CSE 301
Combinatorial Optimization

Greedy Algorithms



Greedy Algorithm

« Greedy algorithms make the choice that looks
best at the moment.

« This locally optimal choice may lead to a globally
optimal solution (i.e. an optimal solution to the
entire problem).



When can we use Greedy algorithms?

We can use a greedy algorithm when the following are true:

1) The greedy choice property: A globally optimal solution can
be arrived at by making a locally optimal (greedy) choice.

1) The optimal substructure property: The optimal solution
contains within its optimal solutions to subproblems.



Designing Greedy Algorithms

1. Cast the optimization problem as one for which:

 we make a choice and are left with only one subproblem
to solve

2. Prove the GREEDY CHOICE

« that there is always an optimal solution to the original
problem that makes the greedy choice

3. Prove the OPTIMAL SUBSTRUCTURE:

* the greedy choice + an optimal solution to the resulting
subproblem leads to an optimal solution



Example: Making Change

* Instance: amount (in cents) to return to customer
* Problem: do this using fewest number of coins

« Example:

— Assume that we have an unlimited number of coins of
various denominations:

— 1c (pennies), 5c¢ (nickels), 10c (dimes), 25c¢ (quarters), 1$
(loonies)

— Objective: Pay out a given sum $5.64 with the
smallest number of coins possible.



The Coin Changing Problem

Assume that we have an unlimited number of coins of various
denominations:

» 1c (pennies), 5¢ (nickels), 10c (dimes), 25c¢ (quarters), 1$ (loonies)
Objective: Pay out a given sum S with the smallest number of
coins possible.

The greedy coin changing algorithm:
* This is a ®(m) algorithm where m = number of denominations.

while S > 0 do
¢ := value of the largest coin no larger than S;
num := S / c;
pay out num coins of wvalue c;
S := S - num*c;



Example: Making Change

 E.Q.:
$5.64 = $2+$2 + 1 +

25+ .25+ .10+
01+.01+.01+.01



Making Change — A big problem

« Example 2: Coins are valued $.30, $.20, $.05,
$.01

— Does not have greedy-choice property, since $.40 is
best made with two $.20’s, but the greedy solution will
pick three coins (which ones?)



The Fractional Knapsack Problem

« Given: Aset S of n items, with each item i having
— Db, - a positive benefit
— W - a positive weight

Goal: Choose items with maximum total benefit but with weight at
most W.

If we are allowed to take fractional amounts, then this is the fractional
knapsack problem.

— In this case, we let x; denote the amount we take of item |

— Objective: maximize

b (x, /W)

— Constraint: €S

D X <W,0<x <w,

1eS



Example

Given: A set S of n items, with each item | having

— Db, - a positive benefit

— W - a positive weight
Goal: Choose items with maximum total benefit but with total weight at
most W.

“knapsack”
— — :
— = Solution: P
: = — e lmlof5 50%
Items: E e 2mlof 3 40%
: e 6 mlof 4 30%
Weight: 4ml 8ml 2ml 6ml 1ml elmlof2 43

Benefit: $12  $32 $40 $30 $50 10 ml

Value: 3 4 20 5 50
($ per ml)

eTotal Profit:124$
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The Fractional Knapsack Algorithm

« Greedy choice: Keep taking item with highest value (benefit to
weight ratio)

— Since Zbi(xi/Wi):Z(bi/Wi)Xi

ieS ieS

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit b, and weight w;; max. weight W
Output: amount x; of each item i to maximize benefit w/ weight at most W

for each itemiin S

X; <0

Vv, < b; /w; {value}
R {total weight}
while w <W

remove item i with highest v,

X; «<— min{w; , W - w}

W<« w + min{w; , W - w}




The Fractional Knapsack Algorithm

* Running time: Given a collection S of n items, such that each item i
has a benefit b, and weight w;,, we can construct a maximum-benefit
subset of S, allowmg for fractional amounts, that has a total weight W in

O(nlogn) time.
— Use heap-based priority queue to store S
— Removing the item with the highest value takes O(logn) time

— In the worst case, need to remove all items
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An Activity Selection Problem
(Conference Scheduling Problem)

Input: A set of activities S ={a,..., a,}

Each activity has start time and a finish time

— a=(s;, T)

Two activities are compatible if and only if their
Interval does not overlap

Output: a maximum-size subset of mutually
compatible activities
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The Activity Selection Problem

« Here are a set Oi Start ana i|n|s|i times

i1 2 3 4 5 6 7 8 9 10 I
.11 3 0 5 3 5 6 8 & 2 12
14 5 6 7 8 9 10 11 12 13 14

« What Is the maximum number of activities that can be
completed?
 {a;, a, 8,1} Can be completed
« Butso can {a,, a,, ag-a,;} which is a larger set
 But it is not unique, consider {a,, a,, ag-a;1}
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The Activity Selection Problem

Input: list of time-intervals L

Output: a non-overlapping subset S of the intervals

Objective: maximize || 37
—t—— 2,4
. p( —_ 5,8
*——o o— (9
1,11
10,12

0,3
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The Activity Selection Problem

Input: list of time-intervals L

Output: a non-overlapping subset S of the intervals

Objective: maximize |S| 3,7
2,4
P———) 5,8
- — & &
r———y 6,9
1,11
Answer = 3 10,12

0,3
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The Activity Selection Problem

Algorithm 1:

1. sort the activities by the starting time
2. pick the first activity a

3. remove all activities conflicting with a
4. repeat
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The Activity Selection Problem

Algorithm 1:

1. sort the activities by the starting time

2. pick the first activity “a”

3. remove all activities conflicting with “a”
4. repeat

—
M
M
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The Activity Selection Problem

Algorithm 1:

1. sort the activities by the Ing time

19



The Activity Selection Problem

Algorithm 2:

1. sort the activities by length

2. pick the shortest activity “a”

3. remove all activities conflicting with “a”
4. repeat

—
M
M
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The Activity Selection Problem

Algorithm 2:

1. sort the activities by length

2. pick the shortest activity “a”

3. remove all activities conflicting with “a”
4. repeat

ﬁ
M
ﬁ
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The Activity Selection Problem

Algorithm 2:
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The Activity Selection Problem
Algorithm 3:

1. sort the activities by ending time

2. pick the activity which ends first

3. remove all activities conflicting with a
4. repeat

ﬁ
M
ﬁ
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The Activity Selection Problem
Algorithm 3:

1. sort the activities by ending time

2. pick the activity which ends first

3. remove all activities conflicting with a
4. repeat

ﬁ
M
ﬁ
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The Activity Selection Problem

Algorithm 3:

1. sort the activities by ending time

2. pick the activity which ends first

3. remove all activities conflicting with a
4. repeat

—
M
M
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The Activity Selection Problem

Algorithm 3:

1. sort the activities by ending time

2. pick the activity which ends first

3. remove all activities conflicting with a
4. repeat

—
M
M
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The Activity Selection Problem

Algorithm 3:

1. sort the activities by ending time

2. pick the activity a which ends first

3. remove all activities conflicting with a
4. repeat

Theorem:

Algorithm 3 gives an optimal solution to
the activity selection problem.
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Activity Selection Algorithm

Idea: At each step, select the activity with the smallest finish time
that Is compatible with the activities already chosen.

Greedy-Activity-Selector(s, f)
n <— length[s]

A<—{1} {Automatically select first activity}
j<—1 {Last activity selected so far}
fori<—2tondo
If si >= fj then
A<-AU{i} {Add activity i1 to the set}
j<—1 {record last activity added}

return A
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The Activity Selection Problem

« Here are a set Oi Start ana i|n|s|i times

i1 2 3 4 5 6 7 8 9 10 I
.11 3 0 5 3 5 6 8 & 2 12
14 5 6 7 8 9 10 11 12 13 14

« What Is the maximum number of activities that can be
completed?
 {a;, a, 8,1} Can be completed
« Butso can {a,, a,, ag-a,;} which is a larger set
 But it is not unique, consider {a,, a,, ag-a;1}

29



Interval Representation

i 1 2 3 4 5 6 7 8 9 10 11

s 11 3 0 5 3 5 6 8 8 2 12

fil4 5 6 7 8 9 10 11 12 13 H
M
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o 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Why this Algorithm i1s Optimal?
« \We will show that this algorithm uses the
following properties
 The problem has the optimal substructure
property
 The algorithm satisfies the greedy-choice
property
e Thus, it Is Optimal
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Greedy-Choice Property

« Show there is an optimal solution that begins with a greedy
choice (with activity 1, which as the earliest finish time)

e Suppose A c S in an optimal solution

— Order the activities in A by finish time. The first activity in Ais k
» If k =1, the schedule A begins with a greedy choice

* If k # 1, show that there is an optimal solution B to S that begins with the
greedy choice, activity 1

— LetB=A—-{k} U {1}
- f, <f, = activities in B are disjoint (compatible)
* B has the same number of activities as A
* Thus, B is optimal
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Optimal Substructures
T = Once the greedy choice of activity 1 Is made, the problem reduces

to finding an optimal solution for the activity-selection problem over
those activities in S that are compatible with activity 1
« Optimal Substructure
« IfAisoptimalto S, then A’=A—{1} is optimal to S’={i €S: s; >f,}
 Why?
— If we could find a solution B’ to S’ with more activities than A’, adding

activity 1 to B’ would yield a solution B to S with more activities than A =
contradicting the optimality of A

— After each greedy choice is made, we are left with an optimization
problem of the same form as the original problem

« By induction on the number of choices made, making the greedy choice
at every step produces an optimal solution
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Huffman Codes

Widely used technigue for data compression
Assume the data to be a sequence of characters
Looking for an effective way of storing the data

Binary character code

— Uniquely represents a character by a binary string
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Fixed-Length Codes

E.g.: Data file containing 100,000 characters

a b C d e f
Frequency (thousands) | 45 13 | 12 | 16 | 9 5

3 bits needed
« a=000,b=001,c=010,d=011,e=100,f=101
* Requires: 100,000 - 3 = 300,000 bits
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Huffman Codes

e |dea:

— Use the frequencies of occurrence of characters to

build a optimal way of representing each character

a

b

C

d

e

Frequency (thousands)

45

13

12

16

9
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Variable-Length Codes

£.g.: Data file containing 100,000 characters

a b C d e f
Frequency (thousands) | 45 13 | 12 | 16 | 9 5

 Assign short codewords to frequent characters and
long codewords to infrequent characters

- a=0,b=101,c=100,d =111, e = 1101, f = 1100
« 45-1+13-3+12-3+16-3+9-4+5-4)-1,000

= 224,000 bits
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Prefix Codes

 Prefix codes:

— Codes for which no codeword is also a prefix of some

other codeword

— Better name would be “prefix-free codes”

« We can achieve optimal data compression using
prefix codes

— We will restrict our attention to prefix codes
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Encoding with Binary Character Codes

* Encoding

— Concatenate the codewords representing each

character in the file
* £.g..
—a=0,b=101,c=100,d=111,e =1101, f= 1100
—abc=0-101-100=0101100
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Decoding with Binary Character Codes

* Prefix codes simplify decoding

— No codeword is a prefix of another = the codeword
that begins an encoded file is unambiguous

« Approach
— ldentify the initial codeword
— Translate it back to the original character
— Repeat the process on the remainder of the file

* E£.4..
—a=0,b=101,c=100,d=111,e=1101, f=1100
— 001011101 = 0-0 -101.1101 =aabe
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Prefix Code Representation

* Binary tree whose leaves are the given characters

* Binary codeword

— the path from the root to the character, where 0 means “go to the
left child” and 1 means “go to the right child”

* Length of the codeword
— Length of the path from root to the character leaf (depth of node)
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Optimal Codes

* An optimal code Is always represented by a full
binary tree
— Every non-leaf has two children
— Fixed-length code is not optimal, variable-length is

 How many bits are required to encode a file?
— Let C be the alphabet of characters
— Let f(c) be the frequency of character ¢

— Let d+(c) be the depth of ¢’s leaf in the tree T
corresponding to a prefix code

B(T) = Z f(c)d; (c) the cost of tree T

ceC
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Constructing a Huffman Code

« A greedy algorithm that constructs an optimal prefix code
called a Huffman code

e Assume that:
- Cis a set of n characters
— Each character has a frequency f(c)
— The tree T is built in a bottom up manner

e |dea: 5 || e:9 ||c: 12||b: 13||d: 16||a: 45

— Start with a set of |C| leaves
— At each step, merge the two least frequent objects: the frequency of
the new node = sum of two frequencies

— Use a min-priority queue Q, keyed on f to identify the two least

frequent objects
50



Example

f: 5

c:12

b: 13

d: 16

a: 45

c: 12

b: 13

d: 16

a: 45

d: 16

a: 45




Alz.: HUFFMAN(C)
1.
2.
3.

4
5
0.
.
8
9

Building a Huffman Code

n«|C|
Q«C - O(n)

fori< 1ton-1 )

do allocate a new node z
left[z] <« x < EXTRACT-MIN(Q)

right[z] « y « EXTRACT-MIN(Q)
flz] « flx]+ fly]
INSERT (Q, 2) /

. return EXTRACT-MIN(Q)

Running time: O(nign)

> O(nlgn)

52



