CSE-301
Combinatorial Optimization

Asymptotic Notation

Analyzing Algorithms

Predict the amount of resources required:
. memory: how much space is needed?

. computational time: how fast the algorithm runs?
. FACT: running time grows with the size of the input

. Input size (number of elements in the input)

— Size of an array, polynomial degree, # of elements in a matrix, # of bits in

the binary representation of the input, vertices and edges in a graph

Def: Running time = the number of primitive operations (steps) executed
before termination

— Arithmetic operations (+, -, *), data movement, control, decision making

(if, while), comparison

Algorithm Analysis: Example

e Alg.: MIN (a[1], ..., a[n])
m «— a[1];
fori—2ton
if a[i]<m
then m — a[i];
* Running time:
— the number of primitive operations (steps) executed
before termination
I(n) =1 [first step] + (n)[for loop] + (n-1) [if condition] +
(n-1) [the assignment in then] = - 1
* QOrder (rate) of growth:
— The leading term of the formula
— Expresses the asymptotic behavior of the algorithm

Typical Running Time Functions

- 1 (constant running time):
— Instructions are executed once or a few times
* logN (logarithmic)

— A big problem is solved by cutting the original problem in smaller
sizes, by a constant fraction at each step

+ N (linear)
— A small amount of processing is done on each input element
* NlogN

— A problem is solved by dividing it into smaller problems, solving
them independently and combining the solution

Typical Running Time Functions

- NZ? (quadratic)

— Typical for algorithms that process all pairs of data items (double

nested loops)
» N3 (cubic)
— Processing of triples of data (triple nested loops)
* NK (polynomial)
» 2N (exponential)

— Few exponential algorithms are appropriate for practical use

Growth of Functions

n lzn n nlgn n° n? 2n

1 0.00 1 0 1 1 2

10 3.32 10 33 100 1,000 1024
100 0.64 100 bH4 10,000 1,000,000 | 1.2 x 10
1000 9.97 1000 | 9970 |1,000,000 109 | 1.1 x 10491

10

Complexity Graphs

log(n)

60

70

80 90 100

Complexity Graphs

Jn

1log(n)

0 10 20 30 40 o0 60 70 80 90 100

Complexity Graphs

1000

900 - nio

800 -
700 -
600 -
500 -
400 |-

300 -

200 - n2-
100 |- —
0 : ! l ! . n |Og(n)

Complexity Graphs (log scale)

Egn

|20

:2n

1.0

0 10 20 30 40 o0 60 70 80 90 100

Algorithm Complexity

* Worst Case Complexity:

— the function defined by the maximum number of steps
taken on any instance of size n

* Best Case Complexity:

— the function defined by the minimum number of steps
taken on any instance of size n

* Average Case Complexity:

— the function defined by the average number of steps
taken on any instance of size n

Best, Worst, and Average Case Complexity

g'#gggesr Worst Case
P Complexity

Average Case
Complexity

//—\‘ Best Case
Complexity

N
(input size)

Doing the Analysis

It's hard to estimate the running time exactly
— Best case depends on the input
— Average case is difficult to compute
— So we usually focus on worst case analysis
« Easier to compute
« Usually close to the actual running time
Strategy: find a function (an equation) that, for large n, is an

upper bound to the actual function (actual number of steps,

memory usage, etc.) Upper bound

W Actual function
al Lower bound

Motivation for Asymptotic Analysis

* An exact computation of worst-case running time
can be difficult

— Function may have many terms:
* 4n?2-3nlogn+17.5n-43 n%+ 75

* An exact computation of worst-case running time
IS unnecessary

— Remember that we are already approximating running
time by using RAM model

Classifying functions by their
—Asymptotic Growth Rates (1/2)

e asymptotic growth rate, asymptotic order, or
order of functions

— Comparing and classifying functions that ignores
 constant factors and
« small inputs.

* The Sets big oh O(g), big theta ©(g), big omega
Q(9)

Classifying functions by their
—Asymptotic Growth Rates (2/2)

« O(g(n)), Big-Oh of g of n, the Asymptotic Upper
Bound,;

vV ©(g(n)), Theta of g of n, the Asymptotic Tight
Bound; and

v Q(g(n)), Omega of g of n, the Asymptotic Lower
Bound.

Big-O
f(n)=0(g(n)): there exist positive constants ¢ and n, such that

0< f(n)<cg(n)for all n>n,

 What does it mean?
— If f(n) = O(n?), then:
 f(n) can be larger than n? sometimes, but...

* We can choose some constant ¢ and some value n, such
that for every value of n larger than n, : f(n) < cn?

« That is, for values larger than n,, f(n) is never more than a
constant multiplier greater than n?

 Or, in other words, f(n) does not grow more than a constant
factor faster than n2.

17

Visualization of O(g(n))

cg(n)

f(n)

18

Examples

-2nf=0(n): 2n2<cn3=2<cn=c = 1and ny= 2

- nP=0(n®) n2<cnP=c>» 1 =c=1andny=1
- 1000n2+1000n = O(n2):

1000n2+1000n < cn? < cn?+ 1000n = ¢=1001 and ny = 1

- n=0(M2): n<cn°=cnx>1=c=1landny=1

19

Big-O

A7 =Cirt)

10000 +15@06-Ci7)

5T +7/M+2 G:C(nz)

2T +2¢C(nz)

P = CAr?)

More Big-O

+ Prove that: 1Rt

« Letc=21andn,=4
e 21n2>20n2+2n+5 foralln>4
nZ>2n+5 foralln>4

TRUE

21

Tight bounds

* We generally want the tightest bound we can
find.

« While it is true that n? + 7n is in O(n3), it is more
interesting to say that it is in O(n?)

22

Big Omega — Notation

v Q() —Alower bound

f(n)=Q(g(n)): there exist positive constants ¢ and n, such that
0< f(n)>cg(n)for all n>n,

- n%=Q(n)
—Letc=1,ny,=2
— Foralln>2,n2>1 xn

23

Visualization of Q2(g(n))

f(n)

cg(n)

24

®-notation

* Big-O is not a tight upper bound. In other words
n = O(n?)

Vv ©® provides a tight bound

25

Visualization of ®(g(n))

c,g(n)

f(n)

c,9(n)

26

A Few More Examples

* n=0(n?% # O(n?)
e 200n?= 0O(n?) = ®(n?)
* nN%5# O(n?) # O©(N?)

27

Example 2

Prove that: GO @éﬁ

Letc =21 and n, =10

21n3 > 20n3 + 7n + 1000 for all n > 10
n>7n+5 foralln> 10

TRUE, but we also need...
Letc=20and ny =1

20n3<20n3+ 7n + 1000 foralln>1
TRUE

28

Example 3

« Show that 2‘?%']

« Letc=2andny=5
2x2" > 2" +n°
2" > 2" +n’
2"t - 2" >n?
2"(2-1)>n’
2">n* vn>5 v

29

Asymptotic Notations - Examples

Y ® notation
- né/2-n/2 =0(n?
- (6n%+ ign/(n+ 1) = ©(n?Ign)

- nvs. n? nh z ©(n?)

Vv Q notation * O notation
- n3vs. n2 n3 = Q(n?) - 2nfvs.n® 2n2 = O(nd)
- nvs.logn n=Q(logn) - n?2 vs. n? nZ = O(n?)

- nvs. n? n = Q(n?) - n3vs. nlogn n3 = O(nlgn)

30

Asymptotic Notations - Examples

* For each of the following pairs of functions, either f(n) is
O(g(n)), f(n) is Q(g(n)), or f(n) = ©(g(n)). Determine
which relationship is correct.

- f(n) = logn?, g(n)=loghn+5 f(n) = © (g(n))

- f(n) = n: g(n) = log n* f(n) = Q(g(n))
- f(n) = log log n; g(n) = log n f(n) = O(g(n))
- f(n)=n; g(n) = log° n f(n) = Q(g(n))
- f(n)=nlogn+n; g(nh) =logn f(n) = Q(g(n))
- f(n) = 10; g(n) = log 10 f(n) = ©(g(n))
- f(n) = 2" g(n) = 10n? f(n) = Q(g(n))

- f(n)= 2" g(n) = 3" f(n) = O(g(n))

Simplifying Assumptions

« 1.1ff(n) =0O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))
o 2.1ff(n) = O(kg(n)) for any k > 0, then f(n) = O(g(n))
* 3. 111,(n) = O(g.(n)) and f,(n) = O(g,(n)),

then f,(n) + 1,(n) = O(max (g,(n), g,(n)))

* 4.1t 1(n) = O(g,(n)) and f,(n) = O(g,(N)).

then f,(n) * 1,(n) = O(g,(n) * g,(n))

32

 Code:

« Complexity:

Example

33

 Code:

® sum = 0;

for (i=1;

Suln

« Complexity:

Example

1 <=n; 1++)

+= n,;

34

Example

« Code:

° sum = 0;

. for (3=1; j<=n; J++)

. for (1=1; 1i<=3j; 1++)
° sum++;

. for (k=0; k<n; k++)

: Alk] = k;

« Complexity:

* Code:

. suml = 0;
o for (1=1;
. for

« Complexity:

Example

1<=n;

1++)

(3=1; J<=n;

suml++;

J++)

36

* Code:

. sum2 = 0;
o for (1=1;
. for

« Complexity:

Example

1<=n,; 1++)
(J=1; J<=1;

sumZ++;

J++)

37

* Code:

. suml = 0;
. for (k=1;
. for

« Complexity:

Example

k<=n;

k*x=2)

(7=1; jJ<=n; J++)

suml++;

38

* Code:

. sum2 = 0;
. for (k=1;
. for

« Complexity:

Example

k<=n,; k*=2)

(73=1; J<=k;

sumZ++;

J++)

39

Recurrences

Def.: Recurrence = an equation or inequality that
describes a function in terms of its value on smaller
inputs, and one or more base cases

« E.g.: T(n) = T(n-1) + n

« Useful for analyzing recurrent algorithms

* Methods for solving recurrences
- Substitution method
- Recursion tree method
- Master method
- Iteration method

40

