

(Why?)

What will be the running time?

Total running time: O(V+E)

Graph & BFS / Slide 40

Breadth-First Search: Properties

BFS calculates the shortest-path distance to

the source node

 Shortest-path distance (s,v) = minimum number of

edges from s to v, or  if v not reachable from s

 Proof given in the book (p. 472-5)

BFS builds breadth-first tree, in which paths to

root represent shortest paths in G

 Thus can use BFS to calculate shortest path from

one vertex to another in O(V+E) time

Graph & BFS / Slide 41

Application of BFS

Find the shortest path in an

undirected/directed unweighted graph.

Find the bipartiteness of a graph.

Find cycle in a graph.

Find the connectedness of a graph.

Graph & BFS / Slide 42

Books

Cormen – Chapter 22 – elementary

Graph Algorithms

Exercise you have to solve:

 22.1-5 (Square)

 22.1-6 (Universal Sink)

 22.2-6 (Wrestler)

 22.2-7 (Diameter)

 22.2-8 (Traverse)

