
CSE 301

Combinatorial Optimization

Greedy Algorithms

2

Greedy Algorithm

• Greedy algorithms make the choice that looks

best at the moment.

• This locally optimal choice may lead to a globally

optimal solution (i.e. an optimal solution to the

entire problem).

3

When can we use Greedy algorithms?

We can use a greedy algorithm when the following are true:

1) The greedy choice property: A globally optimal solution can

be arrived at by making a locally optimal (greedy) choice.

1) The optimal substructure property: The optimal solution

contains within its optimal solutions to subproblems.

4

Designing Greedy Algorithms

1. Cast the optimization problem as one for which:

• we make a choice and are left with only one subproblem

to solve

2. Prove the GREEDY CHOICE

• that there is always an optimal solution to the original

problem that makes the greedy choice

3. Prove the OPTIMAL SUBSTRUCTURE:

• the greedy choice + an optimal solution to the resulting

subproblem leads to an optimal solution

5

Example: Making Change

• Instance: amount (in cents) to return to customer

• Problem: do this using fewest number of coins

• Example:

– Assume that we have an unlimited number of coins of

various denominations:
– 1c (pennies), 5c (nickels), 10c (dimes), 25c (quarters), 1$

(loonies)

– Objective: Pay out a given sum $5.64 with the

smallest number of coins possible.

6

The Coin Changing Problem

• Assume that we have an unlimited number of coins of various
denominations:

• 1c (pennies), 5c (nickels), 10c (dimes), 25c (quarters), 1$ (loonies)

• Objective: Pay out a given sum S with the smallest number of
coins possible.

• The greedy coin changing algorithm:
• This is a (m) algorithm where m = number of denominations.

while S > 0 do

c := value of the largest coin no larger than S;

num := S / c;

pay out num coins of value c;

S := S - num*c;

7

Example: Making Change

• E.g.:

$5.64 = $2 +$2 + $1 +

.25 + .25 + .10 +

.01 + .01 + .01 +.01

8

Making Change – A big problem

• Example 2: Coins are valued $.30, $.20, $.05,

$.01

– Does not have greedy-choice property, since $.40 is

best made with two $.20’s, but the greedy solution will

pick three coins (which ones?)

9

The Fractional Knapsack Problem
• Given: A set S of n items, with each item i having

– bi - a positive benefit

– wi - a positive weight

• Goal: Choose items with maximum total benefit but with weight at
most W.

• If we are allowed to take fractional amounts, then this is the fractional
knapsack problem.

– In this case, we let xi denote the amount we take of item i

– Objective: maximize

– Constraint:


Si

iii wxb)/(

ii

Si

i wxWx 


0,

10

Example

• Given: A set S of n items, with each item i having

– bi - a positive benefit

– wi - a positive weight

• Goal: Choose items with maximum total benefit but with total weight at
most W.

Weight:

Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50

10 ml

Solution: P
• 1 ml of 5 50$
• 2 ml of 3 40$
• 6 ml of 4 30$
• 1 ml of 2 4$

•Total Profit:124$

“knapsack”

11

The Fractional Knapsack Algorithm

• Greedy choice: Keep taking item with highest value (benefit to
weight ratio)

– Since

Algorithm fractionalKnapsack(S, W)

Input: set S of items w/ benefit bi and weight wi; max. weight W

Output: amount xi of each item i to maximize benefit w/ weight at most W

for each item i in S

xi  0

vi  bi / wi {value}

w  0 {total weight}

while w < W

remove item i with highest vi

xi  min{wi , W - w}

w  w + min{wi , W - w}





Si

iii

Si

iii xwbwxb)/()/(

12

The Fractional Knapsack Algorithm

• Running time: Given a collection S of n items, such that each item i
has a benefit bi and weight wi, we can construct a maximum-benefit
subset of S, allowing for fractional amounts, that has a total weight W in
O(nlogn) time.

– Use heap-based priority queue to store S

– Removing the item with the highest value takes O(logn) time

– In the worst case, need to remove all items

13

An Activity Selection Problem

(Conference Scheduling Problem)

• Input: A set of activities S = {a1,…, an}

• Each activity has start time and a finish time
– ai=(si, fi)

• Two activities are compatible if and only if their
interval does not overlap

• Output: a maximum-size subset of mutually
compatible activities

14

The Activity Selection Problem

• Here are a set of start and finish times

• What is the maximum number of activities that can be

completed?

• {a3, a9, a11} can be completed

• But so can {a1, a4, a8’ a11} which is a larger set

• But it is not unique, consider {a2, a4, a9’ a11}

15

Input: list of time-intervals L

Output: a non-overlapping subset S of the intervals

Objective: maximize |S| 3,7

2,4

5,8

6,9

1,11

10,12

0,3

The Activity Selection Problem

16

Input: list of time-intervals L

Output: a non-overlapping subset S of the intervals

Objective: maximize |S| 3,7

2,4

5,8

6,9

1,11

10,12

0,3

Answer = 3

The Activity Selection Problem

17

Algorithm 1:

1. sort the activities by the starting time

2. pick the first activity a

3. remove all activities conflicting with a

4. repeat

The Activity Selection Problem

18

Algorithm 1:

1. sort the activities by the starting time

2. pick the first activity “a”

3. remove all activities conflicting with “a”

4. repeat

The Activity Selection Problem

19

Algorithm 1:

1. sort the activities by the starting time

2. pick the first activity “a”

3. remove all activities conflicting with “a”

4. repeat

The Activity Selection Problem

20

Algorithm 2:

1. sort the activities by length

2. pick the shortest activity “a”

3. remove all activities conflicting with “a”

4. repeat

The Activity Selection Problem

21

Algorithm 2:

1. sort the activities by length

2. pick the shortest activity “a”

3. remove all activities conflicting with “a”

4. repeat

The Activity Selection Problem

22

Algorithm 2:

1. sort the activities by length

2. pick the shortest activity “a”

3. remove all activities conflicting with “a”

4. repeat

The Activity Selection Problem

23

Algorithm 3:

1. sort the activities by ending time

2. pick the activity which ends first

3. remove all activities conflicting with a

4. repeat

The Activity Selection Problem

24

The Activity Selection Problem

Algorithm 3:

1. sort the activities by ending time

2. pick the activity which ends first

3. remove all activities conflicting with a

4. repeat

25

The Activity Selection Problem

Algorithm 3:

1. sort the activities by ending time

2. pick the activity which ends first

3. remove all activities conflicting with a

4. repeat

26

The Activity Selection Problem

Algorithm 3:

1. sort the activities by ending time

2. pick the activity which ends first

3. remove all activities conflicting with a

4. repeat

27

Algorithm 3:

1. sort the activities by ending time

2. pick the activity a which ends first

3. remove all activities conflicting with a

4. repeat

Theorem:

Algorithm 3 gives an optimal solution to

the activity selection problem.

The Activity Selection Problem

28

Activity Selection Algorithm

Idea: At each step, select the activity with the smallest finish time

that is compatible with the activities already chosen.

Greedy-Activity-Selector(s, f)

n  length[s]

A  {1} {Automatically select first activity}

j  1 {Last activity selected so far}

for i  2 to n do

if si >= fj then

A A U {i} {Add activity i to the set}

j  i {record last activity added}

return A

29

The Activity Selection Problem

• Here are a set of start and finish times

• What is the maximum number of activities that can be

completed?

• {a3, a9, a11} can be completed

• But so can {a1, a4, a8’ a11} which is a larger set

• But it is not unique, consider {a2, a4, a9’ a11}

30

Interval Representation

31
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

32
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

33
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

34
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

35
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

36
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

37
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

38

Why this Algorithm is Optimal?

• We will show that this algorithm uses the

following properties

• The problem has the optimal substructure

property

• The algorithm satisfies the greedy-choice

property

• Thus, it is Optimal

39

Greedy-Choice Property

• Show there is an optimal solution that begins with a greedy

choice (with activity 1, which as the earliest finish time)

• Suppose A  S in an optimal solution

– Order the activities in A by finish time. The first activity in A is k

• If k = 1, the schedule A begins with a greedy choice

• If k  1, show that there is an optimal solution B to S that begins with the

greedy choice, activity 1

– Let B = A – {k}  {1}

• f1  fk  activities in B are disjoint (compatible)

• B has the same number of activities as A

• Thus, B is optimal

40

Optimal Substructures
– Once the greedy choice of activity 1 is made, the problem reduces

to finding an optimal solution for the activity-selection problem over

those activities in S that are compatible with activity 1

• Optimal Substructure

• If A is optimal to S, then A’ = A – {1} is optimal to S’={i S: si  f1}

• Why?

– If we could find a solution B’ to S’ with more activities than A’, adding

activity 1 to B’ would yield a solution B to S with more activities than A 

contradicting the optimality of A

– After each greedy choice is made, we are left with an optimization

problem of the same form as the original problem

• By induction on the number of choices made, making the greedy choice

at every step produces an optimal solution

41

Huffman Codes

• Widely used technique for data compression

• Assume the data to be a sequence of characters

• Looking for an effective way of storing the data

• Binary character code

– Uniquely represents a character by a binary string

42

Fixed-Length Codes

E.g.: Data file containing 100,000 characters

• 3 bits needed

• a = 000, b = 001, c = 010, d = 011, e = 100, f = 101

• Requires: 100,000  3 = 300,000 bits

a b c d e f

Frequency (thousands) 45 13 12 16 9 5

43

Huffman Codes

• Idea:

– Use the frequencies of occurrence of characters to

build a optimal way of representing each character

a b c d e f

Frequency (thousands) 45 13 12 16 9 5

44

Variable-Length Codes

E.g.: Data file containing 100,000 characters

• Assign short codewords to frequent characters and

long codewords to infrequent characters

• a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100

• (45  1 + 13  3 + 12  3 + 16  3 + 9  4 + 5  4) 1,000

= 224,000 bits

a b c d e f

Frequency (thousands) 45 13 12 16 9 5

45

Prefix Codes

• Prefix codes:

– Codes for which no codeword is also a prefix of some

other codeword

– Better name would be “prefix-free codes”

• We can achieve optimal data compression using

prefix codes

– We will restrict our attention to prefix codes

46

Encoding with Binary Character Codes

• Encoding

– Concatenate the codewords representing each

character in the file

• E.g.:

– a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100

– abc = 0  101  100 = 0101100

47

Decoding with Binary Character Codes

• Prefix codes simplify decoding

– No codeword is a prefix of another  the codeword

that begins an encoded file is unambiguous

• Approach

– Identify the initial codeword

– Translate it back to the original character

– Repeat the process on the remainder of the file

• E.g.:

– a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100

– 001011101 = 0 0  101  1101 = aabe

48

Prefix Code Representation

• Binary tree whose leaves are the given characters

• Binary codeword

– the path from the root to the character, where 0 means “go to the

left child” and 1 means “go to the right child”

• Length of the codeword

– Length of the path from root to the character leaf (depth of node)

100

86 14

58 28 14

a: 45 b: 13 c: 12 d: 16 e: 9 f: 5

0

0

0

1

1 1

1

1

0

0 0

100

a: 45

0

55

1

25 30

0 1

c: 12 b: 13

10

14

f: 5 e: 9

10

d: 16

10

49

Optimal Codes

• An optimal code is always represented by a full

binary tree

– Every non-leaf has two children

– Fixed-length code is not optimal, variable-length is

• How many bits are required to encode a file?

– Let C be the alphabet of characters

– Let f(c) be the frequency of character c

– Let dT(c) be the depth of c’s leaf in the tree T
corresponding to a prefix code





Cc

T cdcfTB)()()(the cost of tree T

50

Constructing a Huffman Code

• A greedy algorithm that constructs an optimal prefix code

called a Huffman code

• Assume that:

– C is a set of n characters

– Each character has a frequency f(c)

– The tree T is built in a bottom up manner

• Idea:

– Start with a set of |C| leaves

– At each step, merge the two least frequent objects: the frequency of

the new node = sum of two frequencies

– Use a min-priority queue Q, keyed on f to identify the two least

frequent objects

a: 45c: 12 b: 13f: 5 e: 9 d: 16

51

Example

a: 45c: 12 b: 13f: 5 e: 9 d: 16 a: 45c: 12 b: 13 d: 1614

f: 5 e: 9

0 1

d: 16

c: 12 b: 13

25 a: 45

f: 5 e: 9

14
0 01 1

f: 5 e: 9

14c: 12 b: 13

25

d: 16

30 a: 45
0 0

0

1 1

1

a: 45

f: 5 e: 9

14c: 12 b: 13

25

d: 16

30

55
0

0 0

0

1

11

1

f: 5 e: 9

14c: 12 b: 13

25

d: 16

30

55a: 45

1000

0

0 0

0

1

1

11

1

52

Building a Huffman Code

Alg.: HUFFMAN(C)

1. n  C 

2. Q  C

3. for i  1 to n – 1

4. do allocate a new node z

5. left[z]  x  EXTRACT-MIN(Q)

6. right[z]  y  EXTRACT-MIN(Q)

7. f[z]  f[x] + f[y]

8. INSERT (Q, z)

9. return EXTRACT-MIN(Q)

O(n)

O(nlgn)

Running time: O(nlgn)

