
1

Huffman Codes

• Widely used technique for data compression

• Assume the data to be a sequence of characters

• Looking for an effective way of storing the data

• Binary character code

– Uniquely represents a character by a binary string

2

Fixed-Length Codes

E.g.: Data file containing 100,000 characters

• 3 bits needed

• a = 000, b = 001, c = 010, d = 011, e = 100, f = 101

• Requires: 100,000  3 = 300,000 bits

a b c d e f

Frequency (thousands) 45 13 12 16 9 5

3

Huffman Codes

• Idea:

– Use the frequencies of occurrence of characters to

build a optimal way of representing each character

a b c d e f

Frequency (thousands) 45 13 12 16 9 5

4

Variable-Length Codes

E.g.: Data file containing 100,000 characters

• Assign short codewords to frequent characters and

long codewords to infrequent characters

• a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100

• (45  1 + 13  3 + 12  3 + 16  3 + 9  4 + 5  4) 1,000

= 224,000 bits

a b c d e f

Frequency (thousands) 45 13 12 16 9 5

5

Prefix Codes

• Prefix codes:

– Codes for which no codeword is also a prefix of some

other codeword

– Better name would be “prefix-free codes”

• We can achieve optimal data compression using

prefix codes

– We will restrict our attention to prefix codes

6

Encoding with Binary Character Codes

• Encoding

– Concatenate the codewords representing each

character in the file

• E.g.:

– a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100

– abc = 0  101  100 = 0101100

7

Decoding with Binary Character Codes

• Prefix codes simplify decoding

– No codeword is a prefix of another  the codeword

that begins an encoded file is unambiguous

• Approach

– Identify the initial codeword

– Translate it back to the original character

– Repeat the process on the remainder of the file

• E.g.:

– a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100

– 001011101 = 0 0  101  1101 = aabe

8

Prefix Code Representation

• Binary tree whose leaves are the given characters

• Binary codeword

– the path from the root to the character, where 0 means “go to the

left child” and 1 means “go to the right child”

• Length of the codeword

– Length of the path from root to the character leaf (depth of node)

100

86 14

58 28 14

a: 45 b: 13 c: 12 d: 16 e: 9 f: 5

0

0

0

1

1 1

1

1

0

0 0

100

a: 45

0

55

1

25 30

0 1

c: 12 b: 13

10

14

f: 5 e: 9

10

d: 16

10

9

Optimal Codes

• An optimal code is always represented by a full

binary tree

– Every non-leaf has two children

– Fixed-length code is not optimal, variable-length is

• How many bits are required to encode a file?

– Let C be the alphabet of characters

– Let f(c) be the frequency of character c

– Let dT(c) be the depth of c’s leaf in the tree T
corresponding to a prefix code





Cc

T cdcfTB)()()(the cost of tree T

10

Constructing a Huffman Code

• A greedy algorithm that constructs an optimal prefix code

called a Huffman code

• Assume that:

– C is a set of n characters

– Each character has a frequency f(c)

– The tree T is built in a bottom up manner

• Idea:

– Start with a set of |C| leaves

– At each step, merge the two least frequent objects: the frequency of

the new node = sum of two frequencies

– Use a min-priority queue Q, keyed on f to identify the two least

frequent objects

a: 45c: 12 b: 13f: 5 e: 9 d: 16

11

Example

a: 45c: 12 b: 13f: 5 e: 9 d: 16 a: 45c: 12 b: 13 d: 1614

f: 5 e: 9

0 1

d: 16

c: 12 b: 13

25 a: 45

f: 5 e: 9

14
0 01 1

f: 5 e: 9

14c: 12 b: 13

25

d: 16

30 a: 45
0 0

0

1 1

1

a: 45

f: 5 e: 9

14c: 12 b: 13

25

d: 16

30

55
0

0 0

0

1

11

1

f: 5 e: 9

14c: 12 b: 13

25

d: 16

30

55a: 45

1000

0

0 0

0

1

1

11

1

12

Building a Huffman Code

Alg.: HUFFMAN(C)

1. n  C 

2. Q  C

3. for i  1 to n – 1

4. do allocate a new node z

5. left[z]  x  EXTRACT-MIN(Q)

6. right[z]  y  EXTRACT-MIN(Q)

7. f[z]  f[x] + f[y]

8. INSERT (Q, z)

9. return EXTRACT-MIN(Q)

O(n)

O(nlgn)

Running time: O(nlgn)

