CSE-301 Combinatorial Optimization

Asymptotic Notation

Analyzing Algorithms

- Predict the amount of resources required:
 - memory: how much space is needed?
 - **computational time**: how fast the algorithm runs?
- FACT: running time grows with the size of the input
- Input size (number of elements in the input)
 - Size of an array, polynomial degree, # of elements in a matrix, # of bits in the binary representation of the input, vertices and edges in a graph

Def: Running time = the number of primitive operations (steps) executed

before termination

Arithmetic operations (+, -, *), data movement, control, decision making (*if, while*), comparison

Algorithm Analysis: Example

- Alg.: MIN (a[1], ..., a[n]) m ← a[1]; for i ← 2 to n if a[i] < m then m ← a[i];
- Running time:
 - the number of primitive operations (steps) executed before termination

T(n) = 1 [first step] + (n) [for loop] + (n-1) [if condition] +

(n-1) [the assignment in then] = 3n-1

- Order (rate) of growth:
 - The leading term of the formula
 - Expresses the asymptotic behavior of the algorithm

Typical Running Time Functions

- 1 (constant running time):
 - Instructions are executed once or a few times
- logN (logarithmic)
 - A big problem is solved by cutting the original problem in smaller sizes, by a constant fraction at each step
- N (linear)
 - A small amount of processing is done on each input element
- N logN
 - A problem is solved by dividing it into smaller problems, solving them independently and combining the solution

Typical Running Time Functions

- N² (quadratic)
 - Typical for algorithms that process all pairs of data items (double nested loops)
- N³ (cubic)
 - Processing of triples of data (triple nested loops)
- N^K (polynomial)
- 2^N (exponential)
 - Few exponential algorithms are appropriate for practical use

Growth of Functions

n	1	lgn	n	nlgn	n²	n ³	2 ⁿ
1	1	0.00	1	0	1	1	2
10	1	3.32	10	33	100	1,000	1024
100	1	6.64	100	664	10,000	1,000,000	1.2 x 10 ³⁰
1000	1	9.97	1000	9970	1,000,000	10 ⁹	$1.1 \ge 10^{301}$

Complexity Graphs

Complexity Graphs

Complexity Graphs

Complexity Graphs (log scale)

Algorithm Complexity

- Worst Case Complexity:
 - the function defined by the maximum number of steps taken on any instance of size n
- Best Case Complexity:
 - the function defined by the *minimum* number of steps taken on any instance of size n
- Average Case Complexity:
 - the function defined by the *average* number of steps taken on any instance of size *n*

Best, Worst, and Average Case Complexity

Doing the Analysis

- It's hard to estimate the running time exactly
 - Best case depends on the input
 - Average case is difficult to compute
 - So we usually focus on worst case analysis
 - Easier to compute
 - Usually close to the actual running time
- Strategy: find a function (an equation) that, for large n, is an upper bound to the actual function (actual number of steps, memory usage, etc.)

Motivation for Asymptotic Analysis

- An *exact computation* of worst-case running time can be difficult
 - Function may have many terms:
 - 4n² 3n log n + 17.5 n 43 n^{2/3} + 75
- An *exact computation* of worst-case running time is unnecessary
 - Remember that we are already approximating running time by using RAM model

Classifying functions by their Asymptotic Growth Rates (1/2)

- asymptotic growth rate, asymptotic order, or order of functions
 - Comparing and classifying functions that ignores
 - constant factors and
 - small inputs.
- The Sets big oh O(g), big theta Θ(g), big omega
 Ω(g)

Classifying functions by their Asymptotic Growth Rates (2/2)

- O(g(n)), Big-Oh of g of n, the Asymptotic Upper Bound;
- ∀ Θ(g(n)), Theta of g of n, the Asymptotic Tight Bound; and
- $\forall \ \Omega(g(n))$, Omega of g of n, the Asymptotic Lower Bound.

Big-O

f(n) = O(g(n)): there exist positive constants *c* and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

- What does it mean?
 - If $f(n) = O(n^2)$, then:
 - *f*(*n*) can be larger than *n*² sometimes, **but**...
 - We can choose some constant *c* and some value n_0 such that for **every** value of *n* larger than $n_0 : f(n) < cn^2$
 - That is, for values larger than n_0 , f(n) is never more than a constant multiplier greater than n^2
 - Or, in other words, f(n) does not grow more than a constant factor faster than n^2 .

Visualization of O(g(n))

- $2n^2 = O(n^3)$: $2n^2 \le cn^3 \Rightarrow 2 \le cn \Rightarrow c = 1$ and $n_0 = 2$
- $n^2 = O(n^2)$: $n^2 \leq cn^2 \Rightarrow c \geq 1 \Rightarrow c = 1$ and $n_0 = 1$
- $1000n^2 + 1000n = O(n^2)$:

1000n²+1000n \leq cn² \leq cn²+ 1000n \Rightarrow c=1001 and n₀ = 1

- $n = O(n^2)$: $n \le cn^2 \Rightarrow cn \ge 1 \Rightarrow c = 1$ and $n_0 = 1$

Big-O

 $2n^2 = O(n^2)$ $1,00,000^{2}+15,000=0n^{2}$ $5n^2 + 7n + 20 = O(n^2)$ $2n^3 + 2 \neq O(n^2)$ $n^{21} \neq O(n^2)$

More Big-O

- Prove that: 26215-67
- Let c = 21 and $n_0 = 4$
- $21n^2 > 20n^2 + 2n + 5$ for all n > 4 $n^2 > 2n + 5$ for all n > 4TRUE

Tight bounds

- We generally want the tightest bound we can find.
- While it is true that $n^2 + 7n$ is in O(n^3), it is more interesting to say that it is in O(n^2)

Big Omega – Notation

$\forall \Omega() - A$ lower bound

 $f(n) = \Omega(g(n))$: there exist positive constants *c* and n_0 such that $0 \le f(n) \ge cg(n)$ for all $n \ge n_0$

$$-n^2 = \Omega(n)$$

- Let
$$c = 1$$
, $n_0 = 2$

- For all
$$n \ge 2$$
, $n^2 > 1 \times n$

Visualization of $\Omega(g(n))$

Θ -notation

- Big-O is not a tight upper bound. In other words $n = O(n^2)$
- $\forall \Theta \text{ provides a tight bound}$

In other words,

Visualization of $\Theta(g(n))$

A Few More Examples

- $n = O(n^2) \neq \Theta(n^2)$
- $200n^2 = O(n^2) = \Theta(n^2)$
- $n^{2.5} \neq O(n^2) \neq \Theta(n^2)$

- Prove that: 26771 OE
- Let c = 21 and $n_0 = 10$
- 21n³ > 20n³ + 7n + 1000 for all n > 10
 n³ > 7n + 5 for all n > 10
 TRUE, but we also need...
- Let c = 20 and $n_0 = 1$
- $20n^3 < 20n^3 + 7n + 1000$ for all $n \ge 1$ TRUE

- Show that $2^{i} + n^{2} = (2^{i})$
- Let c = 2 and $n_0 = 5$
 - $2 \times 2^{n} > 2^{n} + n^{2}$ $2^{n+1} > 2^{n} + n^{2}$ $2^{n+1} 2^{n} > n^{2}$ $2^{n} (2-1) > n^{2}$ $2^{n} > n^{2} \quad \forall n \ge 5 \quad \checkmark$

Asymptotic Notations - Examples

$\forall \Theta$ notation

- $n^2/2 n/2 = \Theta(n^2)$
- $(6n^3 + 1)$ lgn/(n + 1) = $\Theta(n^2$ lgn)
- $n vs. n^2$ $n \neq \Theta(n^2)$
- $\forall \ \Omega \ \text{notation}$

- O notation
- $n^3 vs. n^2$ $n^3 = \Omega(n^2)$
- n vs. logn $n = \Omega(logn)$
- $n vs. n^2$ $n \neq \Omega(n^2)$

- $2n^2 vs. n^3$ $2n^2 = O(n^3)$
- $n^2 vs. n^2$ $n^2 = O(n^2)$
 - n^3 vs. nlogn $n^3 \neq O(nlgn)$

Asymptotic Notations - Examples

- For each of the following pairs of functions, either f(n) is O(g(n)), f(n) is Ω(g(n)), or f(n) = Θ(g(n)). Determine which relationship is correct.
 - $f(n) = \log n^2$; $g(n) = \log n + 5$
 - $f(n) = n; g(n) = \log n^2$
 - f(n) = log log n; g(n) = log n
 - f(n) = n; g(n) = log² n
 - f(n) = n log n + n; g(n) = log n
 - f(n) = 10; g(n) = log 10
 - $f(n) = 2^{n}; g(n) = 10n^{2}$
 - $f(n) = 2^n; g(n) = 3^n$

- $f(n) = \Theta(g(n))$
- $f(n) = \Omega(g(n))$
- f(n) = O(g(n))
- $f(n) = \Omega(g(n))$
- $f(n) = \Omega(g(n))$
 - $f(n) = \Theta(g(n))$
 - $f(n) = \Omega(g(n))$
 - f(n) = O(g(n))

Simplifying Assumptions

- 1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))
- 2. If f(n) = O(kg(n)) for any k > 0, then f(n) = O(g(n))
- 3. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$,
- then $f_1(n) + f_2(n) = O(\max (g_1(n), g_2(n)))$
- 4. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$,
 - then $f_1(n) * f_2(n) = O(g_1(n) * g_2(n))$

- Code:
- a = b;
- Complexity:

- Code:
- sum = 0;
- for (i=1; i <=n; i++)
- sum += n;
- Complexity:

• Code:

- sum = 0;
- for (j=1; j<=n; j++)
- for (i=1; i<=j; i++)
 - sum++;
- for (k=0; k<n; k++)
- A[k] = k;
- Complexity:

- Code:
- sum1 = 0;
- for (i=1; i<=n; i++)
- for (j=1; j<=n; j++)

```
• sum1++;
```

- Code:
- sum2 = 0;
- for (i=1; i<=n; i++)
- for (j=1; j<=i; j++)

```
• sum2++;
```

- Code:
- sum1 = 0;
- for (k=1; k<=n; k*=2)
- for (j=1; j<=n; j++)

```
• sum1++;
```

- Code:
- sum2 = 0;
- for (k=1; k<=n; k*=2)
- for (j=1; j<=k; j++)

```
• sum2++;
```

Recurrences

Def.: Recurrence = an equation or inequality that describes a function in terms of its value on smaller inputs, and one or more base cases

- Useful for analyzing recurrent algorithms
- Methods for solving recurrences
 - Substitution method
 - Recursion tree method
 - Master method
 - Iteration method