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CSE 301

Lecture 1

Dynamic Programming
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Dynamic Programming

• An algorithm design technique (like divide and 

conquer)

• Divide and conquer

– Partition the problem into independent subproblems

– Solve the subproblems recursively

– Combine the solutions to solve the original problem
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DP - Two key ingredients

• Two key ingredients for an optimization problem 

to be suitable for a dynamic-programming 

solution:

Each substructure is 

optimal.

(Principle of optimality)

1. optimal substructures 2. overlapping subproblems

Subproblems are dependent.

(otherwise, a divide-and-

conquer approach is the 

choice.)
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Three basic components

• The development of a dynamic-programming 

algorithm has three basic components:

– The recurrence relation (for defining the value of an 

optimal solution);

– The tabular computation (for computing the value of 

an optimal solution);

– The traceback (for delivering an optimal solution). 
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Fibonacci numbers
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The Fibonacci numbers are defined by the 

following recurrence:
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How to compute F10？

F10

F9

F8

F8

F7

F7

F6

……
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Dynamic Programming

• Applicable when subproblems are not independent

– Subproblems share subsubproblems

E.g.: Fibonacci numbers: 

• Recurrence: F(n) = F(n-1) + F(n-2)

• Boundary conditions: F(1) = 0, F(2) = 1

• Compute: F(5) = 3, F(3) = 1, F(4) = 2

– A divide and conquer approach would repeatedly solve the 

common subproblems

– Dynamic programming solves every subproblem just once and 

stores the answer in a table
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Tabular computation

• The tabular computation can avoid 

recompuation.

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

0 1 1 2 3 5 8 13 21 34 55

Result
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Dynamic Programming Algorithm

1. Characterize the structure of an optimal 

solution

2. Recursively define the value of an optimal 

solution

3. Compute the value of an optimal solution in a 

bottom-up fashion

4. Construct an optimal solution from computed 

information
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Longest increasing subsequence(LIS)

• The longest increasing subsequence is to find 

a longest increasing subsequence of a given 

sequence of distinct integers a1a2…an .

e.g. 9   2   5   3   7   11   8   10   13   6

2   3   7

5   7   10   13

9   7   11

3   5   11   13

are increasing subsequences.

are not increasing subsequences.

We want to find a longest one.



11

A naive approach for LIS

• Let L[i] be the length of a longest increasing 

subsequence ending at position i.
L[i] = 1 + max j = 0..i-1{L[j] | aj < ai}

(use a dummy a0 = minimum, and L[0]=0)

Index 0 1 2 3 4 5 6 7 8 9 10

Input 0 9 2 5 3 7 11 8 10 13 6

Length 0

Prev -1

Path 1

1

0

1

1

0

1

2

2

1

2

2

1

3

4

2

4

5

2

4

5

2

5

7

2

6

8

2

3

4

2

The subsequence 2, 3, 7, 8, 10, 13 is a 

longest increasing subsequence.

This method runs in O(n2) time.
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An O(n log n) method for LIS

• Define BestEnd[k] to be the smallest number 

of an increasing subsequence of length k.

9   2   5   3  7  11   8   10   13    6

9 2 2

5

2

3

2

3

7

2

3

7

11

2

3

7

8

2

3

7

8

10

2

3

7

8

10

13

BestEnd[1]

BestEnd[2]

BestEnd[3]

BestEnd[4]

BestEnd[5]

BestEnd[6]
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An O(n log n) method for LIS

• Define BestEnd[k] to be the smallest number 

of an increasing subsequence of length k.

9   2   5   3  7  11   8    10  13   6

9 2 2

5

2

3

2

3

7

2

3

7

11

2

3

7

8

2

3

7

8

10

2

3

7

8

10

13

2

3

6

8

10

13

BestEnd[1]

BestEnd[2]

BestEnd[3]

BestEnd[4]

BestEnd[5]

BestEnd[6]

For each position, we perform 

a binary search to update 

BestEnd. Therefore, the 

running time is O(n log n).



Sum of Subset Problem

• Problem:

– Suppose you are given N positive integer numbers 

A[1…N] and it is required to produce another number 

K using a subset of A[1..N] numbers. How can it be 

done using Dynamic programming approach?

• Example:

N = 6, A[1..N] = {2, 5, 8, 12, 6, 14}, K = 19

Result: 2 + 5 + 12 = 19

14



Coin Change Problem

• Suppose you are given n types of coin - C1, C2, 

… , Cn coin, and another number K.

• Is it possible to make K using above types of 

coin?

– Number of each coin is infinite

– Number of each coin is finite

• Find minimum number of coin that is required to 

make K?

– Number of each coin is infinite

– Number of each coin is finite
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Maximum-sum interval

• Given a sequence of real numbers a1a2…an , 

find a consecutive subsequence with the 

maximum sum.

9 –3 1 7 –15 2 3 –4 2 –7 6 –2 8 4 -9

For each position, we can compute the maximum-sum 

interval starting at that position in O(n) time. Therefore, a 

naive algorithm runs in O(n2) time.

Try Yourself
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The Knapsack Problem

• The 0-1 knapsack problem

– A thief robbing a store finds n items: the i-th item is 

worth vi dollars and weights wi pounds (vi, wi integers)

– The thief can only carry W pounds in his knapsack

– Items must be taken entirely or left behind

– Which items should the thief take to maximize the 

value of his load?

• The fractional knapsack problem

– Similar to above

– The thief can take fractions of items 
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The 0-1 Knapsack Problem

• Thief has a knapsack of capacity W

• There are n items: for i-th item value vi and 

weight wi

• Goal: 

– find xi such that for all xi = {0, 1}, i = 1, 2, .., n

 wixi  W and 

 xivi is maximum
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50

0-1 Knapsack - Greedy Strategy

• E.g.:

10
20

30

50

Item 1

Item 2

Item 3

$60 $100 $120

10

20

$60

$100

+

$160

50

20 $100

$120

+

$220

30

$6/pound $5/pound $4/pound

• None of the solutions involving the greedy 

choice (item 1) leads to an optimal solution

– The greedy choice property does not hold
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0-1 Knapsack - Dynamic Programming

• P(i, w) – the maximum profit that can be 

obtained from items 1 to i, if the 

knapsack has size w

• Case 1: thief takes item i

P(i, w) =

• Case 2: thief does not take item i

P(i, w) =

vi + P(i - 1, w-wi)

P(i - 1, w)
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0-1 Knapsack - Dynamic Programming

0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0:

n

1 w - wi W

i-1

0

first

P(i, w) = max {vi + P(i - 1, w-wi), P(i - 1, w) }  

Item i was taken Item i was not taken

i

w

second
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P(i, w) = max {vi + P(i - 1, w-wi), P(i - 1, w) }

0 0 0 0 0 0

0

0

0

0

Item Weight Value

1 2 12

2 1 10

3 3 20

4 2 15
0 1 2 3 4 5

1

2

3

4

W = 5

0

12 12 12 12

10 12 22 22 22

10 12 22 30 32

10 15 25 30 37

P(1, 1) = 

P(1, 2) = 

P(1, 3) = 

P(1, 4) = 

P(1, 5) = 

P(2, 1)= 

P(2, 2)= 

P(2, 3)= 

P(2, 4)= 

P(2, 5)= 

P(3, 1)= 

P(3, 2)= 

P(3, 3)= 

P(3, 4)= 

P(3, 5)= 

P(4, 1)= 

P(4, 2)= 

P(4, 3)= 

P(4, 4)= 

P(4, 5)= 

max{12+0, 0} = 12

max{12+0, 0} = 12

max{12+0, 0} = 12

max{12+0, 0} = 12

max{10+0, 0} = 10

max{10+0, 12} = 12

max{10+12, 12} = 22

max{10+12, 12} = 22

max{10+12, 12} = 22

P(2,1) = 10

P(2,2) = 12

max{20+0, 22}=22

max{20+10,22}=30

max{20+12,22}=32

P(3,1) = 10

max{15+0, 12} = 15

max{15+10, 22}=25

max{15+12, 30}=30

max{15+22, 32}=37

0

P(0, 1) = 0

Example:
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Reconstructing the Optimal Solution

0 0 0 0 0 0

0

0

0

0

0 1 2 3 4 5

1

2

3

4

0

12 12 12 12

10 12 22 22 22

10 12 22 30 32

10 15 25 30 37

0

• Start at P(n, W)

• When you go left-up  item i has been taken

• When you go straight up  item i has not been 

taken

• Item 4

• Item 2

• Item 1
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Overlapping Subproblems

0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0:

n

1 W

i-1

0

P(i, w) = max {vi + P(i - 1, w-wi), P(i - 1, w) }  

i

w

E.g.: all the subproblems shown in grey may 

depend on P(i-1, w)
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Longest Common Subsequence (LCS)

Application: comparison of two DNA strings

Ex: X= {A B C B D A B }, Y= {B D C A B A} 

Longest Common Subsequence: 

X =  A B C B D A B

Y =      B D C A B A

Brute force algorithm would compare each 

subsequence of X with the symbols in Y
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Longest Common Subsequence

• Given two sequences

X = x1, x2, …, xm

Y = y1, y2, …, yn

find a maximum length common subsequence 

(LCS) of X and Y

• E.g.:

X = A, B, C, B, D, A, B

• Subsequences of X:

– A subset of elements in the sequence taken in order

A, B, D, B, C, D, B, etc.
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Example

X = A, B, C, B, D, A, B X = A, B, C, B, D, A, B

Y = B, D, C, A, B, A Y = B, D, C, A, B, A

 B, C, B, A and B, D, A, B are longest common 

subsequences of X and Y (length = 4) 

 B, C, A, however is not a LCS of X and Y
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Brute-Force Solution

• For every subsequence of X, check whether it’s 

a subsequence of Y

• There are 2m subsequences of X to check

• Each subsequence takes (n) time to check

– scan Y for first letter, from there scan for second, and 

so on

• Running time: (n2m)
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LCS Algorithm

• First we’ll find the length of LCS. Later we’ll modify 

the algorithm to find LCS itself.

• Define Xi, Yj to be the prefixes of X and Y of length i

and j respectively

• Define c[i,j] to be the length of LCS of Xi and Yj

• Then the length of LCS of X and Y will be c[m,n]










otherwise]),1[],1,[max(

],[][ if1]1,1[
],[

jicjic

jyixjic
jic
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LCS recursive solution

• We start with i = j = 0 (empty substrings of x and y)

• Since X0 and Y0 are empty strings, their LCS is 

always empty (i.e. c[0,0] = 0)

• LCS of empty string and any other string is empty, so 

for every i and j: c[0, j] = c[i,0] = 0










otherwise]),1[],1,[max(

],[][ if1]1,1[
],[

jicjic

jyixjic
jic
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LCS recursive solution

• When we calculate c[i,j], we consider two cases:

• First case: x[i]=y[j]: 

– one more symbol in strings X and Y matches, so the length 

of LCS Xi and Yj equals to the length of LCS of smaller 

strings Xi-1 and Yi-1 , plus 1










otherwise]),1[],1,[max(

],[][ if1]1,1[
],[

jicjic

jyixjic
jic
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LCS recursive solution

• Second case: x[i] != y[j]

– As symbols don’t match, our solution is not improved, and 

the length of LCS(Xi , Yj) is the same as before (i.e. 

maximum of LCS(Xi, Yj-1) and LCS(Xi-1,Yj)










otherwise]),1[],1,[max(

],[][ if1]1,1[
],[

jicjic

jyixjic
jic

Why not just take the length of LCS(Xi-1, Yj-1) ?
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3. Computing the Length of the LCS

0 if i = 0 or j = 0

c[i, j] = c[i-1, j-1] + 1 if xi = yj

max(c[i, j-1], c[i-1, j]) if xi  yj

0 0 0 0 0 0

0

0

0

0

0

yj:

xm

y1 y2 yn

x1

x2

xi

j

i

0 1 2 n

m

1

2

0

first

second
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Additional Information

0 if i,j = 0

c[i, j] =  c[i-1, j-1] + 1 if xi = yj

max(c[i, j-1], c[i-1, j]) if xi  yj

0 0 0 0 0 0

0

0

0

0

0

yj:

D

A C F

A

B

xi

j

i

0 1 2 n

m

1

2

0

A matrix b[i, j]:

• For a subproblem [i, j] it 

tells us what choice was 

made to obtain the 

optimal value

• If xi = yj

b[i, j] = “   ”

• Else, if

c[i - 1, j] ≥ c[i, j-1]

b[i, j] = “  ”

else

b[i, j] = “  ”

3

3 C

D
b & c:

c[i,j-1]

c[i-1,j]
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LCS-LENGTH(X, Y, m, n)

1. for i ← 1 to m
2. do c[i, 0] ← 0
3. for j ← 0 to n
4. do c[0, j] ← 0
5. for i ← 1 to m
6. do for j ← 1 to n
7. do if xi = yj

8. then c[i, j] ← c[i - 1, j - 1] + 1
9. b[i, j ] ← “    ”
10. else if c[i - 1, j] ≥ c[i, j - 1]
11. then c[i, j] ← c[i - 1, j]
12. b[i, j] ← “↑”
13. else c[i, j] ← c[i, j - 1]
14. b[i, j] ← “←”
15.return c and b

The length of the LCS if one of the sequences

is empty is zero

Case 1: xi = yj

Case 2: xi  yj

Running time: (mn)
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Example

X = A, B, C, B, D, A

Y = B, D, C, A, B, A

0 if i = 0 or j = 0

c[i, j] =   c[i-1, j-1] + 1 if xi = yj

max(c[i, j-1], c[i-1, j])  if xi  yj

0 1 2 63 4 5
yj B D AC A B

5

1

2

0

3

4

6

7

D

A

B

xi

C

B

A

B

0 0 00 0 00

0

0

0

0

0

0

0


0


0


0 1 1 1

1 1 1

1 2 2


1


1 2 2


2


2

1

1


2


2 3 3


1 2


2


2


3


3


1


2


3


2 3 4

1

2


2


3 4


4

If xi = yj

b[i, j] = “   ”

Else if

c[i - 1, j] ≥ c[i, j-1]

b[i, j] = “  ”

else

b[i, j] = “  ”
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4. Constructing a LCS

• Start at b[m, n] and follow the arrows

• When we encounter a “    “ in b[i, j]  xi = yj is an element 

of the LCS 
0 1 2 63 4 5

yj B D AC A B

5

1

2

0

3

4

6

7

D

A

B

xi

C

B

A

B

0 0 00 0 00

0

0

0

0

0

0

0


0


0


0 1 1 1

1 1 1

1 2 2


1


1 2 2


2


2

1

1


2


2 3 3


1 2


2


2


3


3


1


2


3


2 3 4

1

2


2


3 4


4
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PRINT-LCS(b, X, i, j)

1. if i = 0 or j = 0

2. then return

3. if b[i, j] = “   ”

4. then PRINT-LCS(b, X, i - 1, j - 1)

5. print xi

6. elseif b[i, j] = “↑”

7. then PRINT-LCS(b, X, i - 1, j)

8. else PRINT-LCS(b, X, i, j - 1)

Initial call: PRINT-LCS(b, X, length[X], length[Y])

Running time: (m + n)
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Improving the Code

• If we only need the length of the LCS

– LCS-LENGTH works only on two rows of c at a time

• The row  being computed and the previous row

– We can reduce the asymptotic space requirements by 

storing only these two rows
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LCS Algorithm Running Time

• LCS algorithm calculates the values of each entry of 

the array c[m,n]

• So what is the running time?

O(m*n)

since each c[i,j] is calculated in constant 

time, and there are m*n elements in the 

array



Rock Climbing Problem

• A rock climber wants to get 
from the bottom of a rock to 
the top by the safest possible 
path.

• At every step, he reaches for 
handholds above him; some 
holds are safer than other.

• From every place, he can only 
reach a few nearest 
handholds.



Rock climbing (cont)

At every step our climber can reach exactly three 

handholds: above, above and to the right and 

above and to the left.

Suppose we have a 
wall instead of the rock. 

There is a table of “danger ratings” provided. The 
“Danger” of a path is the sum of danger ratings of 
all handholds on the path.  

5 3

4

2



Rock Climbing (cont)

•We represent the wall as a 
table.

•Every cell of the table contains 
the danger rating of the 
corresponding block. 

2 8 9 5 8

4 4 6 2 3

5 7 5 6 1

3 2 5 4 8

The obvious greedy algorithm does not give an
optimal solution. 

2

5

4

2

The rating of this path is 13.

The rating of an optimal path is 12.

4

1

2

5

However, we can solve this problem by a 
dynamic programming strategy in polynomial 
time.



Idea: once we know the rating of a path to 

every handhold on a layer, we can easily 

compute the ratings of the paths to the 

holds on the next layer. 

For the top  layer, that gives us an 

answer to the problem itself.



For every handhold, there is only one 

“path” rating. Once we have reached a 

hold, we don’t need to know how we got 

there to move to the next level. 

This is called an “optimal substructure” property. 

Once we know optimal solutions to 

subproblems, we can compute an optimal 

solution to the problem itself.



Recursive solution:

To find the best way to get to stone j in row 

i, check the cost of getting to the stones 

• (i-1,j-1), 

• (i-1,j) and 

• (i-1,j+1), and take the cheapest. 

Problem: each recursion level makes three 

calls for itself, making a total of 3n calls –

too much!



Solution - memorization

We query the value of A(i,j) over and over 

again. 

Instead of computing it each time, we can 

compute it once, and remember the value.

A simple recurrence allows us to compute 

A(i,j) from values below. 



Dynamic programming 

• Step 1: Describe an array of values you want 
to compute. 

• Step 2: Give a recurrence for computing later 
values from earlier (bottom-up).

• Step 3: Give a high-level program.

• Step 4: Show how to use values in the array 
to compute an optimal solution.



Rock climbing: step 1.

• Step 1: Describe an array of values you want 

to compute.

• For 1  i  n and 1  j  m,  define A(i,j) to be 

the cumulative rating of the least dangerous 

path from the bottom to the hold (i,j).

• The rating of the best path to the top will be 

the minimal value in the last row of the array.  



Rock climbing: step 2.

• Step 2: Give a recurrence for computing later values from 
earlier (bottom-up).

• Let C(i,j) be the rating of the hold (i,j). There are three 
cases for A(i,j):

• Left (j=1): C(i,j)+min{A(i-1,j),A(i-1,j+1)}

• Right (j=m): C(i,j)+min{A(i-1,j-1),A(i-1,j)}

• Middle: C(i,j)+min{A(i-1,j-1),A(i-1,j),A(i-1,j+1)}

• For the first row (i=1), A(i,j)=C(i,j).



Rock climbing: simpler step 2

• Add initialization row: A(0,j)=0. No danger to 
stand on the ground. 

• Add two initialization columns:         
A(i,0)=A(i,m+1)=. It is infinitely dangerous to 
try to hold on to the air where the wall ends. 

• Now the recurrence becomes, for every i,j: 

A(i,j) = C(i,j)+min{A(i-1,j-1),A(i-1,j),A(i-1,j+1)}



Rock climbing: example

C(i,j): A(i,j):

i\j 0 1 2 3 4 5 6

0

1

2

3

4

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  

2  

3  

4  

Initialization: A(i,0)=A(i,m+1)=, A(0,j)=0

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8



Rock climbing: example

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  

3  

4  

The values in the first row are the same as C(i,j).

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  

2  

3  

4  



Rock climbing: example

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

A(2,1)=5+min{,3,2}=7.

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 

3  

4  



Rock climbing: example

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

A(2,1)=5+min{,3,2}=7. A(2,2)=7+min{3,2,5}=9 

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 9 

3  

4  



Rock climbing: example

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

A(2,1)=5+min{,3,2}=7. A(2,2)=7+min{3,2,5}=9
A(2,3)=5+min{2,5,4}=7.  

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 9 7 

3  

4  



Rock climbing: example

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

The best cumulative rating on the second row is 5.

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 9 7 10 5 

3  

4  



Rock climbing: example

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

The best cumulative rating on the third row is 7.

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 9 7 10 5 

3  11 11 13 7 8 

4  



Rock climbing: example

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

The best cumulative rating on the last row is 12.

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 9 7 10 5 

3  11 11 13 7 8 

4  13 19 16 12 15 



Rock climbing: example

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

The best cumulative rating on the last row is 12.

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 9 7 10 5 

3  11 11 13 7 8 

4  13 19 16 12 15 

So the rating of the best path to the top 
is 12. 



Rock climbing example: step 4

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 9 7 10 5 

3  11 11 13 7 8 

4  13 19 16 12 15 

To find the actual path we need to retrace backwards
the decisions made during the calculation of A(i,j).  



Rock climbing example: step 4

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 9 7 10 5 

3  11 11 13 7 8 

4  13 19 16 12 15 The last hold was (4,4).

To find the actual path we need to retrace backwards
the decisions made during the calculation of A(i,j).  



Rock climbing example: step 4

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 9 7 10 5 

3  11 11 13 7 8 

4  13 19 16 12 15 The hold before the last
was  (3,4), since 
min{13,7,8} was 7. 

To find the actual path we need to retrace backwards
the decisions made during the calculation of A(i,j).  



Rock climbing example: step 4

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

To find the actual path we need to retrace backwards
the decisions made during the calculation of A(i,j).  

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 9 7 10 5 

3  11 11 13 7 8 

4  13 19 16 12 15 The hold before that 
was  (2,5), since 

min{7,10,5} was 5.



Rock climbing example: step 4

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

To find the actual path we need to retrace backwards
the decisions made during the calculation of A(i,j).  

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 9 7 10 5 

3  11 11 13 7 8 

4  13 19 16 12 15 Finally, the first hold 
was  (1,4), since 
min{5,4,8} was 4. 



Rock climbing example: step 4

3 2 5 4 8

5 7 5 6 1

4 4 6 2 3

2 8 9 5 8

C(i,j): A(i,j):

We are done!   

i\j 0 1 2 3 4 5 6

0  0 0 0 0 0 

1  3 2 5 4 8 

2  7 9 7 10 5 

3  11 11 13 7 8 

4  13 19 16 12 15 



Printing out the solution recursively

PrintBest(A,i,j) // Printing the best path ending at (i,j)

if (i==0) OR (j=0) OR (j=m+1)

return;     

if (A[i-1,j-1]<=A[i-1,j]) AND (A[i-1,j-1]<=A[i-1,j+1])

PrintBest(A,i-1,j-1); 

elseif (A[i-1,j]<=A[i-1,j-1]) AND (A[i-1,j]<=A[i-1,j+1])

PrintBest(A,i-1,j); 

elseif (A[i-1,j+1]<=A[i-1,j-1]) AND (A[i-1,j+1]<=A[i-1,j])

PrintBest(A,i-1,j+1); 

printf(i,j)


