
CSE-301

Combinatorial Optimization

Asymptotic Notation

2

Analyzing Algorithms

• Predict the amount of resources required:

• memory: how much space is needed?

• computational time: how fast the algorithm runs?

• FACT: running time grows with the size of the input

• Input size (number of elements in the input)

– Size of an array, polynomial degree, # of elements in a matrix, # of bits in

the binary representation of the input, vertices and edges in a graph

Def: Running time = the number of primitive operations (steps) executed

before termination

– Arithmetic operations (+, -, *), data movement, control, decision making

(if, while), comparison

3

Algorithm Analysis: Example

• Alg.: MIN (a[1], …, a[n])
m ← a[1];

for i ← 2 to n

if a[i] < m

then m ← a[i];

• Running time:

– the number of primitive operations (steps) executed

before termination

T(n) =1 [first step] + (n) [for loop] + (n-1) [if condition] +

(n-1) [the assignment in then] = 3n - 1

• Order (rate) of growth:

– The leading term of the formula

– Expresses the asymptotic behavior of the algorithm

4

Typical Running Time Functions

• 1 (constant running time):

– Instructions are executed once or a few times

• logN (logarithmic)

– A big problem is solved by cutting the original problem in smaller

sizes, by a constant fraction at each step

• N (linear)

– A small amount of processing is done on each input element

• N logN

– A problem is solved by dividing it into smaller problems, solving

them independently and combining the solution

5

Typical Running Time Functions

• N2 (quadratic)

– Typical for algorithms that process all pairs of data items (double

nested loops)

• N3 (cubic)

– Processing of triples of data (triple nested loops)

• NK (polynomial)

• 2N (exponential)

– Few exponential algorithms are appropriate for practical use

6

Growth of Functions

Complexity Graphs

log(n)

n

Complexity Graphs

log(n)

n

n

n log(n)

Complexity Graphs

n10

n log(n)

n3

n2

Complexity Graphs (log scale)

n10

n20
nn

1.1n

2n

3n

Algorithm Complexity

• Worst Case Complexity:

– the function defined by the maximum number of steps

taken on any instance of size n

• Best Case Complexity:

– the function defined by the minimum number of steps

taken on any instance of size n

• Average Case Complexity:

– the function defined by the average number of steps

taken on any instance of size n

Best, Worst, and Average Case Complexity

Worst Case
Complexity

Average Case
Complexity

Best Case
Complexity

Number
of steps

N
(input size)

Doing the Analysis

• It’s hard to estimate the running time exactly

– Best case depends on the input

– Average case is difficult to compute

– So we usually focus on worst case analysis

• Easier to compute

• Usually close to the actual running time

• Strategy: find a function (an equation) that, for large n, is an

upper bound to the actual function (actual number of steps,

memory usage, etc.)
Upper bound

Lower bound

Actual function

Motivation for Asymptotic Analysis

• An exact computation of worst-case running time

can be difficult

– Function may have many terms:

• 4n2 - 3n log n + 17.5 n - 43 n⅔ + 75

• An exact computation of worst-case running time

is unnecessary

– Remember that we are already approximating running

time by using RAM model

Classifying functions by their

Asymptotic Growth Rates (1/2)
• asymptotic growth rate, asymptotic order, or

order of functions

– Comparing and classifying functions that ignores

• constant factors and

• small inputs.

• The Sets big oh O(g), big theta (g), big omega

(g)

Classifying functions by their

Asymptotic Growth Rates (2/2)
• O(g(n)), Big-Oh of g of n, the Asymptotic Upper

Bound;

 (g(n)), Theta of g of n, the Asymptotic Tight

Bound; and

 (g(n)), Omega of g of n, the Asymptotic Lower

Bound.

17

Big-O

• What does it mean?

– If f(n) = O(n2), then:

• f(n) can be larger than n2 sometimes, but…

• We can choose some constant c and some value n0 such

that for every value of n larger than n0 : f(n) < cn2

• That is, for values larger than n0, f(n) is never more than a

constant multiplier greater than n2

• Or, in other words, f(n) does not grow more than a constant

factor faster than n2.

    

    0

0

 allfor 0

such that and constants positiveexist there:

nnncgnf

ncngO=nf



18

Visualization of O(g(n))

n0

cg(n)

f(n)

19

Examples

– 2n2 = O(n3):

– n2 = O(n2):

– 1000n2+1000n = O(n2):

– n = O(n2):

2n2 ≤ cn3  2 ≤ cn  c = 1 and n0= 2

n2 ≤ cn2  c ≥ 1  c = 1 and n0= 1

1000n2+1000n ≤ cn2 ≤ cn2+ 1000n  c=1001 and n0 = 1

n ≤ cn2  cn ≥ 1  c = 1 and n0= 1

20

Big-O

 
 

 
 

 21.2

23

22

22

22

22

2075

000,150000,000,1

2

nOn

nOn

nOnn

nOn

nOn











21

More Big-O

• Prove that:

• Let c = 21 and n0 = 4

• 21n2 > 20n2 + 2n + 5 for all n > 4

n2 > 2n + 5 for all n > 4

TRUE

 22 5220 nOnn 

22

Tight bounds

• We generally want the tightest bound we can

find.

• While it is true that n2 + 7n is in O(n3), it is more

interesting to say that it is in O(n2)

23

Big Omega – Notation

 () – A lower bound

– n2 = (n)

– Let c = 1, n0 = 2

– For all n  2, n2 > 1  n

    

    0

0

 allfor 0

such that and constants positiveexist there:

nnncgnf

ncngΩ=nf



24

Visualization of (g(n))

n0

cg(n)

f(n)

25

-notation

• Big-O is not a tight upper bound. In other words

n = O(n2)

  provides a tight bound

• In other words,



 021

021

 allfor 0

such that and , , constants positiveexist there :

nnngcnfngc

nccngnf





   ngnfngOnfngnf  AND

26

Visualization of (g(n))

n0

c2g(n)

f(n)

c1g(n)

27

A Few More Examples

• n = O(n2) ≠ (n2)

• 200n2 = O(n2) = (n2)

• n2.5 ≠ O(n2) ≠ (n2)

28

Example 2

• Prove that:

• Let c = 21 and n0 = 10

• 21n3 > 20n3 + 7n + 1000 for all n > 10

n3 > 7n + 5 for all n > 10

TRUE, but we also need…

• Let c = 20 and n0 = 1

• 20n3 < 20n3 + 7n + 1000 for all n  1

TRUE

33 1000720 nnn 

29

Example 3

• Show that

• Let c = 2 and n0 = 5

 nn n 2O2 2

 

52

122

22

22

222

2

2

21

21

2















nn

n

n

n

n

n

n

nn

nn

nn



30

Asymptotic Notations - Examples

  notation

– n2/2 – n/2

– (6n3 + 1)lgn/(n + 1)

– n vs. n2

  notation

– n3 vs. n2

– n vs. logn

– n vs. n2

= (n2)

n ≠ (n2)

= (n2lgn)

• O notation

– 2n2 vs. n3

– n2 vs. n2

– n3 vs. nlogn

n3 = (n2)

n = (logn)

n  (n2)

2n2 = O(n3)

n2 = O(n2)

n3  O(nlgn)

31

Asymptotic Notations - Examples

• For each of the following pairs of functions, either f(n) is

O(g(n)), f(n) is Ω(g(n)), or f(n) = Θ(g(n)). Determine

which relationship is correct.

– f(n) = log n2; g(n) = log n + 5

– f(n) = n; g(n) = log n2

– f(n) = log log n; g(n) = log n

– f(n) = n; g(n) = log2 n

– f(n) = n log n + n; g(n) = log n

– f(n) = 10; g(n) = log 10

– f(n) = 2n; g(n) = 10n2

– f(n) = 2n; g(n) = 3n

f(n) =  (g(n))

f(n) = (g(n))

f(n) = O(g(n))

f(n) = (g(n))

f(n) = (g(n))

f(n) = (g(n))

f(n) = (g(n))

f(n) = O(g(n))

32

Simplifying Assumptions

• 1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

• 2. If f(n) = O(kg(n)) for any k > 0, then f(n) = O(g(n))

• 3. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),

• then f1(n) + f2(n) = O(max (g1(n), g2(n)))

• 4. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)),

• then f1(n) * f2(n) = O(g1(n) * g2(n))

33

Example

• Code:

• a = b;

• Complexity:

34

Example

• Code:

• sum = 0;

• for (i=1; i <=n; i++)

• sum += n;

• Complexity:

35

Example

• Code:

• sum = 0;

• for (j=1; j<=n; j++)

• for (i=1; i<=j; i++)

• sum++;

• for (k=0; k<n; k++)

• A[k] = k;

• Complexity:

36

Example

• Code:

• sum1 = 0;

• for (i=1; i<=n; i++)

• for (j=1; j<=n; j++)

• sum1++;

• Complexity:

37

Example

• Code:

• sum2 = 0;

• for (i=1; i<=n; i++)

• for (j=1; j<=i; j++)

• sum2++;

• Complexity:

38

Example

• Code:

• sum1 = 0;

• for (k=1; k<=n; k*=2)

• for (j=1; j<=n; j++)

• sum1++;

• Complexity:

39

Example

• Code:

• sum2 = 0;

• for (k=1; k<=n; k*=2)

• for (j=1; j<=k; j++)

• sum2++;

• Complexity:

40

Recurrences

Def.: Recurrence = an equation or inequality that

describes a function in terms of its value on smaller

inputs, and one or more base cases

• E.g.: T(n) = T(n-1) + n

• Useful for analyzing recurrent algorithms

• Methods for solving recurrences

– Substitution method

– Recursion tree method

– Master method

– Iteration method

