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CSE 201

DFS



Last Class’s Topic

● Graph Representation

■ Adjacency Matrix

■ Adjacency List

● BFS – Breadth First Search
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Breadth-First Search: The Code

Data: color[V], prev[V],d[V]

BFS(G) // starts from here

{

for each vertex u  V-{s}

{

color[u]=WHITE;

prev[u]=NIL;

d[u]=inf;

}

color[s]=GRAY;

d[s]=0; prev[s]=NIL;

Q=empty;

ENQUEUE(Q,s);

While(Q not empty)

{

u = DEQUEUE(Q);

for each v  adj[u]{

if (color[v] == WHITE){

color[v] = GREY;

d[v] = d[u] + 1;

prev[v] = u;

Enqueue(Q, v);

}

}

color[u] = BLACK;

}

}
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Breadth-First Search: Print Path

Data: color[V], prev[V],d[V]

Print-Path(G, s, v)

{

if(v==s)

print(s)

else if(prev[v]==NIL)

print(No path);

else{

Print-Path(G,s,prev[v]);

print(v);

}

}



BFS – Questions

● Find the shortest path between “A” and “B” (with 

path)? When will it fail?

● Find the most distant node from start node “A”

● How can we detect that there exists no path between 

A and B using BFS?

● Print all of those nodes that are at distance 2 from 

source vertex “S”.

● How can we modify BFS algorithm to check the 

bipartiteness of  a graph?

● Is it possible to answer that there exists more than one 

path from “S” to “T” with minimum path cost?
5



Depth-First Search

● Input:

■ G = (V, E) (No source vertex given!)

● Goal:

■ Explore the edges of G to “discover” every vertex in V starting at the most 

current visited node

■ Search may be repeated from multiple sources

● Output: 

■ 2 timestamps on each vertex:

○ d[v] = discovery time

○ f[v] = finishing time (done with examining v’s adjacency list)

■ Depth-first forest

1 2
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Depth-First Search

● Search “deeper” in the graph whenever possible

● Edges are explored out of the most recently 

discovered vertex v that still has unexplored edges

• After all edges of v have been explored, the search 

“backtracks” from the parent of v

• The process continues until all vertices reachable from the 

original source have been discovered

• If undiscovered vertices remain, choose one of them as a 

new source and repeat the search from that vertex

• DFS creates a “depth-first forest”

1 2

5 4
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DFS Additional Data Structures

● Global variable: time-stamp

■ Incremented when nodes are discovered or finished

● color[u] – similar to BFS

■ White before discovery, gray while processing and black 
when finished processing

● prev[u] – predecessor of u

● d[u], f[u] – discovery and finish times

GRAYWHITE BLACK

0 2Vd[u] f[u]

1 ≤ d[u] < f [u] ≤ 2 |V|
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Depth-First Search: The Code

Data: color[V], time, 

prev[V],d[V], f[V]

DFS(G) // where prog starts

{

for each vertex u  V

{

color[u] = WHITE;

prev[u]=NIL;

f[u]=inf; d[u]=inf;

}

time = 0;

for each vertex u  V

if (color[u] == WHITE)

DFS_Visit(u);

}

DFS_Visit(u)

{

color[u] = GREY;

time = time+1;

d[u] = time;

for each v  Adj[u]

{

if(color[v] == WHITE){

prev[v]=u;

DFS_Visit(v);}

}

color[u] = BLACK;

time = time+1;

f[u] = time;

}

Initialize
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Depth-First Search: The Code

Data: color[V], time, 

prev[V],d[V], f[V]

DFS(G) // where prog starts

{

for each vertex u  V

{

color[u] = WHITE;

prev[u]=NIL;

f[u]=inf; d[u]=inf;

}

time = 0;

for each vertex u  V

if (color[u] == WHITE)

DFS_Visit(u);

}

DFS_Visit(u)

{

color[u] = GREY;

time = time+1;

d[u] = time;

for each v  Adj[u]

{

if(color[v] == WHITE){

prev[v]=u;

DFS_Visit(v);}

}

color[u] = BLACK;

time = time+1;

f[u] = time;

}

What does u[d] represent?
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Depth-First Search: The Code

Data: color[V], time, 

prev[V],d[V], f[V]

DFS(G) // where prog starts

{

for each vertex u  V

{

color[u] = WHITE;

prev[u]=NIL;

f[u]=inf; d[u]=inf;

}

time = 0;

for each vertex u  V

if (color[u] == WHITE)

DFS_Visit(u);

}

DFS_Visit(u)

{

color[u] = GREY;

time = time+1;

d[u] = time;

for each v  Adj[u]

{

if(color[v] == WHITE){

prev[v]=u;

DFS_Visit(v);}

}

color[u] = BLACK;

time = time+1;

f[u] = time;

}

What does f[d] represent?



12

Depth-First Search: The Code

Data: color[V], time, 

prev[V],d[V], f[V]

DFS(G) // where prog starts

{

for each vertex u  V

{

color[u] = WHITE;

prev[u]=NIL;

f[u]=inf; d[u]=inf;

}

time = 0;

for each vertex u  V

if (color[u] == WHITE)

DFS_Visit(u);

}

DFS_Visit(u)

{

color[u] = GREY;

time = time+1;

d[u] = time;

for each v  Adj[u]

{

if(color[v] == WHITE){

prev[v]=u;

DFS_Visit(v);

}}

color[u] = BLACK;

time = time+1;

f[u] = time;

}Will all vertices eventually be colored black?
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DFS Example

source

vertex
S

A

B C

D

E

F

G
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DFS Example

1 |  |  |  

|  | |  

|  |  

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |  |  |  

|  | |  

2 |  |  

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |  |  |  

|  | 3 |  

2 |  |  

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |  |  |  

|  | 3 | 4

2 |  |  

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |  |  |  

|  5 |  3 | 4

2 |  |  

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |  |  |  

|  5 | 63 | 4

2 |  |  

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |  |  |  

|  5 | 63 | 4

2 | 7 |  

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |  8 |  |  

|  5 | 63 | 4

2 | 7 |  

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |  8 |  |  

|  5 | 63 | 4

2 | 7 9 |  

source

vertex
d      f

What is the structure of the grey vertices?  

What do they represent?

S

A

B C

D

E

F

G
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DFS Example

1 |  8 |  |  

|  5 | 63 | 4

2 | 7 9 |10

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |  8 |11 |  

|  5 | 63 | 4

2 | 7 9 |10

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |12 8 |11 |  

|  5 | 63 | 4

2 | 7 9 |10

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |12 8 |11 13|  

|  5 | 63 | 4

2 | 7 9 |10

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |12 8 |11 13|  

14|  5 | 63 | 4

2 | 7 9 |10

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |12 8 |11 13|  

14|155 | 63 | 4

2 | 7 9 |10

source

vertex
d      fS

A

B C

D

E

F

G
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DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex
d      fS

A

B C

D

E

F

G
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Depth-First Search: The Code

Data: color[V], time, 

prev[V],d[V], f[V]

DFS(G) // where prog starts

{

for each vertex u  V

{

color[u] = WHITE;

prev[u]=NIL;

f[u]=inf; d[u]=inf;

}

time = 0;

for each vertex u  V

if (color[u] == WHITE)

DFS_Visit(u);

}

DFS_Visit(u)

{

color[u] = GREY;

time = time+1;

d[u] = time;

for each v  Adj[u]

{

if (color[v] == WHITE)

prev[v]=u;

DFS_Visit(v);

}

color[u] = BLACK;

time = time+1;

f[u] = time;

}What will be the running time?
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Depth-First Search: The Code

Data: color[V], time, 

prev[V],d[V], f[V]

DFS(G) // where prog starts

{

for each vertex u  V

{

color[u] = WHITE;

prev[u]=NIL;

f[u]=inf; d[u]=inf;

}

time = 0;

for each vertex u  V

if (color[u] == WHITE)

DFS_Visit(u);

}

DFS_Visit(u)

{

color[u] = GREY;

time = time+1;

d[u] = time;

for each v  Adj[u]

{

if (color[v] == WHITE)

prev[v]=u;

DFS_Visit(v);

}

color[u] = BLACK;

time = time+1;

f[u] = time;

}Running time: O(V2) because call DFS_Visit on each vertex, 

and the loop over Adj[] can run as many as |V| times

O(V)

O(V)

O(V)
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Depth-First Search: The Code

Data: color[V], time, 

prev[V],d[V], f[V]

DFS(G) // where prog starts

{

for each vertex u  V

{

color[u] = WHITE;

prev[u]=NIL;

f[u]=inf; d[u]=inf;

}

time = 0;

for each vertex u  V

if (color[u] == WHITE)

DFS_Visit(u);

}

DFS_Visit(u)

{

color[u] = GREY;

time = time+1;

d[u] = time;

for each v  Adj[u]

{

if (color[v] == WHITE)

prev[v]=u;

DFS_Visit(v);

}

color[u] = BLACK;

time = time+1;

f[u] = time;

}BUT, there is actually a tighter bound.  

How many times will DFS_Visit() actually be called?
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Depth-First Search: The Code

Data: color[V], time, 

prev[V],d[V], f[V]

DFS(G) // where prog starts

{

for each vertex u  V

{

color[u] = WHITE;

prev[u]=NIL;

f[u]=inf; d[u]=inf;

}

time = 0;

for each vertex u  V

if (color[u] == WHITE)

DFS_Visit(u);

}

DFS_Visit(u)

{

color[u] = GREY;

time = time+1;

d[u] = time;

for each v  Adj[u]

{

if (color[v] == WHITE)

prev[v]=u;

DFS_Visit(v);

}

color[u] = BLACK;

time = time+1;

f[u] = time;

}
So, running time of DFS = O(V+E)
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Depth-First Sort Analysis

● This running time argument is an informal 

example of amortized analysis

■ “Charge” the exploration of edge to the edge:

○ Each loop in DFS_Visit can be attributed to an edge in 

the graph 

○ Runs once per edge if directed graph, twice if undirected

○ Thus loop will run in O(E) time, algorithm O(V+E)

 Considered linear for graph, b/c adj list requires O(V+E) storage

■ Important to be comfortable with this kind of 

reasoning and analysis
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DFS: Kinds of edges

● DFS introduces an important distinction 

among edges in the original graph:

■ Tree edge: encounter new (white) vertex 

○ The tree edges form a spanning forest

○ Can tree edges form cycles?  Why or why not?

 No
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DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex
d      f

Tree edges
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DFS: Kinds of edges

● DFS introduces an important distinction 

among edges in the original graph:

■ Tree edge: encounter new (white) vertex 

■ Back edge: from descendent to ancestor

○ Encounter a grey vertex (grey to grey)

○ Self loops are considered as to be back edge.
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DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex
d      f

Tree edges Back edges
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DFS: Kinds of edges

● DFS introduces an important distinction 

among edges in the original graph:

■ Tree edge: encounter new (white) vertex 

■ Back edge: from descendent to ancestor

■ Forward edge: from ancestor to descendent

○ Not a tree edge, though

○ From grey node to black node
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DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex
d      f

Tree edges Back edges Forward edges
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DFS: Kinds of edges

● DFS introduces an important distinction 

among edges in the original graph:

■ Tree edge: encounter new (white) vertex 

■ Back edge: from descendent to ancestor

■ Forward edge: from ancestor to descendent

■ Cross edge: between a tree or subtrees

○ From a grey node to a black node
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DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source

vertex
d      f

Tree edges Back edges Forward edges Cross edges
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DFS: Kinds of edges

● DFS introduces an important distinction 

among edges in the original graph:

■ Tree edge: encounter new (white) vertex 

■ Back edge: from descendent to ancestor

■ Forward edge: from ancestor to descendent

■ Cross edge: between a tree or subtrees

● Note: tree & back edges are important; most 

algorithms don’t distinguish forward & cross
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More about the edges

● Let (u,v) is an edge.

■ If  (color[v] = WHITE)  then (u,v) is a tree edge

■ If  (color[v] = GRAY)  then (u,v) is a back edge

■ If  (color[v] = BLACK)  then (u,v) is a 

forward/cross edge

○ Forward Edge: d[u]<d[v]

○ Cross Edge: d[u]>d[v]
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Depth-First Search - Timestamps

3/6

7/8

1/102/9

12/134/5

a b s

d e f

B F

11/16

14/15

c

gC C

C

C

B
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Depth-First Search - Timestamps

a e

s

b f

d

B

F

c

g

C

C

C

C

B
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Depth-First Search: Detect Edge

Data: color[V], time, 

prev[V],d[V], f[V]

DFS(G) // where prog starts

{

for each vertex u  V

{

color[u] = WHITE;

prev[u]=NIL;

f[u]=inf; d[u]=inf;

}

time = 0;

for each vertex u  V

if (color[u] == WHITE)

DFS_Visit(u);

}

DFS_Visit(u)

{

color[u] = GREY;

time = time+1;

d[u] = time;

for each v  Adj[u]

{

detect edge type using 

“color[v]”

if(color[v] == WHITE){

prev[v]=u;

DFS_Visit(v);

}}

color[u] = BLACK;

time = time+1;

f[u] = time;

}



48

DFS: Kinds Of Edges

● Thm 22.10: If G is undirected, a DFS produces 

only tree and back edges

● Proof by contradiction:

■ Assume there’s a forward edge

○ But F? edge must actually be a 

back edge (why?)

source

F?
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DFS: Kinds Of Edges

● Thm 23.9: If G is undirected, a DFS produces 

only tree and back edges

● Proof by contradiction:

■ Assume there’s a cross edge

○ But C? edge cannot be cross:

○ must be explored from one of the 

vertices it connects, becoming a tree

vertex, before other vertex is explored

○ So in fact the picture is wrong…both

lower tree edges cannot in fact be

tree edges

source

C?
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DFS And Graph Cycles

● Thm: An undirected graph is acyclic iff a DFS 

yields no back edges

■ If acyclic, no back edges (because a back edge 

implies a cycle

■ If no back edges, acyclic

○ No back edges implies only tree edges (Why?)

○ Only tree edges implies we have a tree or a forest

○ Which by definition is acyclic

● Thus, can run DFS to find whether a graph has 

a cycle
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DFS And Cycles

Data: color[V], time, 

prev[V],d[V], f[V]

DFS(G) // where prog starts

{

for each vertex u  V

{

color[u] = WHITE;

prev[u]=NIL;

f[u]=inf; d[u]=inf;

}

time = 0;

for each vertex u  V

if (color[u] == WHITE)

DFS_Visit(u);

}

DFS_Visit(u)

{

color[u] = GREY;

time = time+1;

d[u] = time;

for each v  Adj[u]

{

if (color[v]==WHITE){

prev[v]=u;

DFS_Visit(v);

}

}

color[u] = BLACK;

time = time+1;

f[u] = time;

}

How would you modify the code to detect cycles?
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DFS And Cycles

Data: color[V], time, 

prev[V],d[V], f[V]

DFS(G) // where prog starts

{

for each vertex u  V

{

color[u] = WHITE;

prev[u]=NIL;

f[u]=inf; d[u]=inf;

}

time = 0;

for each vertex u  V

if (color[u] == WHITE)

DFS_Visit(u);

}

DFS_Visit(u)

{

color[u] = GREY;

time = time+1;

d[u] = time;

for each v  Adj[u]

{

if (color[v]==WHITE){

prev[v]=u;

DFS_Visit(v);    } 

else {cycle exists;}

}

color[u] = BLACK;

time = time+1;

f[u] = time;

}

What will be the running time?
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DFS And Cycles

● What will be the running time?

● A: O(V+E)

● We can actually determine if cycles exist in 

O(V) time

■ How??
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DFS And Cycles

● What will be the running time for undirected 

graph to detect cycle?

● A: O(V+E)

● We can actually determine if cycles exist in 

O(V) time:

■ In an undirected acyclic forest, |E|  |V| - 1 

■ So count the edges: if ever see |V| distinct edges, 

must have seen a back edge along the way
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DFS And Cycles

● What will be the running time for directed 

graph to detect cycle?

● A: O(V+E)



Reference

● Cormen –

■ Chapter 22 (Elementary Graph Algorithms)

● Exercise –

■ 22.3-4 –Detect edge using d[u], d[v], f[u], f[v]

■ 22.3-11 – Connected Component

■ 22.3-12 – Singly connected
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