CSE 201

DFS

Last Class’s Topic

e Graph Representation
= Adjacency Matrix
= Adjacency List

e BFS — Breadth First Search

Breadth-First Search: The Code

Data: color[V], prev|[V],d[V]

BFS(G) // starts from here
{

for each vertex u € V-{s}

{
color[u]=WHITE;
prev[u]=NIL;
d[u]=inf;

}

color[s]=GRAY;

d[s]=0; prev[s]=NIL;

Q=empty;
ENQUEUE (Q, s) ;

While (Q not empty)

{
u = DEQUEUE (Q) ;

for each v € adj[u]{

if (color[v] == WHITE) {
color([v] = GREY;
d[v] = d[u] + 1;
prev([v] = u;

Enqueue (Q, V);

}
color[u] = BLACK;

Breadth-First Search: Print Path

Data: color[V], prev([V],d[V]

Print-Path (G, s, v)
{
if (v==s)
print (s)
else if (prev[v]==NIL)
print (No path) ;
else{
Print-Path (G,s,prev[v]) ;
print(v) ;

BFS — Questions

Find the shortest path between “A” and “B” (with
path)? When will it fail?

Find the most distant node from start node “A”

How can we detect that there exists no path between
A and B using BFS?

Print all of those nodes that are at distance 2 from
source vertex “S”.

How can we modify BFS algorithm to check the
bipartiteness of a graph?

Is It possible to answer that there exists more than one
path from *S” to “T”" with minimum path cost?

Depth-First Search

e Input: o e
s G = (V, E) (No source vertex given!) a e
o Goal: e 0

s Explore the edges of G to “discover” every vertex in V starting at the most
current visited node

m Search may be repeated from multiple sources

e Output:
m 2 timestamps on each vertex:
o d[v] = discovery time
o f[v] = finishing time (done with examining v’s adjacency list)

s Depth-first forest

Depth-First Search

Search “deeper” in the graph whenever possible 0 9
Edges are explored out of the most recently "e

discovered vertex v that still has unexplored edges

After all edges of v have been explored, the search
“backtracks” from the parent of v

The process continues until all vertices reachable from the
original source have been discovered

If undiscovered vertices remain, choose one of them as a
new source and repeat the search from that vertex

DFS creates a “depth-first forest”

DFS Additional Data Structures

e Global variable: time-stamp

m Incremented when nodes are discovered or finished

o color[u] —similar to BFS

s White before discovery, gray while processing and black
when finished processing

e prev[u]— predecessor of u

o d[u], f[u] - discovery and finish times

WHITE

1<dlulj<flu]<2|V|

GRAY

BLACK

f[u]

Depth-First Search: The Code

Data: color|[V],
prev[V],d[V],

time,
£[V]

DFS(G) // where prog starts

{

Initialize

for each vertex u € V

{
= WHITE;

prev|[u]=NIL;
f[ul=inf; d[u]=inf;

color[u]

}
time = O;
for each vertex u € V
if (color[u] == WHITE)
DFS Visit(u);

DFS Visit (u)

{

color[u] = GREY;
time = time+l;
d[u] = time;
for each v € Adj[u]
{
if (color[v] == WHITE) {

prev([v]=u;

DFS Visit(v);}
}
color[u] = BLACK;
time = time+l;

f[u] = time;

DFS(G) // where prog starts

{

Depth-First Search: The Code

Data: color|[V],
prev[V],d[V],

time,
£[V]

for each vertex u € V

{
= WHITE;

prev[u]=NIL;
f[ul=inf; d[u]=inf;

color[u]

}
time = 0;
for each vertex u € V
if (color|[u] WHITE)
DFS_Visit (u);

10

DFS Visit (u)

{

color[u] = GREY;
time = time+l;
d[u] = time;

for each v € Adj[u]
{

if (color|[v] WHITE) {
prev([v]=u;
DFS Visit(v);}

}

color[u] = BLACK;
time = time+l;
f[u] = time;

What does u[d] represent?

DFS(G) // where prog starts

{

Depth-First Search: The Code

time,
£[V]

Data: color|[V],
prev[V],d[V],

for each vertex u € V
{

= WHITE;
prev[u]=NIL;
f[u]l=inf; d[u]=inf;

color[u]

}
time = 0;
for each vertex u € V
if (color|[u] WHITE)
DFS_Visit (u);

11

DFS Visit (u)

{

color[u] = GREY;
time = time+l;
d[u] = time;

for each v € Adj[u]
{

if (color|[v] WHITE) {
prev([v]=u;
DFS Visit(v);}

}

color[u] = BLACK;
time = time+l;
f[u] = time;

What does £ [d] represent?

DFS(G) // where prog starts

{

Depth-First Search: The Code

Data: color|[V],
prev[V],d[V],

time,
£[V]

for each vertex u € V

{
= WHITE;

prev[u]=NIL;
f[ul=inf; d[u]=inf;

color[u]

}
time = 0;
for each vertex u € V
if (color|[u] WHITE)
DFS Visit(u);

DFS Visit (u)

{

color[u] = GREY;
time = time+l;
d[u] = time;

for each v € Adj[u]
{

if (color|[v] WHITE) {
prev([v]=u;
DFS Visit(v);

H)

color[u] = BLACK;
time = time+l;
f[u] = time;

Will all vertices eventualy be colored black?

12

DFS Example

source
vertex

(>

y

-

DFS Example

source

F

&

DFS Example

source

F

&

DFS Example

source

F

&

DFS Example

source

F

&

DFS Example

source

F

&

DFS Example

source

DFS Example

source

DFS Example

source

DFS Example

source
vertex

(D

y

P

B C
What is the structure of the grey vertices?

What do they represent?

22

DFS Example

source

DFS Example

source

DFS Example

source

DFS Example

source

26

DFS Example

source

27

DFS Example

source

28

DFS Example

source

29

DFS(G) // where prog starts

{

Depth-First Search: The Code

Data: color([V],
prev[V],d[V],

time,
£[V]

for each vertex u € V

{
= WHITE;

prev[u]=NIL;
f[ul=inf; d[u]=inf;

color[u]

}

time = 0;

for each vertex u € V
if (color|[u] WHITE)

DFS Visit (u);

DFS Visit (u)
{

color[u] = GREY;
time = time+l;
d[u] = time;

{

if (color|[v]
prev([v]=u;
DFS Visit(v);

}

color[u] = BLACK;
time = time+l;
f[u] = time;

What will be the Punning time?

30

for each v € Adj[u]

WHITE)

Depth-First Search: The Code

Data: color[V], time,
prev[V],d[V], f[V]

DFS(G) // where prog starts

{

for each vertex u e V. A
{
color[u] = WHITE;
prev[u]=NIL; O(V)
f[u]l=inf; d[u]=inf;

} v

time = 0;

for each vertex u € VO(V$
if (color[u] == WHITE)

DFS Visit (u);

DFS Visit (u)

{

color[u] = GREY;
time = time+l;
d[u] = time;
for each v € Adj[u] O(V) A
{
if (color[v] == WHITE)
prev([v]=u;
DFS Visit(v) ;
} B \ 4
color[u] = BLACK;

time = time+l;

f[u] = time;

Running time: O(V?) because call DFS_Visit on each vertex,
and the loop over Adj[] can run as many as V| times

DFS(G) // where prog starts

{

Depth-First Search: The Code

Data: color|[V],
prev[V],d[V],

time,
£[V]

for each vertex u € V

{
= WHITE;

prev[u]=NIL;
f[ul=inf; d[u]=inf;

color[u]

}
time = 0;
for each vertex u € V
if (color[u] == WHITE)
DFS Visit(u);

DFS Visit (u)

{

color[u] = GREY;
time = time+l;
d[u] = time;
for each v € Adj[u]
{
if (color[v] == WHITE)
prev([v]=u;
DFS Visit(v);
}
color[u] = BLACK;
time = time+l;

f[u] = time;

BUT, there Is actually a tighter bound.
How many times will DF3§_Visit() actually be called?

Depth-First Search: The Code

Data: color[V], time, DFS Visit (u)
prev([V],d[V], £[V] {
DFS(G) // where prog starts color[u] = GREY;
{ time = time+1l;
for each vertex u € V d[u] = time;
{ for each v € Adj[u]
color[u] = WHITE; {
prev[u]=NIL; if (color[v] == WHITE)
fl[u]l=inf; d[u]=inf; prev[v]=u;
} DFS_Visit (v) ;
time = 0; }
for each vertex u € V color[u] = BLACK;
if (color[u] == WHITE) time = time+1;
DFS Visit(u); f[u] = time;

So, running time oi}DFS = O(V+E)

33

Depth-First Sort Analysis

e This running time argument is an informal
example of amortized analysis

m “Charge” the exploration of edge to the edge:

o Each loop in DFS_Visit can be attributed to an edge in

the graph
o Runs once per edge if directed graph, twice if undirected
o Thus loop will run in O(E) time, algorithm O(V+E)
+ Considered linear for graph, b/c adj list requires O(V+E) storage
= Important to be comfortable with this kind of
reasoning and analysis

34

DFS: Kinds of edges

e DFS introduces an important distinction
among edges In the original graph:
m [ree edge: encounter new (white) vertex

o The tree edges form a spanning forest

o Can tree edges form cycles? Why or why not?
¢ NoO

35

DFS Example

source
vertex

\df

Tree edges

36

DFS: Kinds of edges

e DFS introduces an important distinction
among edges In the original graph:
m [ree edge: encounter new (white) vertex

= Back edge: from descendent to ancestor
o Encounter a grey vertex (grey to grey)
o Self loops are considered as to be back edge.

37

DFS Example

source
vertex

\df

Tree edges Back edges

38

DFS: Kinds of edges

e DFS introduces an important distinction
among edges In the original graph:
m [ree edge: encounter new (white) vertex
= Back edge: from descendent to ancestor

m Forward edge: from ancestor to descendent
o Not a tree edge, though
o From grey node to black node

39

DFS Example

source
vertex

\df

A 4

Tree edges Back edges Forward edges

40

DFS: Kinds of edges

e DFS introduces an important distinction
among edges In the original graph:
m [ree edge: encounter new (white) vertex
= Back edge: from descendent to ancestor
m Forward edge: from ancestor to descendent

m Cross edge: between a tree or subtrees
o From a grey node to a black node

41

DFS Example

source
vertex

\df

A 4

Tree edges Back edges Forward edges Cross edges

42

DFS: Kinds of edges

e DFS introduces an important distinction
among edges In the original graph:
m [ree edge: encounter new (white) vertex
= Back edge: from descendent to ancestor
m Forward edge: from ancestor to descendent
m Cross edge: between a tree or subtrees

e Note: tree & back edges are important; most
algorithms don’t distinguish forward & cross

43

More about the edges

e Let (u,v) Is an edge.
m If (color[v] =WHITE) then (u,v) Is a tree edge
m If (color[v] = GRAY) then (u,v) Is a back edge

= If (color[v] = BLACK) then (u,v) is a
forward/cross edge
o Forward Edge: d[u]<d[V]
o Cross Edge: d[u]>d[V]

44

Depth-First Search - Timestamps

Depth-First Search - Timestamps

46

Depth-First Search: Detect Edge

Data: color[V], time, DFS Visit (u)
prev[V],d[V], £f[V] {
DFS(G) // where prog starts color[u] = GREY;
{ time = time+l;
for each vertex u € V d[u] = time;
{ for each v € Adj[u]
color[u] = WHITE; {
prev[u]=NIL; detect edge type using
f[ul=inf; d[u]=inf; “color[v]”
} if (color[v] == WHITE) {
time = 0; previv]=u;
for each vertex u € V DFS Visit(v);
if (color[u] == WHITE) }}
DFS Visit(u); color[u] = BLACK;
} time = time+l;

- f[u] = time;

DFS: Kinds Of Edges

e Thm 22.10: If G is undirected, a DFS produces
only tree and back edges
e Proof by contradiction:

m Assume there’s a forward edge

o But F? edge must actually be a
back edge (why?)

DFS: Kinds Of Edges

e Thm 23.9: If G is undirected, a DFS produces
only tree and back edges

e Proof by contradiction: @

m Assume there’s a cross edge
o But C? edge cannot be cross:

o must be explored from one of the
vertices it connects, becoming a tree
vertex, before other vertex is explored

o So 1n fact the picture 1s wrong...both
lower tree edges cannot in fact be Co
tree edges

49

DFS And Graph Cycles

e Thm: An undirected graph is acyclic iff a DFS
yields no back edges

m If acyclic, no back edges (because a back edge
Implies a cycle

= |If no back edges, acyclic
o No back edges implies only tree edges (\Why?)
o Only tree edges implies we have a tree or a forest
o Which by definition is acyclic

e Thus, can run DFS to find whether a graph has
a cycle

50

DFS And Cycles

How would you modify the code to detect cycles?

DFS(G) // where prog starts

{

Data: color[V], time,
prev[V] ,d[V], £f[V]

for each vertex u e V
{
color[u] = WHITE;
prev[u]=NIL;
f[u]l=inf; d[u]=inf;
}
time = 0;
for each vertex u € V
if (color[u] == WHITE)
DFS Visit(u);

51

DFS _Visit (u)

{

color[u] = GREY;

time = time+l;

d[u] = time;

for each v € Adj[u]

{

if (color[v]==WHITE) {

prev[v]=u;
DFS_Visj

color[u] = BLACK;
time = time+l;

f[u] = time;

DFS(G) // where prog starts

{

DFS And Cycles

What will be the running time?

Data: color[V], time,
prev[V] ,d[V], £f[V]

for each vertex u e V
{
color[u] = WHITE;
prev[u]=NIL;
f[u]l=inf; d[u]=inf;
}
time = 0;
for each vertex u € V
if (color[u] == WHITE)
DFS Visit(u);

52

DFS_Visit (u)

{

color[u] = GREY;

time = time+l;

d[u] = time;

for each v € Adj[u]

{

if (color[v]==WHITE) {

prev[v]=u;
DFS Visit

else {cycle exists;}

}

color[u] = BLACK;

time = time+l;

f[u] = time;

DFS And Cycles

e What will be the running time?
e A: O(V+E)

e We can actually determine if cycles exist In
O(V) time
s How??

DFS And Cycles

e What will be the running time for undirected
graph to detect cycle?

e A: O(V+E)

e We can actually determine if cycles exist In
O(V) time:
= In an undirected acyclic forest, |[E| < |V| -1

m S0 count the edges: if ever see |V/| distinct edges,
must have seen a back edge along the way

54

DFS And Cycles

e What will be the running time for directed
graph to detect cycle?

o A: O(V+E)

Reference

e Cormen —
m Chapter 22 (Elementary Graph Algorithms)

e EXercise —
m 22.3-4 —Detect edge using d[u], d[v], f[u], f[v]
m 22.3-11 — Connected Component
m 22.3-12 — Singly connected

56

