CSE-301 Combinatorial Optimization

Asymptotic Notation

Analyzing Algorithms

- Predict the amount of resources required:
	- memory: how much space is needed?
	- computational time: how fast the algorithm runs?
- FACT: running time grows with the size of the input
- Input size (number of elements in the input)
	- Size of an array, polynomial degree, # of elements in a matrix, # of bits in the binary representation of the input, vertices and edges in a graph

Def: Running time = the number of primitive operations (steps) executed

before termination

– Arithmetic operations (+, -, *), data movement, control, decision making (*if, while*), comparison

Algorithm Analysis: Example

- *• Alg.:* MIN (a[1], …, a[n]) $m \leftarrow a[1]$; for $i \leftarrow 2$ to n if a[i] < m then $m \leftarrow a[i]$;
- **Running time**:
	- the number of primitive operations (steps) executed before termination

 $T(n) =1$ [first step] + (n) [for loop] + $(n-1)$ [if condition] +

 $(n-1)$ [the assignment in then] = $3n-1$

- Order (rate) of growth:
	- The leading term of the formula
	- Expresses the asymptotic behavior of the algorithm

Typical Running Time Functions

- 1 (constant running time):
	- Instructions are executed once or a few times
- logN (logarithmic)
	- A big problem is solved by cutting the original problem in smaller sizes, by a constant fraction at each step
- N (linear)
	- A small amount of processing is done on each input element
- N logN
	- A problem is solved by dividing it into smaller problems, solving them independently and combining the solution

Typical Running Time Functions

- \cdot N² (quadratic)
	- Typical for algorithms that process all pairs of data items (double nested loops)
- \cdot N³ (cubic)
	- Processing of triples of data (triple nested loops)
- N^K (polynomial)
- 2^N (exponential)
	- Few exponential algorithms are appropriate for practical use

Growth of Functions

Complexity Graphs

Complexity Graphs

Complexity Graphs

Complexity Graphs (log scale)

Algorithm Complexity

- Worst Case Complexity:
	- the function defined by the *maximum* number of steps taken on any instance of size *n*
- Best Case Complexity:
	- the function defined by the *minimum* number of steps taken on any instance of size *n*
- Average Case Complexity:
	- the function defined by the *average* number of steps taken on any instance of size *n*

Best, Worst, and Average Case Complexity

Doing the Analysis

- It's hard to estimate the running time exactly
	- Best case depends on the input
	- Average case is difficult to compute
	- So we usually focus on worst case analysis
		- Easier to compute
		- Usually close to the actual running time
- Strategy: find a function (an equation) that, for large n, is an upper bound to the actual function (actual number of steps, memory usage, etc.)

Motivation for Asymptotic Analysis

- An *exact computation* of worst-case running time can be difficult
	- Function may have many terms:
		- $4n^2$ 3n log n + 17.5 n 43 $n^{2/3}$ + 75
- An *exact computation* of worst-case running time is unnecessary
	- Remember that we are already approximating running time by using RAM model

Classifying functions by their Asymptotic Growth Rates (1/2)

- asymptotic growth rate, asymptotic order, or order of functions
	- Comparing and classifying functions that ignores
		- *constant factors* and
		- *small inputs*.
- The Sets big oh $O(g)$, big theta $\Theta(g)$, big omega $\Omega(g)$

Classifying functions by their Asymptotic Growth Rates (2/2)

- $O(g(n))$, Big-Oh of g of n, the Asymptotic Upper Bound;
- $\forall \Theta(g(n))$, Theta of g of n, the Asymptotic Tight Bound; and
- \forall Ω (g(n)), Omega of g of n, the Asymptotic Lower Bound.

Big-O

 $f(n) = O(g(n))$: there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

- What does it mean?
	- $-$ If $f(n) = O(n^2)$, then:
		- *f*(*n*) can be larger than *n* ² sometimes, **but…**
		- We can choose some constant c and some value n_0 such that for **every** value of *n* larger than n_0 : $f(n) < cn^2$
		- That is, for values larger than n_o , $f(n)$ is never more than a constant multiplier greater than *n* 2
		- Or, in other words, *f*(*n*) does not grow more than a constant factor faster than n^2 .

Visualization of *O*(*g*(*n*))

- 2n² = O(n³): 2n² \leq cn³ \Rightarrow 2 \leq cn \Rightarrow c = 1 and n₀= 2
- n^2 = O(n²): n^2 \leq cn² \Rightarrow c \geq 1 \Rightarrow c = 1 and n₀= 1
- $1000n^2+1000n = O(n^2)$:

 $1000n^2+1000n \le cn^2 \le cn^2+1000n \Rightarrow c=1001$ and $n_0 = 1$

- n = O(n²): $n \le cn^2 \Rightarrow cn \ge 1 \Rightarrow c = 1$ and n_0 = 1

Big-O

 $(r²)$ $(r²)$ $(r²)$ $(r²)$ $(r²)$ $n^{21} \neq$ **O** n^2 $2n^3+2 \neq C(n^2)$ $5\hat{i} + 7n + 20 = 0\hat{i}$ $1,00,0000 + 15,000 + 0.6$ $2n^2 = O(n^2)$

More Big-O

- \cdot Prove that: 26202056 ²2*n*5*On* $\boldsymbol{\mathcal{Q}}$
- Let $c = 21$ and $n_0 = 4$
- $21n^2 > 20n^2 + 2n + 5$ for all $n > 4$ *n* ² > 2*n* + 5 for all *n* > 4 **TRUE**

Tight bounds

- We generally want the tightest bound we can find.
- While it is true that n^2 + 7*n* is in $O(n^3)$, it is more interesting to say that it is in $O(n^2)$

Big Omega – Notation

$\forall \Omega()$ – A **lower** bound

 $f(n) = \Omega(g(n))$: there exist positive constants c and n_0 such that $0 \le f(n) \ge cg(n)$ for all $n \ge n_0$

$$
- n^2 = \Omega(n)
$$

- Let
$$
c = 1
$$
, $n_0 = 2$

$$
- \text{ For all } n \geq 2, n^2 > 1 \times n
$$

Visualization of $\Omega(g(n))$

-notation

- Big-*O* is not a tight upper bound. In other words $n = O(n^2)$
- $\forall \Theta$ provides a tight bound

• In other words,

Visualization of $\Theta(g(n))$

A Few More Examples

- $n = O(n^2) \neq \Theta(n^2)$
- $200n^2 = O(n^2) = \Theta(n^2)$
- $n^{2.5} \neq O(n^2) \neq \Theta(n^2)$

- Prove that: 207^t OCE \bigoplus 7*n*1 \bigoplus 63 3
- Let $c = 21$ and $n_0 = 10$
- $21n^3 > 20n^3 + 7n + 1000$ for all $n > 10$ *n* ³ > 7*n* + 5 for all *n* > 10 TRUE, but we also need…
- Let $c = 20$ and $n_0 = 1$
- $20n^3 < 20n^3 + 7n + 1000$ for all $n \ge 1$ TRUE

- Show that $2^{\iota}+i^2=Q2^{\iota}$ $2 + i\hat{i} = \mathbf{0}$ $\mathbf{2}^i$
- Let $c = 2$ and $n_0 = 5$
	- $2^{n+1} 2^n > n^2$
 $2^n (2 1) > n^2$ $2^n > n^2 \quad \forall n \geq 5 \quad \checkmark$ $2^{n+1} > 2^n + n^2$ $2 \times 2^n > 2^n + n^2$ $n(2-1) > n^2$ $n^{+1} - 2^n > n^2$ $n^{+1} > 2^n + n^2$ \times 2ⁿ > 2ⁿ + n² $n+1$ – 2ⁿ > n² $n+1$ > 2ⁿ + n²

Asymptotic Notations - Examples

$\forall \Theta$ notation

- $n²/2 n/2 = \Theta(n²)$
- $-$ (6n³ + 1)lgn/(n + 1) = $\Theta(n^2 \mid gn)$
- n vs. n² n ≠ $\Theta(n^2)$
- $\forall \Omega$ notation
- O notation
- n^3 vs. n^2 $n^3 = \Omega(n^2)$
- n vs. logn
- n vs. n^2 $n \neq \Omega(n^2)$
- $-2n^2$ vs. n^3 $2n^2 = O(n^3)$
- $n = \Omega(\text{log}n)$ n^2 vs. n^2 $n^2 = O(n^2)$
	- n 3 vs. nlogn $n^3 \neq O(nlgn)$

Asymptotic Notations - Examples

- For each of the following pairs of functions, either $f(n)$ is $O(g(n))$, f(n) is $\Omega(g(n))$, or f(n) = $\Theta(g(n))$. Determine which relationship is correct.
	- $f(n) = log n^2$; $q(n) = log n + 5$

-
$$
f(n) = n
$$
; $g(n) = \log n^2$

 $- f(n) = log log n$; $q(n) = log n$

-
$$
f(n) = n
$$
; $g(n) = \log^2 n$

- f(n) = n log n + n; g(n) = log n
- $f(n) = 10$; $q(n) = log 10$
- $f(n) = 2^n$; g(n) = 10n²
- $f(n) = 2^n$; g(n) = 3ⁿ
- $f(n) = \Theta (q(n))$
- $f(n) = \Omega(q(n))$
- $f(n) = O(q(n))$
- $f(n) = \Omega(q(n))$
- $f(n) = \Omega(q(n))$
	- $f(n) = \Theta(q(n))$
	- $f(n) = \Omega(q(n))$
	- $f(n) = O(q(n))$

Simplifying Assumptions

- 1. If $f(n) = O(g(n))$ and $g(n) = O(h(n))$, then $f(n) = O(h(n))$
- 2. If $f(n) = O(kg(n))$ for any $k > 0$, then $f(n) = O(g(n))$
- 3. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$,
- then $f_1(n) + f_2(n) = O(max (g_1(n), g_2(n)))$
- 4. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$,
- then $f_1(n) * f_2(n) = O(g_1(n) * g_2(n))$

- Code:
- $a = b;$
- Complexity:

- Code:
- $sum = 0;$
- for $(i=1; i \le n; i++)$
- $sum + = n;$
- Complexity:

- Code:
- $sum = 0;$
- for $(j=1; j<=n; j++)$
- for $(i=1; i<=j; i++)$
- $sum++;$
- for $(k=0; k\le n; k++)$
- $A[k] = k;$
- Complexity:

- Code:
- sum $1 = 0;$
- for $(i=1; i<=n; i++)$
- for $(j=1; j<=n; j++)$

```
• sum1++;
```
- Code:
- $sum2 = 0;$
- for $(i=1; i<=n; i++)$
- for $(j=1; j<=i; j++)$

```
\sim sum2++;
```
- Code:
- sum $1 = 0;$
- for $(k=1; k<=n; k*=2)$
- for $(j=1; j<=n; j++)$

```
• sum1++;
```
- Code:
- $sum2 = 0;$
- for $(k=1; k<=n; k*=2)$
- for $(j=1; j<=k; j++)$

```
\sim sum2++;
```
Recurrences

Def.: Recurrence = an equation or inequality that describes a function in terms of its value on smaller inputs, and one or more base cases

• E.g.:
$$
T(n) = T(n-1) + n
$$

- Useful for analyzing recurrent algorithms
- Methods for solving recurrences
	- Substitution method
	- Recursion tree method
	- Master method
	- Iteration method