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Introduction

What is string matching?
 Finding all occurrences of a pattern in a given 

text (or body of text)

Many applications
 While using editor/word processor/browser

 Login name & password checking

 Virus detection

 Header analysis in data communications

 DNA sequence analysis
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String-Matching Problem

The text is in an array T [1..n] of length n

The pattern is in an array P [1..m] of length 
m

Elements of T and P are characters from a 
finite alphabet 

 E.g.,  = {0,1} or  = {a, b, …, z}

Usually T and P are called strings of 
characters
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String-Matching Problem   …contd

We say that pattern P occurs with shift s in 
text T  if:

a) 0 ≤ s ≤ n-m and 

b) T [(s+1)..(s+m)] = P [1..m]

If P occurs with shift s in T, then s is a valid 
shift, otherwise s is an invalid shift

String-matching problem: finding all valid 
shifts for a given T and P
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Example 1

a b c a b a a b c a b a c

a b a a

text T

pattern P s = 3

shift s = 3 is a valid shift

(n=13, m=4 and 0 ≤ s ≤ n-m holds)

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4
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Example 2

a b c a b a a b c a b a a

a b a a

text T

pattern P

s = 3

a b a a

a b a a

s = 9

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4
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Terminology

Concatenation of 2 strings x and y is xy
 E.g., x=“sri”, y=“lanka”  xy = “srilanka”

A string w is a prefix of a string x, if x=wy
for some string y

 E.g., “srilan” is a prefix of “srilanka”

A string w is a suffix of a string x, if x=yw
for some string y

 E.g., “anka” is a suffix of “srilanka”
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Naïve String-Matching Algorithm
Input: Text strings T [1..n] and P[1..m]

Result: All valid shifts displayed

NAÏVE-STRING-MATCHER (T, P)

n ← length[T]

m ← length[P]

for s ← 0 to n-m

if P[1..m] = T [(s+1)..(s+m)]

print “pattern occurs with shift” s
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Analysis: Worst-case Example

a a a a a a a a a a a a atext T

pattern P

a a a b

a a a b

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4

a a a b
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Worst-case Analysis

There are m comparisons for each 
shift in the worst case

There are n-m+1 shifts

So, the worst-case running time is    
Θ((n-m+1)m)

Naïve method is inefficient because 
information from a shift is not used 
again
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Other Approaches

Naïve view is that it is always necessary to examine 
every character in T in order to locate a pattern P as 
a substring.

This is not always the case…
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The KMP Algorithm

Knuth-Morris-Pratt’s algorithm 
compares the pattern to the 
text in left-to-right, but shifts 
the pattern more intelligently.

When a mismatch occurs, 
what is the most we can shift 
the pattern so as to avoid 
redundant comparisons?

Answer: the largest prefix of 
P[1..j] that is a suffix of P[2..j]

x

j

. . a b a a b . . . . .

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing

here
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KMP Prefix Function
Knuth-Morris-Pratt’s 
algorithm preprocesses the 
pattern to find matches of 
prefixes of the pattern with 
the pattern itself

The Prefix function F(j) is 
defined as the size of the 
largest prefix of P[1..j] that is 
also a suffix of P[2..j]

Knuth-Morris-Pratt’s 
algorithm modifies the brute-
force algorithm so that if a 
mismatch occurs at P[j+1] 
T[i] we set  j  F(j)

j 1 2 3 4 5 6

P[j] a b a a b a

F(j) 0 0 1 1 2 3

x

j+1

. . a b a a b . . . . .

a b a a b a

F( j ) 

a b a a b a



Components of KMP algorithm

The prefix function, Π
The prefix function,Π for a pattern encapsulates 

knowledge about how the pattern matches 
against shifts of itself. This information can 
be used to avoid useless shifts of the pattern 
‘p’. In other words, this enables avoiding 
backtracking on the string ‘S’.
The KMP Matcher

With string ‘S’, pattern ‘p’ and prefix function ‘Π’ 
as inputs, finds the occurrence of ‘p’ in ‘S’ and 
returns the number of shifts of ‘p’ after which 
occurrence is found. 



The prefix function, Π

Following pseudocode computes the prefix fucnction, Π:

Compute-Prefix-Function (p)
1  m  length[p]               //’p’ pattern to be matched
2  Π[1]  0 
3  k  0
4 for q  2 to m

5 do while k > 0 and p[k+1] != p[q]
6                       do k  Π[k]

7 If p[k+1] = p[q]
8 then k  k +1
9 Π[q]  k

10     return Π



Example: compute Π for the pattern ‘p’ below: 

p a b a b a c a

Initially: m = length[p] = 7
Π[1] = 0

k = 0                                               

Step 1: q = 2, k=0                                    
Π[2] = 0

Step 2: q = 3, k = 0,
Π[3] = 1

Step 3: q = 4, k = 1
Π[4] = 2

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1

q 1 2 3 4 5 6 7

p a b a b a c A

Π 0 0 1 2



Step 4: q = 5, k =2

Π[5] = 3

Step 5: q = 6, k = 3

Π[6] = 0

Step 6: q = 7, k = 0 

Π[7] = 1

After iterating 6 times, the prefix 
function computation is 
complete:                        

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 0

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 0 1

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 0 1



The KMP Matcher

The KMP Matcher, with pattern ‘p’, string ‘S’ and prefix function ‘Π’ as input, finds a match of p 
in S.

Following pseudocode computes the matching component of KMP algorithm:
KMP-Matcher(S,p)
1 n  length[S]                                   
2 m  length[p]
3 Π  Compute-Prefix-Function(p)
4 q  0                                                          //number of characters matched  
5 for i  1 to n                                              //scan S from left to right

6      do while q > 0 and p[q+1] != S[i]
7 do q  Π[q]                              //next character does not match

8 if p[q+1] = S[i]
9 then q  q + 1                            //next character matches

10 if q = m                                           //is all of p matched?
11 then print “Pattern occurs with shift” i – m
12 q  Π[ q]                             // look for the next match

Note: KMP finds every occurrence of a ‘p’ in ‘S’.  That is why KMP does not terminate in step 12, 
rather it searches remainder of ‘S’ for any more occurrences of ‘p’.



Illustration: given a String ‘S’ and pattern ‘p’ as 
follows: 

S                 b a c b a b a b a b a c a c a

p a b a b a c a

Let us execute the KMP algorithm to find 
whether ‘p’ occurs in ‘S’. 

For ‘p’ the prefix function, Π was computed previously and is as follows:

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 1 1



b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

Initially: n = size of S = 15; 
m = size of p = 7

Step 1: i = 1, q = 0
comparing p[1] with S[1]

S

p

P[1] does not match with S[1].  ‘p’ will be shifted one position to the right.

S

p a b a b a c a

Step 2: i = 2, q = 0
comparing p[1] with S[2]

P[1] matches S[2]. Since there is a match, p is not shifted.

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 1 1



Step 3: i = 3, q = 1

b a c b a b a b a b a c a a b

Comparing p[2] with S[3]

S

a b a b a c a

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c ap

S

p

S

p

p[2] does not match with S[3]

Backtracking on p, comparing p[1] and S[3]

Step 4: i = 4, q = 0 comparing p[1] with S[4] p[1] does not match with S[4]

Step 5: i = 5, q = 0 
comparing p[1] with S[5] p[1] matches with S[5]

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 1 1



b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c a

a b a b a c a

Step 6: i = 6, q = 1

S

p

Comparing p[2] with S[6] p[2] matches with S[6]

S

p

Step 7: i = 7, q = 2
Comparing p[3] with S[7] p[3] matches with S[7]

Step 8: i = 8, q = 3
Comparing p[4] with S[8] p[4] matches with S[8]

S

p

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 1 1



Step 9: i = 9, q = 4

Comparing p[5] with S[9]

Comparing p[6] with S[10]

Comparing p[5] with S[11]

Step 10: i = 10, q = 5

Step 11: i = 11, q = 4

S

S

S

p

p

p

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c a

a b a b a c a

p[6] doesn’t match with S[10]

Backtracking on p, comparing p[4] with S[10] because after mismatch q = Π[5] = 3

p[5] matches with S[9]

p[5] matches with S[11]

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 1 1



b a c b a b a b a b a c a a b

b a c b a b a b a b a c a a b

a b a b a c a

a b a b a c a

Step 12: i = 12, q = 5

Comparing p[6] with S[12]

Comparing p[7] with S[13]

S

S

p

p

Step 13: i = 13, q = 6

p[6] matches with S[12]

p[7] matches with S[13]

Pattern ‘p’ has been found to completely occur in string ‘S’. The total number of shifts 
that took place for the match to be found are: i – m = 13 – 7 = 6 shifts. 

q 1 2 3 4 5 6 7

p a b a b a c a

Π 0 0 1 2 3 1 1



Running - time analysis

Compute-Prefix-Function (Π)
1  m  length[p]               //’p’ pattern to be 

matched
2  Π[1]  0 
3  k  0
4 for q  2 to m

5 do while k > 0 and p[k+1] != 
p[q]

6                       do k  Π[k]

7 If p[k+1] = p[q]
8 then k  k +1
9 Π[q]  k

10 return Π

In the above pseudocode for computing the 
prefix function, the for loop from step 
4 to step 10 runs ‘m’ times. Step 1 to 
step 3 take constant time. Hence the 
running time of compute prefix 
function is Θ(m).

KMP Matcher
1 n  length[S]                                   
2 m  length[p]
3 Π  Compute-Prefix-Function(p)
4 q  0                         
5 for i  1 to n                                             

6     do while q > 0 and p[q+1] != S[i]
7 do q  Π[q] 

8 if p[q+1] = S[i]
9 then q  q + 1                            

10 if q = m                                           
11 then print “Pattern occurs with shift” i –

m
12 q  Π[ q]

The for loop beginning in step 5 runs ‘n’ times, 
i.e., as long as the length of the string ‘S’. 
Since step 1 to step 4  take constant time, 
the running time is dominated by this for 
loop. Thus running time of matching 
function is Θ(n).
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Complexity

Using Potential method of amortized 
analysis

Prefix Function’s Complexity O(m).

KMP’s String matching alg’s complexity: 
O(n)


