CSE 201

DFS

Last Class's Topic

- Graph Representation
 - Adjacency Matrix
 - Adjacency List
- BFS Breadth First Search

Breadth-First Search: The Code

```
Data: color[V], prev[V],d[V]
BFS(G) // starts from here
{
   for each vertex u \in V - \{s\}
   {
      color[u]=WHITE;
       prev[u]=NIL;
       d[u]=inf;
   color[s]=GRAY;
  d[s]=0; prev[s]=NIL;
  Q=empty;
  ENQUEUE (Q, s);
```

```
While (Q not empty)
{
  u = DEQUEUE(Q);
  for each v \in adj[u]
    if (color[v] == WHITE) {
        color[v] = GREY;
        d[v] = d[u] + 1;
        prev[v] = u;
        Enqueue (Q, v);
  color[u] = BLACK;
}
```

Breadth-First Search: Print Path

```
Data: color[V], prev[V],d[V]
```

```
Print-Path(G, s, v)
{
  if(v==s)
       print(s)
   else if(prev[v]==NIL)
       print(No path);
  else{
       Print-Path(G,s,prev[v]);
       print(v);
   }
}
```

BFS – Questions

- Find the shortest path between "A" and "B" (with path)? When will it fail?
- Find the most distant node from start node "A"
- How can we detect that there exists no path between A and B using BFS?
- Print all of those nodes that are at distance 2 from source vertex "S".
- How can we modify BFS algorithm to check the bipartiteness of a graph?
- Is it possible to answer that there exists more than one path from "S" to "T" with minimum path cost?

Depth-First Search

• Input:

• G = (V, E) (No source vertex given!)

• Goal:

- Explore the edges of G to "discover" every vertex in V starting at the most current visited node
- Search may be repeated from multiple sources

• Output:

- 2 **timestamps** on each vertex:
 - **d[v]** = discovery time
 - **f**[**v**] = finishing time (done with examining **v**'s adjacency list)
- Depth-first forest

Depth-First Search

2

4

3

- Search "deeper" in the graph whenever possible
- Edges are explored out of the most recently discovered vertex v that still has unexplored edges 5
- After all edges of v have been explored, the search "backtracks" from the parent of v
- The process continues until all vertices reachable from the original source have been discovered
- If undiscovered vertices remain, choose one of them as a new source and repeat the search from that vertex
- DFS creates a "depth-first forest"

DFS Additional Data Structures

- Global variable: time-stamp
 - Incremented when nodes are discovered or finished
- **color[u]** similar to BFS
 - White before discovery, gray while processing and black when finished processing
- prev[u] predecessor of u
- d[u], f[u] discovery and finish times

 $1 \leq d[u] < f[u] \leq 2 \mid V \mid$

•	WHITE	GRAY	E	BLACK	
0	d	[u]	f[u]	2	V

{

```
Data: color[V], time,
      prev[V],d[V], f[V]
DFS(G) // where prog starts
{
                       Initialize
   for each vertex u \in V
   {
      color[u] = WHITE;
       prev[u]=NIL;
       f[u]=inf; d[u]=inf;
   }
   time = 0;
   for each vertex u \in V
     if (color[u] == WHITE)
         DFS Visit(u);
}
```

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
   {
      if(color[v] == WHITE) {
         prev[v]=u;
         DFS Visit(v);}
   }
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

Ł

```
Data: color[V], time,
      prev[V],d[V], f[V]
DFS(G) // where prog starts
{
   for each vertex u \in V
   {
      color[u] = WHITE;
       prev[u]=NIL;
       f[u]=inf; d[u]=inf;
   }
   time = 0;
   for each vertex u \in V
     if (color[u] == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
   ł
      if(color[v] == WHITE) {
         prev[v]=u;
         DFS Visit(v);}
   }
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

```
What does u[d] represent?
```

Ł

11

```
Data: color[V], time,
      prev[V],d[V], f[V]
DFS(G) // where prog starts
{
   for each vertex u \in V
   {
      color[u] = WHITE;
       prev[u]=NIL;
       f[u]=inf; d[u]=inf;
   }
   time = 0;
   for each vertex u \in V
     if (color[u] == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
   ł
      if(color[v] == WHITE) {
         prev[v]=u;
         DFS Visit(v);}
   }
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

```
What does f[d] represent?
```

```
Data: color[V], time,
      prev[V],d[V], f[V]
                                {
DFS(G) // where prog starts
{
   for each vertex u \in V
   {
      color[u] = WHITE;
       prev[u]=NIL;
       f[u]=inf; d[u]=inf;
   }
   time = 0;
   for each vertex u \in V
     if (color[u] == WHITE)
         DFS Visit(u);
```

}

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
   {
      if(color[v] == WHITE) {
         prev[v]=u;
         DFS Visit(v);
   } }
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

Will all vertices eventually be colored black?

Ł

```
Data: color[V], time,
      prev[V],d[V], f[V]
DFS(G) // where prog starts
{
   for each vertex u \in V
   {
      color[u] = WHITE;
       prev[u]=NIL;
       f[u]=inf; d[u]=inf;
   }
   time = 0;
   for each vertex u \in V
     if (color[u] == WHITE)
         DFS Visit(u);
```

}

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
   {
      if (color[v] == WHITE)
         prev[v]=u;
         DFS Visit(v);
   }
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

What will be the running time?

```
Data: color[V], time,
                                DFS Visit(u)
      prev[V],d[V], f[V]
DFS(G) // where prog starts
                                   color[u] = GREY;
ł
                                   time = time+1;
   for each vertex u \in V
                                   d[u] = time;
   Ł
                                   for each v \in Adj[u]
      color[u] = WHITE;
                         O(V)
       prev[u]=NIL;
                                       if (color[v] == WHITE)
       f[u]=inf; d[u]=inf;
                                         prev[v]=u;
                                          DFS Visit(v);
   time = 0;
   for each vertex u \in V_0(v)
                                   color[u] = BLACK;
     if (color[u] == WHITE)
                                   time = time+1;
         DFS Visit(u);
                                   f[u] = time;
```

}

Running time: O(V²) because call DFS_Visit on each vertex, and the loop over Adj[] can run as many as /V/ times

```
Data: color[V], time,
                                 DFS Visit(u)
       prev[V],d[V], f[V]
                                  ł
DFS(G) // where prog starts
                                     color[u] = GREY;
{
                                     time = time+1;
   for each vertex u \in V
                                     d[u] = time;
   {
                                     for each v \in Adj[u]
      color[u] = WHITE;
                                     {
       prev[u]=NIL;
                                        if (color[v] == WHITE)
       f[u]=inf; d[u]=inf;
                                           prev[v]=u;
   }
                                           DFS Visit(v);
   time = 0;
                                     }
   for each vertex u \in V
                                     color[u] = BLACK;
     if (color[u] == WHITE)
                                     time = time+1;
          DFS Visit(u);
                                     f[u] = time;
                BUT, there is actually a tighter bound.
}
          How many times will DFS_Visit() actually be called?
```

ł

```
Data: color[V], time,
      prev[V],d[V], f[V]
DFS(G) // where prog starts
{
   for each vertex u \in V
   {
      color[u] = WHITE;
       prev[u]=NIL;
       f[u]=inf; d[u]=inf;
   }
   time = 0;
   for each vertex u \in V
     if (color[u] == WHITE)
         DFS Visit(u);
```

}

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
   {
      if (color[v] == WHITE)
         prev[v]=u;
         DFS Visit(v);
   }
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

So, running time of DFS = O(V+E)

Depth-First Sort Analysis

- This running time argument is an informal example of *amortized analysis*
 - "Charge" the exploration of edge to the edge:
 - Each loop in DFS_Visit can be attributed to an edge in the graph
 - Runs once per edge if directed graph, twice if undirected
 - \circ Thus loop will run in O(E) time, algorithm O(V+E)
 - Considered linear for graph, b/c adj list requires O(V+E) storage
 - Important to be comfortable with this kind of reasoning and analysis

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - The tree edges form a spanning forest
 - Can tree edges form cycles? Why or why not?

♦ No

Tree edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - *Back edge*: from descendent to ancestor
 - Encounter a grey vertex (grey to grey)
 - Self loops are considered as to be back edge.

Tree edges Back edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - *Back edge*: from descendent to ancestor
 - *Forward edge*: from ancestor to descendent
 - Not a tree edge, though
 - From grey node to black node

Tree edges Back edges Forward edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - *Back edge*: from descendent to ancestor
 - *Forward edge*: from ancestor to descendent
 - *Cross edge*: between a tree or subtrees
 - From a grey node to a black node

Tree edges Back edges Forward edges Cross edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
 - *Tree edge*: encounter new (white) vertex
 - *Back edge*: from descendent to ancestor
 - *Forward edge*: from ancestor to descendent
 - *Cross edge*: between a tree or subtrees
- Note: tree & back edges are important; most algorithms don't distinguish forward & cross

More about the edges

- Let (u,v) is an edge.
 - If (color[v] = WHITE) then (u,v) is a tree edge
 - If (color[v] = GRAY) then (u,v) is a back edge
 - If (color[v] = BLACK) then (u,v) is a forward/cross edge
 - Forward Edge: d[u]<d[v]
 - Cross Edge: d[u]>d[v]

Depth-First Search - Timestamps

Depth-First Search - Timestamps

Depth-First Search: Detect Edge

ł

47

```
Data: color[V], time,
      prev[V],d[V], f[V]
DFS(G) // where prog starts
{
   for each vertex u \in V
   {
      color[u] = WHITE;
       prev[u]=NIL;
       f[u]=inf; d[u]=inf;
   }
   time = 0;
   for each vertex u \in V
     if (color[u] == WHITE)
         DFS Visit(u);
}
```

```
DFS Visit(u)
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
   {
  detect edge type using
  "color[v]"
      if(color[v] == WHITE) {
         prev[v]=u;
         DFS Visit(v);
   } }
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

DFS: Kinds Of Edges

- Thm 22.10: If G is undirected, a DFS produces only tree and back edges
- Proof by contradiction:
 - Assume there's a forward edge
 - But F? edge must actually be a back edge (*why?*)

DFS: Kinds Of Edges

- Thm 23.9: If G is undirected, a DFS produces only tree and back edges
- Proof by contradiction:
 - Assume there's a cross edge
 - But C? edge cannot be cross:
 - must be explored from one of the vertices it connects, becoming a tree vertex, before other vertex is explored
 - So in fact the picture is wrong...both lower tree edges cannot in fact be tree edges

DFS And Graph Cycles

- Thm: An undirected graph is *acyclic* iff a DFS yields no back edges
 - If acyclic, no back edges (because a back edge implies a cycle
 - If no back edges, acyclic
 - No back edges implies only tree edges (*Why?*)
 - Only tree edges implies we have a tree or a forest
 - Which by definition is acyclic
- Thus, can run DFS to find whether a graph has a cycle

51

How would you modify the code to detect cycles?

```
Data: color[V], time,
        prev[V],d[V], f[V]
DFS(G) // where prog starts
{
   for each vertex u \in V
   Ł
      color[u] = WHITE;
       prev[u]=NIL;
        f[u]=inf; d[u]=inf;
   }
   time = 0;
   for each vertex u \in V
     if (color[u] == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
Ł
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
      if (color[v]==WHITE) {
          prev[v]=u;
         DFS Visit(v);
      }
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

What will be the running time?

52

```
Data: color[V], time,
        prev[V],d[V], f[V]
DFS(G) // where prog starts
{
   for each vertex u \in V
   Ł
      color[u] = WHITE;
       prev[u]=NIL;
        f[u]=inf; d[u]=inf;
   }
   time = 0;
   for each vertex u \in V
     if (color[u] == WHITE)
         DFS Visit(u);
```

```
DFS Visit(u)
Ł
   color[u] = GREY;
   time = time+1;
   d[u] = time;
   for each v \in Adj[u]
      if (color[v]==WHITE) {
         prev[v]=u;
         DFS Visit(y)
   else {cycle exists;}
   color[u] = BLACK;
   time = time+1;
   f[u] = time;
```

- What will be the running time?
- A: O(V+E)
- We can actually determine if cycles exist in O(V) time
 - How??

- What will be the running time for undirected graph to detect cycle?
- A: O(V+E)
- We can actually determine if cycles exist in O(V) time:
 - In an undirected acyclic forest, $|\mathbf{E}| \le |\mathbf{V}| 1$
 - So count the edges: if ever see |V| distinct edges, must have seen a back edge along the way

- What will be the running time for directed graph to detect cycle?
- A: O(V+E)

Reference

- Cormen
 - Chapter 22 (Elementary Graph Algorithms)
- Exercise
 - 22.3-4 –Detect edge using d[u], d[v], f[u], f[v]
 - 22.3-11 Connected Component
 - 22.3-12 Singly connected