CSE 301 Combinatorial Optimization

Graph & BFS (revisit)

Graphs

Extremely useful tool in modeling problems \boxtimes **Consist of:** ■ Vertices \blacksquare Edges \bigcirc E A C F B **Vertex Edge Vertices** can be considered "sites" or locations. **Edges** represent connections.

Application

Air flight system

- Each vertex represents a city
- Each edge represents a direct flight between two cities
- A query on direct flights = a query on whether an edge exists
- A query on how to get to a location $=$ does a path exist from A to B
- We can even associate costs to edges (weighted graphs), then ask "what is the cheapest path from A to B"

Definition

- $\overline{\boxtimes}$ A graph G=(V, E) consists a set of vertices, V, and a set of edges, E.
- \mathbb{Z} Each edge is a pair of (v, w) , where v, w belongs to V
- \mathbb{Z} If the pair is unordered, the graph is undirected; otherwise it is directed

An undirected graph

Definition

- $\overline{\boxtimes}$ **Complete Graph**
	- **How many edges are there in an N-vertex** complete graph?
- **E**Bipartite Graph
	- What is its property? How can we detect it?
- \boxtimes Path
- \boxtimes Tour
- Degree of a vertices
	- **Indegree**
	- **Outdegree**
	- \blacksquare Indegree+outdegree = Even (why??)

Graph Variations

Variations:

■ A *connected graph* has a path from every vertex to every other

- In an *undirected graph:*
	- E dge (u,v) = edge (v,u)

No self-loops

■ In a *directed* graph:

 ϵ Edge (u,v) goes from vertex u to vertex v, notated u-

Graph Variations

More variations:

■ A *weighted graph* associates weights with either the edges or the vertices ϵ E.g., a road map: edges might be weighted w/ distance ■ A *multigraph* allows multiple edges between the same vertices

 ϵ E.g., the call graph in a program (a function can get called from multiple points in another function)

Graphs

We will typically express running times in terms of |E| and |V| (often dropping the |'s) If $|E| \approx |V|^2$ the graph is *dense* If $|E| \approx |V|$ the graph is *sparse* \boxtimes If you know you are dealing with dense or sparse graphs, different data structures may make sense

Graph Representation

 \boxtimes Two popular computer representations of a graph. Both represent the vertex set and the edge set, but in different ways.

1. Adjacency Matrix

Use a 2D matrix to represent the graph

1. Adjacency List Use a 1D array of linked lists

Graph & BFS / Slide 10 Adjacency Matrix

- 2D array A[0..n-1, 0..n-1], where *n* is the number of vertices in the graph
- \mathbb{E} Each row and column is indexed by the vertex id
	- **e**,g a=0, b=1, c=2, d=3, e=4
- *A[i][j]=1* if there is an edge connecting vertices *i* and *j*; otherwise, *A[i][j]=0*
- \boxtimes The storage requirement is $\Theta(n^2)$. It is not efficient if the graph has few edges. An adjacency matrix is an appropriate representation if the graph is dense: $|E| = \Theta(|V|^2)$
- \mathbb{Z} We can detect in O(1) time whether two vertices are connected.

Simple Questions on Adjacency Matrix

 \boxtimes Is there a direct link between A and B? What is the indegree and outdegree for a vertex A?

- **EXHow many nodes are directly connected** to vertex A?
- \boxtimes Is it an undirected graph or directed graph?
- **<u>⊠Suppose ADJ is an NxN matrix. What</u>** will be the result if we create another matrix ADJ2 where ADJ2=ADJxADJ?

Graph & BFS / Slide 12

Adjacency List

- \boxtimes If the graph is not dense, in other words, sparse, a better solution is an adjacency list
- \boxtimes The adjacency list is an array A[0..n-1] of lists, where n is the number of vertices in the graph.
- \mathbb{E} Each array entry is indexed by the vertex id
- Each list *A[i]* stores the ids of the vertices adjacent to vertex *i*

Adjacency Matrix Example

Graph & BFS / Slide 14

Adjacency List Example

Storage of Adjacency List

- \boxtimes The array takes up $\Theta(n)$ space
- \boxtimes Define degree of *v*, deg(*v*), to be the number of edges incident to *v*. Then, the total space to store the graph is proportional to:

- \boxtimes An edge $e=\{u,v\}$ of the graph contributes a count of 1 to deg(*u*) and contributes a count 1 to deg(*v*)
- \mathbb{E} Therefore, \sum_{vertex} _νdeg(v) = 2m, where *m* is the total number of edges
- In all, the adjacency list takes up Θ(*n+m*) space
	- If $m = O(n^2)$ (i.e. dense graphs), both adjacent matrix and adjacent lists use $\Theta(n^2)$ space.
	- If m = $O(n)$, adjacent list outperform adjacent matrix
- \boxtimes However, one cannot tell in O(1) time whether two vertices are connected

Adjacency List vs. Matrix

Adjacency List

- **More compact than adjacency matrices if graph has few** edges
- Requires more time to find if an edge exists

Adjacency Matrix

Always require n^2 space ϵ This can waste a lot of space if the number of edges are sparse ■ Can quickly find if an edge exists

Path between Vertices

 \boxtimes A path is a sequence of vertices (v_0 , v_1 , $\mathsf{v}_2, \ldots \mathsf{v}_\mathsf{k}$) such that: ■ For $0 \le i \le k$, $\{v_i, v_{i+1}\}$ is an edge

Note: a path is allowed to go through the same vertex or the same edge any number of times!

 \boxtimes The length of a path is the number of edges on the path

Graph & BFS / Slide 18

Types of paths

$\boxtimes A$ path is simple if and only if it does not contain a vertex more than once.

 $\boxtimes A$ path is a cycle if and only if $v_{0}=v_{k}$

 \textcircled{r} The beginning and end are the same vertex!

 $\boxtimes A$ path contains a cycle as its sub-path if some vertex appears twice or more

Path Examples

Are these paths?

Any cycles?

What is the path's length?

1. {a,c,f,e}

- 1. {a,b,d,c,f,e}
- 1. {a, c, d, b, d, c, f, e}
- 2. {a,c,d,b,a}
- 1. {a,c,f,e,b,d,c,a}

Graph Traversal

E Application example

- Given a graph representation and a vertex **s** in the graph
- Find paths from **s** to other vertices
- Two common graph traversal algorithms
	- **Breadth-First Search (BFS)**
		- **Find the shortest paths in an unweighted graph**
	- **Depth-First Search (DFS)**
		- Topological sort
		- Find strongly connected components

BFS and Shortest Path Problem

 Given any source vertex *s*, BFS visits the other vertices at increasing distances away from s. In doing so, BFS discovers paths from s to other vertices \mathbb{Z} What do we mean by "distance"? The number of edges on a path from s

Example

Consider s=vertex 1

Nodes at distance 1? 2, 3, 7, 9

Nodes at distance 2? 8, 6, 5, 4

Nodes at distance 3? 0

Graph Searching

- \boxtimes Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- **EXUltimately: build a tree on the graph**
	- **Pick a vertex as the root**
	- Choose certain edges to produce a tree
	- Note: might also build a *forest* if graph is not connected

Breadth-First Search

- \mathbb{Z}^n Explore" a graph, turning it into a tree
	- One vertex at a time
	- **Expand frontier of explored vertices across** the *breadth* of the frontier
- \boxtimes Builds a tree over the graph
	- Pick a *source vertex* to be the root
	- **Find ("discover") its children, then their** children, etc.

Breadth-First Search

- **Every vertex of a graph contains a color at** every moment:
	- White vertices have not been discovered

 \triangle All vertices start with white initially

- Grey vertices are discovered but not fully explored ϵ They may be adjacent to white vertices
- **Black vertices are discovered and fully explored** \textcircled{r} They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search: The Code

}

```
Data: color[V], prev[V], d[V]
BFS(G) // starts from here
{
   for each vertex u \in V-
  {s}
   {
      color[u]=WHITE;
      prev[u]=NIL;
      d[u]=inf;
   }
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE(Q,s);
```

```
25
While(Q not empty)
{
  u = DEQUEUE(Q);
  for each v \in adj[u]if (color[v] == 
 WHITE){
        color[v] = GREY;
        d[v] = d[u] + 1;prev[v] = u;Enqueue(Q, v);
    }
  }
  color[u] = BLACK;
}
```


BFS: The Code (again)

}

```
Data: color[V], prev[V], d[V]
BFS(G) // starts from here
{
   for each vertex u \in V-
  {s}
   {
      color[u]=WHITE;
      prev[u]=NIL;
      d[u]=inf;
   }
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE(Q,s);
```

```
36
While(Q not empty)
{
  u = DEQUEUE(Q);
  for each v \in adj[u]if (color[v] == 
 WHITE){
        color[v] = GREY;
        d[v] = d[u] + 1;prev[v] = u;Enqueue(Q, v);
    }
  }
  color[u] = BLACK;
}
```
Breadth-First Search: Print Path

Data: color[V], prev[V],d[V]

```
Print-Path(G, s, v)
{
  if(v==s)
      print(s)
   else if(prev[v]==NIL)
      print(No path);
  else{
      Print-Path(G,s,prev[v]);
      print(v);
   }
}
```
Amortized Analysis

 \boxtimes Stack with 3 operations: ■ Push, Pop, Multi-pop **EXWhat will be the complexity if "n"** operations are performed?

BFS: Complexity

```
Data: color[V], prev[V], d[V]
BFS(G) // starts from here
{
   for each vertex u \in V-
  {s}
   {
      color[u]=WHITE;
      prev[u]=NIL;
      d[u]=inf;
   }
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE(Q,s);
                         O(V)
```

```
While(Q not empty)
 {
    u = DEQUEUE(Q);
    for each v \in adj[u]if(color[v] == WHITE){
              \texttt{color}[\![\mathtt{v}]\!] \texttt{ =} \texttt{GREY} ; \hspace{-0.03cm} \textcolor{red}{\mathrm{O}}(\mathrm{V})d[v] = d[u] + 1;prev[v] = u;Enqueue(Q, v);
       }
    }
    color[u] = BLACK;
 }
}
                u = every vertex, but only once
                                       (Why?)
     What will be the running time?
```
39 **Total running time: O(V+E)**

Breadth-First Search: Properties

- BFS calculates the *shortest-path distance* to the source node
	- Shortest-path distance $\delta(s,v)$ = minimum number of edges from s to v, or ∞ if v not reachable from s
	- \blacksquare Proof given in the book (p. 472-5)
- BFS builds *breadth-first tree*, in which paths to root represent shortest paths in G
	- **Thus can use BFS to calculate shortest path from** one vertex to another in O(V+E) time

Application of BFS

 \boxtimes Find the shortest path in an undirected/directed unweighted graph. \boxtimes Find the bipartiteness of a graph. \boxtimes Find cycle in a graph. \boxtimes Find the connectedness of a graph.

Books

 \boxtimes Cormen – Chapter 22 – elementary Graph Algorithms Exercise you have to solve: ■ 22.1-5 (Square) ■ 22.1-6 (Universal Sink) ■ 22.2-6 (Wrestler) ■ 22.2-7 (Diameter) ■ 22.2-8 (Traverse)