CSE 301
Combinatorial Optimization

Greedy Algorithms

Greedy Algorithm

« Greedy algorithms make the choice that looks
best at the moment.

« This locally optimal choice may lead to a globally
optimal solution (i.e. an optimal solution to the
entire problem).

When can we use Greedy algorithms?

We can use a greedy algorithm when the following are true:

1) The greedy choice property: A globally optimal solution can
be arrived at by making a locally optimal (greedy) choice.

1) The optimal substructure property: The optimal solution
contains within its optimal solutions to subproblems.

Designing Greedy Algorithms

1. Cast the optimization problem as one for which:

 we make a choice and are left with only one subproblem
to solve

2. Prove the GREEDY CHOICE

« that there is always an optimal solution to the original
problem that makes the greedy choice

3. Prove the OPTIMAL SUBSTRUCTURE:

* the greedy choice + an optimal solution to the resulting
subproblem leads to an optimal solution

Example: Making Change

* Instance: amount (in cents) to return to customer
* Problem: do this using fewest number of coins

« Example:

— Assume that we have an unlimited number of coins of
various denominations:

— 1c (pennies), 5c¢ (nickels), 10c (dimes), 25c¢ (quarters), 1$
(loonies)

— Objective: Pay out a given sum $5.64 with the
smallest number of coins possible.

The Coin Changing Problem

Assume that we have an unlimited number of coins of various
denominations:

» 1c (pennies), 5¢ (nickels), 10c (dimes), 25c¢ (quarters), 1$ (loonies)
Objective: Pay out a given sum S with the smallest number of
coins possible.

The greedy coin changing algorithm:
* This is a ®(m) algorithm where m = number of denominations.

while S > 0 do
¢ := value of the largest coin no larger than S;
num := S / c;
pay out num coins of wvalue c;
S := S - num*c;

Example: Making Change

 E.Q.:
$5.64 = $2+$2 + 1 +

25+ .25+ .10+
01+.01+.01+.01

Making Change — A big problem

« Example 2: Coins are valued $.30, $.20, $.05,
$.01

— Does not have greedy-choice property, since $.40 is
best made with two $.20’s, but the greedy solution will
pick three coins (which ones?)

The Fractional Knapsack Problem

« Given: Aset S of n items, with each item i having
— Db, - a positive benefit
— W - a positive weight

Goal: Choose items with maximum total benefit but with weight at
most W.

If we are allowed to take fractional amounts, then this is the fractional
knapsack problem.

— In this case, we let x; denote the amount we take of item |

— Objective: maximize

b (x, /W)

— Constraint: €S

D X <W,0<x <w,

1eS

Example

Given: A set S of n items, with each item | having

— Db, - a positive benefit

— W - a positive weight
Goal: Choose items with maximum total benefit but with total weight at
most W.

“knapsack”
— — :
— = Solution: P
: = — e lmlof5 50%
Items: E e 2mlof 3 40%
: e 6 mlof 4 30%
Weight: 4ml 8ml 2ml 6ml 1ml elmlof2 43

Benefit: $12 $32 $40 $30 $50 10 ml

Value: 3 4 20 5 50
($ per ml)

eTotal Profit:124$

10

The Fractional Knapsack Algorithm

« Greedy choice: Keep taking item with highest value (benefit to
weight ratio)

— Since Zbi(xi/Wi):Z(bi/Wi)Xi

ieS ieS

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit b, and weight w;; max. weight W
Output: amount x; of each item i to maximize benefit w/ weight at most W

for each itemiin S

X; <0

Vv, < b; /w; {value}
R {total weight}
while w <W

remove item i with highest v,

X; «<— min{w; , W - w}

W<« w + min{w; , W - w}

The Fractional Knapsack Algorithm

* Running time: Given a collection S of n items, such that each item i
has a benefit b, and weight w;,, we can construct a maximum-benefit
subset of S, allowmg for fractional amounts, that has a total weight W in

O(nlogn) time.
— Use heap-based priority queue to store S
— Removing the item with the highest value takes O(logn) time

— In the worst case, need to remove all items

12

An Activity Selection Problem
(Conference Scheduling Problem)

Input: A set of activities S ={a,..., a,}

Each activity has start time and a finish time

— a=(s;, T)

Two activities are compatible if and only if their
Interval does not overlap

Output: a maximum-size subset of mutually
compatible activities

13

The Activity Selection Problem

« Here are a set Oi Start ana i|n|s|i times

i1 2 3 4 5 6 7 8 9 10 I
.11 3 0 5 3 5 6 8 & 2 12
14 5 6 7 8 9 10 11 12 13 14

« What Is the maximum number of activities that can be
completed?
 {a;, a, 8,1} Can be completed
« Butso can {a,, a,, ag-a,;} which is a larger set
 But it is not unique, consider {a,, a,, ag-a;1}

14

The Activity Selection Problem

Input: list of time-intervals L

Output: a non-overlapping subset S of the intervals

Objective: maximize || 37
—t—— 2,4
. p(—_ 5,8
*——o o— (9
1,11
10,12

0,3

15

The Activity Selection Problem

Input: list of time-intervals L

Output: a non-overlapping subset S of the intervals

Objective: maximize |S| 3,7
2,4
P———) 5,8
- — & &
r———y 6,9
1,11
Answer = 3 10,12

0,3

16

The Activity Selection Problem

Algorithm 1:

1. sort the activities by the starting time
2. pick the first activity a

3. remove all activities conflicting with a
4. repeat

17

The Activity Selection Problem

Algorithm 1:

1. sort the activities by the starting time

2. pick the first activity “a”

3. remove all activities conflicting with “a”
4. repeat

—
M
M

18

The Activity Selection Problem

Algorithm 1:

1. sort the activities by the Ing time

19

The Activity Selection Problem

Algorithm 2:

1. sort the activities by length

2. pick the shortest activity “a”

3. remove all activities conflicting with “a”
4. repeat

—
M
M

20

The Activity Selection Problem

Algorithm 2:

1. sort the activities by length

2. pick the shortest activity “a”

3. remove all activities conflicting with “a”
4. repeat

ﬁ
M
ﬁ

21

The Activity Selection Problem

Algorithm 2:

22

The Activity Selection Problem
Algorithm 3:

1. sort the activities by ending time

2. pick the activity which ends first

3. remove all activities conflicting with a
4. repeat

ﬁ
M
ﬁ

23

The Activity Selection Problem
Algorithm 3:

1. sort the activities by ending time

2. pick the activity which ends first

3. remove all activities conflicting with a
4. repeat

ﬁ
M
ﬁ

24

The Activity Selection Problem

Algorithm 3:

1. sort the activities by ending time

2. pick the activity which ends first

3. remove all activities conflicting with a
4. repeat

—
M
M

25

The Activity Selection Problem

Algorithm 3:

1. sort the activities by ending time

2. pick the activity which ends first

3. remove all activities conflicting with a
4. repeat

—
M
M

26

The Activity Selection Problem

Algorithm 3:

1. sort the activities by ending time

2. pick the activity a which ends first

3. remove all activities conflicting with a
4. repeat

Theorem:

Algorithm 3 gives an optimal solution to
the activity selection problem.

27

Activity Selection Algorithm

Idea: At each step, select the activity with the smallest finish time
that Is compatible with the activities already chosen.

Greedy-Activity-Selector(s, f)
n <— length[s]

A<—{1} {Automatically select first activity}
j<—1 {Last activity selected so far}
fori<—2tondo
If si >= fj then
A<-AU{i} {Add activity i1 to the set}
j<—1 {record last activity added}

return A

28

The Activity Selection Problem

« Here are a set Oi Start ana i|n|s|i times

i1 2 3 4 5 6 7 8 9 10 I
.11 3 0 5 3 5 6 8 & 2 12
14 5 6 7 8 9 10 11 12 13 14

« What Is the maximum number of activities that can be
completed?
 {a;, a, 8,1} Can be completed
« Butso can {a,, a,, ag-a,;} which is a larger set
 But it is not unique, consider {a,, a,, ag-a;1}

29

Interval Representation

i 1 2 3 4 5 6 7 8 9 10 11

s 11 3 0 5 3 5 6 8 8 2 12

fil4 5 6 7 8 9 10 11 12 13 H
M

30

o 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15

ﬁ
<)
‘II IIIIIIIIII ’
‘II IIIIIIIII >
ﬁ
ﬁ
M
ﬁ
‘ IIIIII ﬂ IIIIIIII 1 llllllll T llllllll T IIIIIIII TII>

c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ﬁ
<)
‘II IIIIIIIIII ’
ﬁ
‘II IIIIIIIII >
ﬁ
ﬁ
M
ﬁ
‘ IIIIII ﬂ IIIIIIII 1 llllllll T llllllll T IIIIIIII TII>

0 12 3 4 5 6 7 8 9 10 11 12 13 1415

ﬁ
<)
‘II IIIIIIIIII ’
ﬁ
‘II IIIIIIIII >
‘II lllll >
‘II lllllllll >
M
ﬁ
‘ IIIIII ﬂ IIIIIIII 1 llllllll T llllllll T IIIIIIII TII>

c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
<)
‘II IIIIIIIIII ’
‘II IIIIIIIII >
‘II lllll >
‘II lllllllll >
M
ﬁ
‘ IIIIII ﬂ IIIIIIII 1 llllllll T llllllll T IIIIIIII TII>

0 12 3 4 5 6 7 8 9 10 11 12 13 14 15

M
a LLILEE]
‘II IIIIIIIIII ’
‘II IIIIIIIII >
‘II lllll >
‘II lllllllll >
M
| . S >
‘ IIIIII ﬂ IIIIIIII 1 llllllll T llllllll T IIIIIIII TII>

0 12 3 4 5 6 7 8 9 10 11 12 13 14 15

M
o LEILLE] |
‘II IIIIIIIIII ’
‘II IIIIIIIII >
‘II lllll >
‘II lllllllll >
M
| . R >
‘ IIIIII ﬂ IIIIIIII 1 llllllll T llllllll T IIIIIIII ﬂll»

c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Why this Algorithm i1s Optimal?
« \We will show that this algorithm uses the
following properties
 The problem has the optimal substructure
property
 The algorithm satisfies the greedy-choice
property
e Thus, it Is Optimal

38

Greedy-Choice Property

« Show there is an optimal solution that begins with a greedy
choice (with activity 1, which as the earliest finish time)

e Suppose A c S in an optimal solution

— Order the activities in A by finish time. The first activity in Ais k
» If k =1, the schedule A begins with a greedy choice

* If k # 1, show that there is an optimal solution B to S that begins with the
greedy choice, activity 1

— LetB=A—-{k} U {1}
- f, <f, = activities in B are disjoint (compatible)
* B has the same number of activities as A
* Thus, B is optimal

39

Optimal Substructures
T = Once the greedy choice of activity 1 Is made, the problem reduces

to finding an optimal solution for the activity-selection problem over
those activities in S that are compatible with activity 1
« Optimal Substructure
« IfAisoptimalto S, then A’=A—{1} is optimal to S’={i €S: s; >f,}
 Why?
— If we could find a solution B’ to S’ with more activities than A’, adding

activity 1 to B’ would yield a solution B to S with more activities than A =
contradicting the optimality of A

— After each greedy choice is made, we are left with an optimization
problem of the same form as the original problem

« By induction on the number of choices made, making the greedy choice
at every step produces an optimal solution

40

Huffman Codes

Widely used technigue for data compression
Assume the data to be a sequence of characters
Looking for an effective way of storing the data

Binary character code

— Uniquely represents a character by a binary string

41

Fixed-Length Codes

E.g.: Data file containing 100,000 characters

a b C d e f
Frequency (thousands) | 45 13 | 12 | 16 | 9 5

3 bits needed
« a=000,b=001,c=010,d=011,e=100,f=101
* Requires: 100,000 - 3 = 300,000 bits

42

Huffman Codes

e |dea:

— Use the frequencies of occurrence of characters to

build a optimal way of representing each character

a

b

C

d

e

Frequency (thousands)

45

13

12

16

9

43

Variable-Length Codes

£.g.: Data file containing 100,000 characters

a b C d e f
Frequency (thousands) | 45 13 | 12 | 16 | 9 5

 Assign short codewords to frequent characters and
long codewords to infrequent characters

- a=0,b=101,c=100,d =111, e = 1101, f = 1100
« 45-1+13-3+12-3+16-3+9-4+5-4)-1,000

= 224,000 bits

44

Prefix Codes

 Prefix codes:

— Codes for which no codeword is also a prefix of some

other codeword

— Better name would be “prefix-free codes”

« We can achieve optimal data compression using
prefix codes

— We will restrict our attention to prefix codes

45

Encoding with Binary Character Codes

* Encoding

— Concatenate the codewords representing each

character in the file
* £.g..
—a=0,b=101,c=100,d=111,e =1101, f= 1100
—abc=0-101-100=0101100

46

Decoding with Binary Character Codes

* Prefix codes simplify decoding

— No codeword is a prefix of another = the codeword
that begins an encoded file is unambiguous

« Approach
— ldentify the initial codeword
— Translate it back to the original character
— Repeat the process on the remainder of the file

* E£.4..
—a=0,b=101,c=100,d=111,e=1101, f=1100
— 001011101 = 0-0 -101.1101 =aabe

47

Prefix Code Representation

* Binary tree whose leaves are the given characters

* Binary codeword

— the path from the root to the character, where 0 means “go to the
left child” and 1 means “go to the right child”

* Length of the codeword
— Length of the path from root to the character leaf (depth of node)

48

Optimal Codes

* An optimal code Is always represented by a full
binary tree
— Every non-leaf has two children
— Fixed-length code is not optimal, variable-length is

 How many bits are required to encode a file?
— Let C be the alphabet of characters
— Let f(c) be the frequency of character ¢

— Let d+(c) be the depth of ¢’s leaf in the tree T
corresponding to a prefix code

B(T) = Z f(c)d; (c) the cost of tree T

ceC

49

Constructing a Huffman Code

« A greedy algorithm that constructs an optimal prefix code
called a Huffman code

e Assume that:
- Cis a set of n characters
— Each character has a frequency f(c)
— The tree T is built in a bottom up manner

e |dea: 5 || e:9 ||c: 12||b: 13||d: 16||a: 45

— Start with a set of |C| leaves
— At each step, merge the two least frequent objects: the frequency of
the new node = sum of two frequencies

— Use a min-priority queue Q, keyed on f to identify the two least

frequent objects
50

Example

f: 5

c:12

b: 13

d: 16

a: 45

c: 12

b: 13

d: 16

a: 45

d: 16

a: 45

Alz.: HUFFMAN(C)
1.
2.
3.

4
5
0.
.
8
9

Building a Huffman Code

n«|C|
Q«C - O(n)

fori< 1ton-1)

do allocate a new node z
left[z] <« x < EXTRACT-MIN(Q)

right[z] « y « EXTRACT-MIN(Q)
flz] « flx]+ fly]
INSERT (Q, 2) /

. return EXTRACT-MIN(Q)

Running time: O(nign)

> O(nlgn)

52

