
III. Linear Programming
Thomas Sauerwald

Easter 2018

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

III. Linear Programming Introduction 2

Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising

III. Linear Programming Introduction 3

Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising

III. Linear Programming Introduction 3

Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising

III. Linear Programming Introduction 3

Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising

III. Linear Programming Introduction 3

Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising

III. Linear Programming Introduction 3

Introduction

maximize or minimize an objective, given limited resources and
competing constraint

constraints are specified as (in)equalities

Linear Programming (informal definition)

Imagine you are a politician trying to win an election

Your district has three different types of areas: Urban, suburban and
rural, each with, respectively, 100,000, 200,000 and 50,000
registered voters

Aim: at least half of the registered voters in each of the three regions
should vote for you

Possible Actions: Advertise on one of the primary issues which are (i)
building more roads, (ii) gun control, (iii) farm subsidies and (iv) a
gasoline tax dedicated to improve public transit.

Example: Political Advertising

III. Linear Programming Introduction 3

Political Advertising Continued
policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

Possible Solution:
$20,000 on advertising to building roads
$0 on advertising to gun control
$4,000 on advertising to farm subsidies
$9,000 on advertising to a gasoline tax

Total cost: $33,000

What is the best possible strategy?

III. Linear Programming Introduction 4

Political Advertising Continued
policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

Possible Solution:
$20,000 on advertising to building roads
$0 on advertising to gun control
$4,000 on advertising to farm subsidies
$9,000 on advertising to a gasoline tax

Total cost: $33,000

What is the best possible strategy?

III. Linear Programming Introduction 4

Political Advertising Continued
policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

Possible Solution:
$20,000 on advertising to building roads
$0 on advertising to gun control
$4,000 on advertising to farm subsidies
$9,000 on advertising to a gasoline tax

Total cost: $33,000

What is the best possible strategy?

III. Linear Programming Introduction 4

Political Advertising Continued
policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

Possible Solution:
$20,000 on advertising to building roads
$0 on advertising to gun control
$4,000 on advertising to farm subsidies
$9,000 on advertising to a gasoline tax

Total cost: $33,000

What is the best possible strategy?

III. Linear Programming Introduction 4

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:

−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100

3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

Towards a Linear Program

policy urban suburban rural
build roads −2 5 3
gun control 8 2 −5
farm subsidies 0 0 10
gasoline tax 10 0 −2

The effects of policies on voters. Each entry describes the number of thousands of
voters who could be won (lost) over by spending $1,000 on advertising support of a
policy on a particular issue.

x1 = number of thousands of dollars spent on advertising on building roads
x2 = number of thousands of dollars spent on advertising on gun control
x3 = number of thousands of dollars spent on advertising on farm subsidies
x4 = number of thousands of dollars spent on advertising on gasoline tax

Constraints:
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50
5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

Objective: Minimize x1 + x2 + x3 + x4

III. Linear Programming Introduction 5

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

The Linear Program

minimize x1 + x2 + x3 + x4

subject to
−2x1 + 8x2 + 0x3 + 10x4 ≥ 50

5x1 + 2x2 + 0x3 + 0x4 ≥ 100
3x1 − 5x2 + 10x3 − 2x4 ≥ 25

x1, x2, x3, x4 ≥ 0

Linear Program for the Advertising Problem

The solution of this linear program yields the optimal advertising strategy.

Given a1, a2, . . . , an and a set of variables x1, x2, . . . , xn, a linear
function f is defined by

f (x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn.

Linear Equality: f (x1, x2, . . . , xn) = b

Linear Inequality: f (x1, x2, . . . , xn)
≥
≤b

Linear-Progamming Problem: either minimize or maximize a linear
function subject to a set of linear constraints

Formal Definition of Linear Program

Linear Constraints

III. Linear Programming Introduction 6

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution
Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

A Small(er) Example

maximize x1 + x2

subject to
4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2

x1, x2 ≥ 0

Any setting of x1 and x2 satisfying
all constraints is a feasible solution

Graphical Procedure: Move the line
x1 + x2 = z as far up as possible.

x1

x2

4x
1
−

x 2
≤

8

2x
1
+

x
2 ≤

10

5x
1
−

2x
2
≥
−

2

x1 ≥ 0

x2 ≥ 0

x
1 +

x
2 =

0

x
1 +

x
2 =

1

x
1 +

x
2 =

2

x
1 +

x
2 =

3

x
1 +

x
2 =

4

x
1 +

x
2 =

5

x
1 +

x
2 =

6

x
1 +

x
2 =

7

x
1 +

x
2 =

8

While the same approach also works for higher-dimensions, we
need to take a more systematic and algebraic procedure.

III. Linear Programming Introduction 7

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

III. Linear Programming Standard and Slack Forms 8

Standard and Slack Forms

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximize cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m Constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product

III. Linear Programming Standard and Slack Forms 9

Standard and Slack Forms

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximize cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m Constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product

III. Linear Programming Standard and Slack Forms 9

Standard and Slack Forms

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximize cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m Constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product

III. Linear Programming Standard and Slack Forms 9

Standard and Slack Forms

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximize cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m Constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product

III. Linear Programming Standard and Slack Forms 9

Standard and Slack Forms

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi for i = 1, 2, . . . ,m

xj ≥ 0 for j = 1, 2, . . . , n

Standard Form

maximize cT x

subject to

Ax ≤ b

x ≥ 0

Standard Form (Matrix-Vector-Notation)

Objective Function

n + m Constraints

Non-Negativity Constraints

Inner product of two vectors

Matrix-vector product

III. Linear Programming Standard and Slack Forms 9

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with ≥ instead of ≤).

Goal: Convert linear program into an equivalent program
which is in standard form

Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

When switching from maximization to
minimization, sign of objective value changes.

III. Linear Programming Standard and Slack Forms 10

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with ≥ instead of ≤).

Goal: Convert linear program into an equivalent program
which is in standard form

Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

When switching from maximization to
minimization, sign of objective value changes.

III. Linear Programming Standard and Slack Forms 10

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with ≥ instead of ≤).

Goal: Convert linear program into an equivalent program
which is in standard form

Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

When switching from maximization to
minimization, sign of objective value changes.

III. Linear Programming Standard and Slack Forms 10

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with ≥ instead of ≤).

Goal: Convert linear program into an equivalent program
which is in standard form

Equivalence: a correspondence (not necessarily a bijection)
between solutions so that their objective values are identical.

When switching from maximization to
minimization, sign of objective value changes.

III. Linear Programming Standard and Slack Forms 10

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

minimize −2x1 + 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

Negate objective function

III. Linear Programming Standard and Slack Forms 11

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

minimize −2x1 + 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

Negate objective function

III. Linear Programming Standard and Slack Forms 11

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

minimize −2x1 + 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

Negate objective function

III. Linear Programming Standard and Slack Forms 11

Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:

1. The objective might be a minimization rather than maximization.

minimize −2x1 + 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

Negate objective function

III. Linear Programming Standard and Slack Forms 11

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace x2 by two non-negative
variables x ′2 and x ′′2

III. Linear Programming Standard and Slack Forms 12

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace x2 by two non-negative
variables x ′2 and x ′′2

III. Linear Programming Standard and Slack Forms 12

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace x2 by two non-negative
variables x ′2 and x ′′2

III. Linear Programming Standard and Slack Forms 12

Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.

maximize 2x1 − 3x2

subject to
x1 + x2 = 7
x1 − 2x2 ≤ 4
x1 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace x2 by two non-negative
variables x ′2 and x ′′2

III. Linear Programming Standard and Slack Forms 12

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace each equality
by two inequalities.

III. Linear Programming Standard and Slack Forms 13

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace each equality
by two inequalities.

III. Linear Programming Standard and Slack Forms 13

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace each equality
by two inequalities.

III. Linear Programming Standard and Slack Forms 13

Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 = 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

Replace each equality
by two inequalities.

III. Linear Programming Standard and Slack Forms 13

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with ≥ instead of ≤).

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
−x1 − x ′2 + x ′′2 ≤ −7

x1 − 2x ′2 + 2x ′′2 ≤ 4
x1, x ′2, x

′′
2 ≥ 0

Negate respective inequalities.

III. Linear Programming Standard and Slack Forms 14

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with ≥ instead of ≤).

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
−x1 − x ′2 + x ′′2 ≤ −7

x1 − 2x ′2 + 2x ′′2 ≤ 4
x1, x ′2, x

′′
2 ≥ 0

Negate respective inequalities.

III. Linear Programming Standard and Slack Forms 14

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with ≥ instead of ≤).

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
−x1 − x ′2 + x ′′2 ≤ −7

x1 − 2x ′2 + 2x ′′2 ≤ 4
x1, x ′2, x

′′
2 ≥ 0

Negate respective inequalities.

III. Linear Programming Standard and Slack Forms 14

Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with ≥ instead of ≤).

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
x1 + x ′2 − x ′′2 ≥ 7
x1 − 2x ′2 + 2x ′′2 ≤ 4

x1, x ′2, x
′′
2 ≥ 0

maximize 2x1 − 3x ′2 + 3x ′′2
subject to

x1 + x ′2 − x ′′2 ≤ 7
−x1 − x ′2 + x ′′2 ≤ −7

x1 − 2x ′2 + 2x ′′2 ≤ 4
x1, x ′2, x

′′
2 ≥ 0

Negate respective inequalities.

III. Linear Programming Standard and Slack Forms 14

Converting into Standard Form (5/5)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

Rename variable names (for consistency).

It is always possible to convert a linear program into standard form.

III. Linear Programming Standard and Slack Forms 15

Converting into Standard Form (5/5)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

Rename variable names (for consistency).

It is always possible to convert a linear program into standard form.

III. Linear Programming Standard and Slack Forms 15

Converting into Standard Form (5/5)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

Rename variable names (for consistency).

It is always possible to convert a linear program into standard form.

III. Linear Programming Standard and Slack Forms 15

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints
except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Let
∑n

j=1 aijxj ≤ bi be an inequality constraint

Introduce a slack variable s by

s = bi −
n∑

j=1

aijxj

s ≥ 0.

Denote slack variable of the i th inequality by xn+i

Introducing Slack Variables

s measures the slack between
the two sides of the inequality.

III. Linear Programming Standard and Slack Forms 16

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (2/3)

maximize 2x1 − 3x2 + 3x3

subject to
x1 + x2 − x3 ≤ 7
−x1 − x2 + x3 ≤ −7

x1 − 2x2 + 2x3 ≤ 4
x1, x2, x3 ≥ 0

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Introduce slack variables

III. Linear Programming Standard and Slack Forms 17

Converting Standard Form into Slack Form (3/3)

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Use variable z to denote objective function
and omit the nonnegativity constraints.

This is called slack form.

III. Linear Programming Standard and Slack Forms 18

Converting Standard Form into Slack Form (3/3)

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Use variable z to denote objective function
and omit the nonnegativity constraints.

This is called slack form.

III. Linear Programming Standard and Slack Forms 18

Converting Standard Form into Slack Form (3/3)

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Use variable z to denote objective function
and omit the nonnegativity constraints.

This is called slack form.

III. Linear Programming Standard and Slack Forms 18

Converting Standard Form into Slack Form (3/3)

maximize 2x1 − 3x2 + 3x3

subject to
x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Use variable z to denote objective function
and omit the nonnegativity constraints.

This is called slack form.

III. Linear Programming Standard and Slack Forms 18

Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6} Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑
j∈N

cjxj

xi = bi −
∑
j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables/Coefficients on the right hand side are indexed by B and N.

III. Linear Programming Standard and Slack Forms 19

Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6}

Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑
j∈N

cjxj

xi = bi −
∑
j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables/Coefficients on the right hand side are indexed by B and N.

III. Linear Programming Standard and Slack Forms 19

Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6} Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑
j∈N

cjxj

xi = bi −
∑
j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables/Coefficients on the right hand side are indexed by B and N.

III. Linear Programming Standard and Slack Forms 19

Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6} Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑
j∈N

cjxj

xi = bi −
∑
j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables/Coefficients on the right hand side are indexed by B and N.

III. Linear Programming Standard and Slack Forms 19

Basic and Non-Basic Variables

z = 2x1 − 3x2 + 3x3

x4 = 7 − x1 − x2 + x3

x5 = −7 + x1 + x2 − x3

x6 = 4 − x1 + 2x2 − 2x3

Basic Variables: B = {4, 5, 6} Non-Basic Variables: N = {1, 2, 3}

Slack form is given by a tuple (N,B,A, b, c, v) so that

z = v +
∑
j∈N

cjxj

xi = bi −
∑
j∈N

aijxj for i ∈ B,

and all variables are non-negative.

Slack Form (Formal Definition)

Variables/Coefficients on the right hand side are indexed by B and N.

III. Linear Programming Standard and Slack Forms 19

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =

a13 a15 a16

a23 a25 a26

a43 a45 a46

 =

−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0

b =

b1

b2

b3

 =

 8
4
18

 ,

c =

c3

c5

c6

 =

−1/6
−1/6
−2/3

v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =

a13 a15 a16

a23 a25 a26

a43 a45 a46

 =

−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0

b =

b1

b2

b3

 =

 8
4
18

 ,

c =

c3

c5

c6

 =

−1/6
−1/6
−2/3

v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =

a13 a15 a16

a23 a25 a26

a43 a45 a46

 =

−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0

b =

b1

b2

b3

 =

 8
4
18

 ,

c =

c3

c5

c6

 =

−1/6
−1/6
−2/3

v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =

a13 a15 a16

a23 a25 a26

a43 a45 a46

 =

−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0

b =

b1

b2

b3

 =

 8
4
18

 ,

c =

c3

c5

c6

 =

−1/6
−1/6
−2/3

v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =

a13 a15 a16

a23 a25 a26

a43 a45 a46

 =

−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0

b =

b1

b2

b3

 =

 8
4
18

 ,

c =

c3

c5

c6

 =

−1/6
−1/6
−2/3

v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =

a13 a15 a16

a23 a25 a26

a43 a45 a46

 =

−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0

b =

b1

b2

b3

 =

 8
4
18

 , c =

c3

c5

c6

 =

−1/6
−1/6
−2/3

v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

Slack Form (Example)

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

B = {1, 2, 4}, N = {3, 5, 6}

A =

a13 a15 a16

a23 a25 a26

a43 a45 a46

 =

−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0

b =

b1

b2

b3

 =

 8
4
18

 , c =

c3

c5

c6

 =

−1/6
−1/6
−2/3

v = 28

Slack Form Notation

III. Linear Programming Standard and Slack Forms 20

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):

Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):

Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):

Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex

⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 1: There exists j with dj < 0

Increase λ from 0 to λ′ until a new entry of x + λd
becomes zero
x + λ′d feasible, since A(x + λ′d) = Ax = b and
x + λ′d ≥ 0
cT (x + λ′d) = cT x + cTλ′d ≥ cT x

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 1: There exists j with dj < 0

Increase λ from 0 to λ′ until a new entry of x + λd
becomes zero

x + λ′d feasible, since A(x + λ′d) = Ax = b and
x + λ′d ≥ 0
cT (x + λ′d) = cT x + cTλ′d ≥ cT x

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 1: There exists j with dj < 0

Increase λ from 0 to λ′ until a new entry of x + λd
becomes zero
x + λ′d feasible, since A(x + λ′d) = Ax = b and
x + λ′d ≥ 0

cT (x + λ′d) = cT x + cTλ′d ≥ cT x

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 1: There exists j with dj < 0

Increase λ from 0 to λ′ until a new entry of x + λd
becomes zero
x + λ′d feasible, since A(x + λ′d) = Ax = b and
x + λ′d ≥ 0
cT (x + λ′d) = cT x + cTλ′d ≥ cT x x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 2: For all j , dj ≥ 0

x + λd is feasible for all λ ≥ 0: A(x + λd) = b and
x + λd ≥ x ≥ 0
If λ→∞, then cT (x + λd)→∞

⇒ This contradicts the assumption that there exists an
optimal solution.

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 2: For all j , dj ≥ 0

x + λd is feasible for all λ ≥ 0: A(x + λd) = b and
x + λd ≥ x ≥ 0

If λ→∞, then cT (x + λd)→∞
⇒ This contradicts the assumption that there exists an

optimal solution.

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 2: For all j , dj ≥ 0

x + λd is feasible for all λ ≥ 0: A(x + λd) = b and
x + λd ≥ x ≥ 0
If λ→∞, then cT (x + λd)→∞

⇒ This contradicts the assumption that there exists an
optimal solution.

x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 2: For all j , dj ≥ 0

x + λd is feasible for all λ ≥ 0: A(x + λd) = b and
x + λd ≥ x ≥ 0
If λ→∞, then cT (x + λd)→∞

⇒ This contradicts the assumption that there exists an
optimal solution. x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

The Structure of Optimal Solutions

A point x is a vertex if it cannot be represented as a strict convex combi-
nation of two other points in the feasible set.

Definition

The set of feasible solutions is a convex set.

If the slack form has an optimal solution, one of them occurs at a vertex.
Theorem

Proof Sketch (informal and non-examinable):
Rewrite LP s.t. Ax = b. Let x be optimal but not a vertex
⇒ ∃ vector d s.t. x − d and x + d are feasible

Since A(x + d) = b and Ax = b⇒ Ad = 0

W.l.o.g. assume cT d ≥ 0 (otherwise replace d by −d)

Consider x + λd as a function of λ ≥ 0

Case 2: For all j , dj ≥ 0

x + λd is feasible for all λ ≥ 0: A(x + λd) = b and
x + λd ≥ x ≥ 0
If λ→∞, then cT (x + λd)→∞

⇒ This contradicts the assumption that there exists an
optimal solution. x1

x2

x

x − d

x + d

III. Linear Programming Standard and Slack Forms 21

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

III. Linear Programming Formulating Problems as Linear Programs 22

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to

dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to

dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to

dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to

dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to

dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to
dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to
dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to
dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to
dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}

III. Linear Programming Formulating Problems as Linear Programs 23

Shortest Paths

Given: directed graph G = (V ,E) with
edge weights w : E → R, pair of
vertices s, t ∈ V

Goal: Find a path of minimum weight
from s to t in G

Single-Pair Shortest Path Problem

p = (v0 = s, v1, . . . , vk = t) such that
w(p) =

∑k
i=1 w(vk−1, vk) is minimized.

s t

a

b

c

d

e

f

6

2

2

5

4

4

−2

1

3

1

5
2

maximize dt

subject to
dv ≤ du + w(u, v) for each edge (u, v) ∈ E ,
ds = 0.

Shortest Paths as LP

this is a maxi-
mization problem!

Recall: When BELLMAN-FORD terminates,
all these inequalities are satisfied.

Solution d satisfies dv = minu : (u,v)∈E

{
du + w(u, v)

}
III. Linear Programming Formulating Problems as Linear Programs 23

Maximum Flow

Given: directed graph G = (V ,E) with edge capacities c : E → R+,
pair of vertices s, t ∈ V

Goal: Find a maximum flow f : V × V → R from s to t which
satisfies the capacity constraints and flow conservation

Maximum Flow Problem

s

2

3

4

5 t

|f | = 19

0/10

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

10/10

9/10
0/2 5/6

4/4

6/8

9/9

9/10

10/10

maximize
∑

v∈V fsv −
∑

v∈V fvs

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu =
∑

v∈V fuv for each u ∈ V \ {s, t},
fuv ≥ 0 for each u, v ∈ V .

Maximum Flow as LP

III. Linear Programming Formulating Problems as Linear Programs 24

Maximum Flow

Given: directed graph G = (V ,E) with edge capacities c : E → R+,
pair of vertices s, t ∈ V

Goal: Find a maximum flow f : V × V → R from s to t which
satisfies the capacity constraints and flow conservation

Maximum Flow Problem

s

2

3

4

5 t

|f | = 19

0/10

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

10/10

9/10
0/2 5/6

4/4

6/8

9/9

9/10

10/10

maximize
∑

v∈V fsv −
∑

v∈V fvs

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu =
∑

v∈V fuv for each u ∈ V \ {s, t},
fuv ≥ 0 for each u, v ∈ V .

Maximum Flow as LP

III. Linear Programming Formulating Problems as Linear Programs 24

Maximum Flow

Given: directed graph G = (V ,E) with edge capacities c : E → R+,
pair of vertices s, t ∈ V

Goal: Find a maximum flow f : V × V → R from s to t which
satisfies the capacity constraints and flow conservation

Maximum Flow Problem

s

2

3

4

5 t

|f | = 19

0/10

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

10/10

9/10
0/2 5/6

4/4

6/8

9/9

9/10

10/10

maximize
∑

v∈V fsv −
∑

v∈V fvs

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu =
∑

v∈V fuv for each u ∈ V \ {s, t},
fuv ≥ 0 for each u, v ∈ V .

Maximum Flow as LP

III. Linear Programming Formulating Problems as Linear Programs 24

Maximum Flow

Given: directed graph G = (V ,E) with edge capacities c : E → R+,
pair of vertices s, t ∈ V

Goal: Find a maximum flow f : V × V → R from s to t which
satisfies the capacity constraints and flow conservation

Maximum Flow Problem

s

2

3

4

5 t

|f | = 19

0/10

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

10/10

9/10
0/2 5/6

4/4

6/8

9/9

9/10

10/10

maximize
∑

v∈V fsv −
∑

v∈V fvs

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu =
∑

v∈V fuv for each u ∈ V \ {s, t},
fuv ≥ 0 for each u, v ∈ V .

Maximum Flow as LP

III. Linear Programming Formulating Problems as Linear Programs 24

Maximum Flow

Given: directed graph G = (V ,E) with edge capacities c : E → R+,
pair of vertices s, t ∈ V

Goal: Find a maximum flow f : V × V → R from s to t which
satisfies the capacity constraints and flow conservation

Maximum Flow Problem

s

2

3

4

5 t

|f | = 19

0/10

0/10

0/2 0/6

0/4

0/8

0/9

0/10

0/10

10/10

9/10
0/2 5/6

4/4

6/8

9/9

9/10

10/10

maximize
∑

v∈V fsv −
∑

v∈V fvs

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu =
∑

v∈V fuv for each u ∈ V \ {s, t},
fuv ≥ 0 for each u, v ∈ V .

Maximum Flow as LP

III. Linear Programming Formulating Problems as Linear Programs 24

Minimum-Cost Flow

Given: directed graph G = (V ,E) with capacities c : E → R+, pair of
vertices s, t ∈ V , cost function a : E → R+, flow demand of d units

Goal: Find a flow f : V × V → R from s to t with |f | = d while
minimising the total cost

∑
(u,v)∈E a(u, v)fuv incurrred by the flow.

Minimum-Cost-Flow Problem

862 Chapter 29 Linear Programming

s

x

t

y

(a)

c = 1
a = 3

c = 5
a = 2

c = 4
a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5
a = 2

3/4
a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27

III. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

Given: directed graph G = (V ,E) with capacities c : E → R+, pair of
vertices s, t ∈ V , cost function a : E → R+, flow demand of d units

Goal: Find a flow f : V × V → R from s to t with |f | = d while
minimising the total cost

∑
(u,v)∈E a(u, v)fuv incurrred by the flow.

Minimum-Cost-Flow Problem

862 Chapter 29 Linear Programming

s

x

t

y

(a)

c = 1
a = 3

c = 5
a = 2

c = 4
a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5
a = 2

3/4
a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27

III. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

Given: directed graph G = (V ,E) with capacities c : E → R+, pair of
vertices s, t ∈ V , cost function a : E → R+, flow demand of d units

Goal: Find a flow f : V × V → R from s to t with |f | = d while
minimising the total cost

∑
(u,v)∈E a(u, v)fuv incurrred by the flow.

Minimum-Cost-Flow Problem

862 Chapter 29 Linear Programming

s

x

t

y

(a)

c = 1
a = 3

c = 5
a = 2

c = 4
a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5
a = 2

3/4
a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27

III. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

Given: directed graph G = (V ,E) with capacities c : E → R+, pair of
vertices s, t ∈ V , cost function a : E → R+, flow demand of d units

Goal: Find a flow f : V × V → R from s to t with |f | = d while
minimising the total cost

∑
(u,v)∈E a(u, v)fuv incurrred by the flow.

Minimum-Cost-Flow Problem

862 Chapter 29 Linear Programming

s

x

t

y

(a)

c = 1
a = 3

c = 5
a = 2

c = 4
a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5
a = 2

3/4
a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27

III. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow

Given: directed graph G = (V ,E) with capacities c : E → R+, pair of
vertices s, t ∈ V , cost function a : E → R+, flow demand of d units

Goal: Find a flow f : V × V → R from s to t with |f | = d while
minimising the total cost

∑
(u,v)∈E a(u, v)fuv incurrred by the flow.

Minimum-Cost-Flow Problem

862 Chapter 29 Linear Programming

s

x

t

y

(a)

c = 1
a = 3

c = 5
a = 2

c = 4
a = 1

c = 2a = 7

c = 2a = 5

s

x

t

y

(b)

1/1
a = 3

2/5
a = 2

3/4
a = 1

1/2a = 7

2/2a = 5

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and
the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow
from s to t . (b)A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t . For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective
function of minimizing the cost:
minimize

X

.u;!/2E

a.u; !/fu! (29.51)
subject to

fu! ! c.u; !/ for each u; ! 2 V ;
X

!2V

f!u "
X

!2V

fu! D 0 for each u 2 V " fs; tg ;

X

!2V

fs! "
X

!2V

f!s D d ;

fu! # 0 for each u; ! 2 V : (29.52)

Multicommodity flow
As a final example, we consider another flow problem. Suppose that the Lucky
Puck company from Section 26.1 decides to diversify its product line and ship
not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of
equipment is manufactured in its own factory, has its own warehouse, and must
be shipped, each day, from factory to warehouse. The sticks are manufactured in
Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in
Edmonton and must be shipped to Regina. The capacity of the shipping network
does not change, however, and the different items, or commodities, must share the
same network.

This example is an instance of amulticommodity-flow problem. In this problem,
we are again given a directed graph G D .V; E/ in which each edge .u; !/ 2 E
has a nonnegative capacity c.u; !/ # 0. As in the maximum-flow problem, we im-
plicitly assume that c.u; !/ D 0 for .u; !/ 62 E, and that the graph has no antipar-

Extension of the Maximum Flow Problem

Optimal Solution with total cost:∑
(u,v)∈E a(u, v)fuv = (2·2)+(5·2)+(3·1)+(7·1)+(1·3) = 27

III. Linear Programming Formulating Problems as Linear Programs 25

Minimum-Cost Flow as a LP

minimize
∑

(u,v)∈E a(u, v)fuv

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu −
∑

v∈V fuv = 0 for each u ∈ V \ {s, t},∑
v∈V fsv −

∑
v∈V fvs = d ,

fuv ≥ 0 for each u, v ∈ V .

Minimum Cost Flow as LP

Real power of Linear Programming comes
from the ability to solve new problems!

III. Linear Programming Formulating Problems as Linear Programs 26

Minimum-Cost Flow as a LP

minimize
∑

(u,v)∈E a(u, v)fuv

subject to
fuv ≤ c(u, v) for each u, v ∈ V ,∑

v∈V fvu −
∑

v∈V fuv = 0 for each u ∈ V \ {s, t},∑
v∈V fsv −

∑
v∈V fvs = d ,

fuv ≥ 0 for each u, v ∈ V .

Minimum Cost Flow as LP

Real power of Linear Programming comes
from the ability to solve new problems!

III. Linear Programming Formulating Problems as Linear Programs 26

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

III. Linear Programming Simplex Algorithm 27

Simplex Algorithm: Introduction

classical method for solving linear programs (Dantzig, 1947)

usually fast in practice although worst-case runtime not polynomial

iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm

Basic Idea:
Each iteration corresponds to a “basic solution” of the slack form

All non-basic variables are 0, and the basic variables are
determined from the equality constraints

Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

In that sense, it is a greedy algorithm.

III. Linear Programming Simplex Algorithm 28

Simplex Algorithm: Introduction

classical method for solving linear programs (Dantzig, 1947)

usually fast in practice although worst-case runtime not polynomial

iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm

Basic Idea:
Each iteration corresponds to a “basic solution” of the slack form

All non-basic variables are 0, and the basic variables are
determined from the equality constraints

Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

In that sense, it is a greedy algorithm.

III. Linear Programming Simplex Algorithm 28

Simplex Algorithm: Introduction

classical method for solving linear programs (Dantzig, 1947)

usually fast in practice although worst-case runtime not polynomial

iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm

Basic Idea:
Each iteration corresponds to a “basic solution” of the slack form

All non-basic variables are 0, and the basic variables are
determined from the equality constraints

Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

In that sense, it is a greedy algorithm.

III. Linear Programming Simplex Algorithm 28

Extended Example: Conversion into Slack Form

maximize 3x1 + x2 + 2x3

subject to
x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Conversion into slack form

III. Linear Programming Simplex Algorithm 29

Extended Example: Conversion into Slack Form

maximize 3x1 + x2 + 2x3

subject to
x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Conversion into slack form

III. Linear Programming Simplex Algorithm 29

Extended Example: Conversion into Slack Form

maximize 3x1 + x2 + 2x3

subject to
x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36

x1, x2, x3 ≥ 0

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Conversion into slack form

III. Linear Programming Simplex Algorithm 29

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible

Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:

Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 1

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27

Basic solution: (x1, x2, . . . , x6) = (33
4 , 0,

3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)

Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27

Basic solution: (x1, x2, . . . , x6) = (33
4 , 0,

3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:

Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 2

z = 27 +
x2
4 +

x3
2 − 3x6

4

x1 = 9 − x2
4 − x3

2 − x6
4

x4 = 21 − 3x2
4 − 5x3

2 +
x6
4

x5 = 6 − 3x2
2 − 4x3 +

x6
2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.

Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.

The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27

Basic solution: (x1, x2, . . . , x6) = (33
4 , 0,

3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75

Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27

Basic solution: (x1, x2, . . . , x6) = (33
4 , 0,

3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75

Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:

Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 3

z = 111
4 +

x2
16 − x5

8 − 11x6
16

x1 = 33
4 − x2

16 + x5
8 − 5x6

16

x3 = 3
2 − 3x2

8 − x5
4 +

x6
8

x4 = 69
4 +

3x2
16 + 5x5

8 − x6
16

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.

Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.

The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 4

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 4

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75

Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Iteration 4

z = 28 − x3
6 − x5

6 − 2x6
3

x1 = 8 +
x3
6 + x5

6 − x6
3

x2 = 4 − 8x3
3 − 2x5

3 +
x6
3

x4 = 18 − x3
2 + x5

2

Basic solution: (x1, x2, . . . , x6) = (0, 0, 0, 30, 24, 36)Basic solution: (x1, x2, . . . , x6) = (9, 0, 0, 21, 6, 0) with objective value 27
Basic solution: (x1, x2, . . . , x6) = (33

4 , 0,
3
2 ,

69
4 , 0, 0) with objective value 111

4 = 27.75

Basic solution: (x1, x2, . . . , x6) = (8, 4, 0, 18, 0, 0) with objective value 28

This basic solution is feasible Objective value is 0.

Increasing the value of x1 would increase the objective value.Increasing the value of x3 would increase the objective value.Increasing the value of x2 would increase the objective value.

All coefficients are negative, and hence this basic solution is optimal!

The third constraint is the tightest and limits how much we can increase x1.The third constraint is the tightest and limits how much we can increase x3.The second constraint is the tightest and limits how much we can increase x2.

Switch roles of x1 and x6:
Solving for x1 yields:

x1 = 9− x2

4
−

x3

2
−

x6

4
.

Substitute this into x1 in the other three equations

Switch roles of x3 and x5:
Solving for x3 yields:

x3 =
3
2
− 3x2

8
− x5

4
−

x6

8
.

Substitute this into x3 in the other three equations

Switch roles of x2 and x3:
Solving for x2 yields:

x2 = 4−
8x3

3
− 2x5

3
+

x6

3
.

Substitute this into x2 in the other three equations

III. Linear Programming Simplex Algorithm 30

Extended Example: Visualization of SIMPLEX

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75

28

12

9.6

Exercise: How many basic solutions (including non-feasible ones) are there?

III. Linear Programming Simplex Algorithm 31

Extended Example: Visualization of SIMPLEX

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75

28

12

9.6

Exercise: How many basic solutions (including non-feasible ones) are there?

III. Linear Programming Simplex Algorithm 31

Extended Example: Visualization of SIMPLEX

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75

28

12

9.6

Exercise: How many basic solutions (including non-feasible ones) are there?

III. Linear Programming Simplex Algorithm 31

Extended Example: Visualization of SIMPLEX

x1

x2

x3

(0, 0, 0)

(9, 0, 0)

(8.25, 0, 1.5)
(8, 4, 0)

(0, 12, 0)

(0, 0, 4.8)

0

27

27.75

28

12

9.6

Exercise: How many basic solutions (including non-feasible ones) are there?

III. Linear Programming Simplex Algorithm 31

Extended Example: Alternative Runs (1/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 12 + 2x1 − x3
2

− x5
2

x2 = 12 − x1 − 5x3
2

− x5
2

x4 = 18 − x2 − x3
2

+
x5
2

x6 = 24 − 3x1 +
x3
2

+
x5
2

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x2 and x5

Switch roles of x1 and x6

III. Linear Programming Simplex Algorithm 32

Extended Example: Alternative Runs (1/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 12 + 2x1 − x3
2

− x5
2

x2 = 12 − x1 − 5x3
2

− x5
2

x4 = 18 − x2 − x3
2

+
x5
2

x6 = 24 − 3x1 +
x3
2

+
x5
2

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x2 and x5

Switch roles of x1 and x6

III. Linear Programming Simplex Algorithm 32

Extended Example: Alternative Runs (1/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 12 + 2x1 − x3
2

− x5
2

x2 = 12 − x1 − 5x3
2

− x5
2

x4 = 18 − x2 − x3
2

+
x5
2

x6 = 24 − 3x1 +
x3
2

+
x5
2

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x2 and x5

Switch roles of x1 and x6

III. Linear Programming Simplex Algorithm 32

Extended Example: Alternative Runs (1/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 12 + 2x1 − x3
2

− x5
2

x2 = 12 − x1 − 5x3
2

− x5
2

x4 = 18 − x2 − x3
2

+
x5
2

x6 = 24 − 3x1 +
x3
2

+
x5
2

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x2 and x5

Switch roles of x1 and x6

III. Linear Programming Simplex Algorithm 32

Extended Example: Alternative Runs (1/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 12 + 2x1 − x3
2

− x5
2

x2 = 12 − x1 − 5x3
2

− x5
2

x4 = 18 − x2 − x3
2

+
x5
2

x6 = 24 − 3x1 +
x3
2

+
x5
2

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x2 and x5

Switch roles of x1 and x6

III. Linear Programming Simplex Algorithm 32

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6 Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6 Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6 Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6

Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6

Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6 Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

Extended Example: Alternative Runs (2/2)

z = 3x1 + x2 + 2x3

x4 = 30 − x1 − x2 − 3x3

x5 = 24 − 2x1 − 2x2 − 5x3

x6 = 36 − 4x1 − x2 − 2x3

z = 48
5 +

11x1
5 +

x2
5 − 2x5

5

x4 = 78
5 +

x1
5 +

x2
5 +

3x5
5

x3 = 24
5 − 2x1

5 − 2x2
5 − x5

5

x6 = 132
5 − 16x1

5 − x2
5 +

2x3
5

z = 111
4

+
x2
16

− x5
8

− 11x6
16

x1 = 33
4

− x2
16

+
x5
8

− 5x6
16

x3 = 3
2

− 3x2
8

− x5
4

+
x6
8

x4 = 69
4

+
3x2
16

+
5x5
8

− x6
16

z = 28 − x3
6

− x5
6

− 2x6
3

x1 = 8 +
x3
6

+
x5
6

− x6
3

x2 = 4 − 8x3
3

− 2x5
3

+
x6
3

x4 = 18 − x3
2

+
x5
2

Switch roles of x3 and x5

Switch roles of x1 and x6 Switch roles of x2 and x3

III. Linear Programming Simplex Algorithm 33

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

III. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

III. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

III. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

III. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

III. Linear Programming Simplex Algorithm 34

The Pivot Step Formally

29.3 The simplex algorithm 869

necessarily integral. Furthermore, the final solution to a linear program need not
be integral; it is purely coincidental that this example has an integral solution.

Pivoting
We now formalize the procedure for pivoting. The procedure PIVOT takes as in-
put a slack form, given by the tuple .N; B; A; b; c; !/, the index l of the leav-
ing variable xl , and the index e of the entering variable xe. It returns the tuple
. yN ; yB; yA; yb; yc; y!/ describing the new slack form. (Recall again that the entries of
the m!n matrices A and yA are actually the negatives of the coefficients that appear
in the slack form.)

PIVOT.N; B; A; b; c; !; l; e/

1 // Compute the coefficients of the equation for new basic variable xe.
2 let yA be a new m ! n matrix
3 ybe D bl=ale

4 for each j 2 N " feg
5 yaej D alj =ale

6 yael D 1=ale

7 // Compute the coefficients of the remaining constraints.
8 for each i 2 B " flg
9 ybi D bi " aie

ybe

10 for each j 2 N " feg
11 yaij D aij " aieyaej

12 yai l D "aieyael

13 // Compute the objective function.
14 y! D ! C ce

ybe

15 for each j 2 N " feg
16 ycj D cj " ceyaej

17 ycl D "ceyael

18 // Compute new sets of basic and nonbasic variables.
19 yN D N " feg [flg
20 yB D B " flg [feg
21 return . yN ; yB; yA; yb; yc; y!/

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation
for xe by rewriting the equation that has xl on the left-hand side to instead have xe

on the left-hand side. Lines 8–12 update the remaining equations by substituting
the right-hand side of this new equation for each occurrence of xe. Lines 14–17
do the same substitution for the objective function, and lines 19 and 20 update the

Rewrite “tight” equation
for enterring variable xe.

Substituting xe into
other equations.

Substituting xe into
objective function.

Update non-basic
and basic variables

Need that ale 6= 0!

III. Linear Programming Simplex Algorithm 34

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑
j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.

3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑
j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.

3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑
j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.

3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑
j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.
3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Effect of the Pivot Step

Consider a call to PIVOT(N,B,A, b, c, v , l, e) in which ale 6= 0. Let the
values returned from the call be (N̂, B̂, Â, b̂, ĉ, v̂), and let x denote the
basic solution after the call. Then

1. x j = 0 for each j ∈ N̂.

2. xe = bl/ale.

3. x i = bi − aieb̂e for each i ∈ B̂ \ {e}.

Lemma 29.1

Proof:
1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

xi = b̂i −
∑
j∈N̂

âijxj ,

we have x i = b̂i for each i ∈ B̂. Hence xe = b̂e = bl/ale.
3. After the substituting in the other constraints, we have

x i = b̂i = bi − aieb̂e.

III. Linear Programming Simplex Algorithm 35

Formalizing the Simplex Algorithm: Questions

Questions:
How do we determine whether a linear program is feasible?

What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

How do we determine whether a linear program is unbounded?

How do we choose the entering and leaving variables?

Example before was a particularly nice one!

III. Linear Programming Simplex Algorithm 36

Formalizing the Simplex Algorithm: Questions

Questions:
How do we determine whether a linear program is feasible?

What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

How do we determine whether a linear program is unbounded?

How do we choose the entering and leaving variables?

Example before was a particularly nice one!

III. Linear Programming Simplex Algorithm 36

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

The formal procedure SIMPLEX

29.3 The simplex algorithm 871

In Section 29.5, we shall show how to determine whether a problem is feasible,
and if so, how to find a slack form in which the initial basic solution is feasible.
Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX.A; b; c/
that takes as input a linear program in standard form, that is, an m ! n matrix
A D .aij /, an m-vector b D .bi/, and an n-vector c D .cj /. If the problem is
infeasible, the procedure returns a message that the program is infeasible and then
terminates. Otherwise, the procedure returns a slack form for which the initial
basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just
described. It returns an n-vector Nx D . Nxj / that is an optimal solution to the linear
program described in (29.19)–(29.21).

SIMPLEX.A; b; c/

1 .N; B; A; b; c; !/ D INITIALIZE-SIMPLEX.A; b; c/
2 let " be a new vector of length n
3 while some index j 2 N has cj > 0
4 choose an index e 2 N for which ce > 0
5 for each index i 2 B
6 if aie > 0
7 "i D bi=aie

8 else "i D 1
9 choose an index l 2 B that minimizes "i

10 if "l ==1
11 return “unbounded”
12 else .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; e/
13 for i D 1 to n
14 if i 2 B
15 Nxi D bi

16 else Nxi D 0
17 return . Nx1; Nx2; : : : ; Nxn/

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX.A; b; c/, described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The while loop of lines 3–12 forms the main part of the algorithm. If all
coefficients in the objective function are negative, then the while loop terminates.
Otherwise, line 4 selects a variable xe, whose coefficient in the objective function
is positive, as the entering variable. Although we may choose any such variable as
the entering variable, we assume that we use some prespecified deterministic rule.
Next, lines 5–9 check each constraint and pick the one that most severely limits
the amount by which we can increase xe without violating any of the nonnegativ-

m

Returns a slack form with a

feasible basic solution (if it exists)

Main Loop:

terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
xe with negative coefficient

Lines 6− 9 pick the tightest
constraint, associated with xl

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIVOT, switching
roles of xl and xe

Return corresponding solution.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Lemma 29.2

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. for each i ∈ B, we have bi ≥ 0,

3. the basic solution associated with the (current) slack form is feasible.

III. Linear Programming Simplex Algorithm 37

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leaving

Cycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leaving

Cycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = x1 + x2 + x3

x4 = 8 − x1 − x2

x5 = x2 − x3

z = 8 + x3 − x4

x1 = 8 − x2 − x4

x5 = x2 − x3

z = 8 + x2 − x4 − x5

x1 = 8 − x2 − x4

x3 = x2 − x5

Pivot with x1 entering and x4 leaving

Pivot with x3 entering and x5 leavingCycling: If additionally slack at two iterations
are identical, SIMPLEX fails to terminate!

III. Linear Programming Simplex Algorithm 38

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

1. Bland’s rule: Choose entering variable with smallest index

2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Anti-Cycling Strategies

Assuming INITIALIZE-SIMPLEX returns a slack form for which the ba-
sic solution is feasible, SIMPLEX either reports that the program is un-
bounded or returns a feasible solution in at most

(n+m
m

)
iterations.

Lemma 29.7

It is theoretically possible, but very rare in practice.

Replace each bi by b̂i = bi + εi , where εi � εi+1 are all small.

Every set B of basic variables uniquely determines a slack
form, and there are at most

(n+m
m

)
unique slack forms.

III. Linear Programming Simplex Algorithm 39

Outline

Introduction

Standard and Slack Forms

Formulating Problems as Linear Programs

Simplex Algorithm

Finding an Initial Solution

III. Linear Programming Finding an Initial Solution 40

Finding an Initial Solution

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

z = 2x1 − x2

x3 = 2 − 2x1 + x2

x4 = −4 − x1 + 5x2

Conversion into slack form

Basic solution (x1, x2, x3, x4) = (0, 0, 2,−4) is not feasible!

III. Linear Programming Finding an Initial Solution 41

Finding an Initial Solution

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

z = 2x1 − x2

x3 = 2 − 2x1 + x2

x4 = −4 − x1 + 5x2

Conversion into slack form

Basic solution (x1, x2, x3, x4) = (0, 0, 2,−4) is not feasible!

III. Linear Programming Finding an Initial Solution 41

Finding an Initial Solution

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

z = 2x1 − x2

x3 = 2 − 2x1 + x2

x4 = −4 − x1 + 5x2

Conversion into slack form

Basic solution (x1, x2, x3, x4) = (0, 0, 2,−4) is not feasible!

III. Linear Programming Finding an Initial Solution 41

Geometric Illustration

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

x1

x2

2x
1
−

x 2
≤

2
x1 − 5x2 ≤ −4

Questions:

How to determine whether
there is any feasible solution?

If there is one, how to determine
an initial basic solution?

III. Linear Programming Finding an Initial Solution 42

Geometric Illustration

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

x1

x2

2x
1
−

x 2
≤

2
x1 − 5x2 ≤ −4

Questions:

How to determine whether
there is any feasible solution?

If there is one, how to determine
an initial basic solution?

III. Linear Programming Finding an Initial Solution 42

Geometric Illustration

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

x1

x2

2x
1
−

x 2
≤

2
x1 − 5x2 ≤ −4

Questions:

How to determine whether
there is any feasible solution?

If there is one, how to determine
an initial basic solution?

III. Linear Programming Finding an Initial Solution 42

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.

“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.

Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux
“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0

Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0
Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

Formulating an Auxiliary Linear Program

maximize
∑n

j=1 cjxj

subject to ∑n
j=1 aijxj ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 1, 2, . . . , n

maximize −x0

subject to ∑n
j=1 aijxj − x0 ≤ bi for i = 1, 2, . . . ,m,

xj ≥ 0 for j = 0, 1, . . . , n

Formulating an Auxiliary Linear Program

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Laux is 0.

Lemma 29.11

Proof.
“⇒”: Suppose L has a feasible solution x = (x1, x2, . . . , xn)

x0 = 0 combined with x is a feasible solution to Laux with objective value 0.
Since x0 ≥ 0 and the objective is to maximize −x0, this is optimal for Laux

“⇐”: Suppose that the optimal objective value of Laux is 0
Then x0 = 0, and the remaining solution values (x1, x2, . . . , xn) satisfy L.

III. Linear Programming Finding an Initial Solution 43

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

INITIALIZE-SIMPLEX

29.5 The initial basic feasible solution 887

maximize !x0 (29.106)
subject to

nX

j D1

aij xj ! x0 " bi for i D 1; 2; : : : ; m ; (29.107)

xj # 0 for j D 0; 1; : : : ; n : (29.108)
Then L is feasible if and only if the optimal objective value of Laux is 0.

Proof Suppose that L has a feasible solution Nx D . Nx1; Nx2; : : : ; Nxn/. Then the
solution Nx0 D 0 combined with Nx is a feasible solution to Laux with objective
value 0. Since x0 # 0 is a constraint of Laux and the objective function is to
maximize !x0, this solution must be optimal for Laux.

Conversely, suppose that the optimal objective value of Laux is 0. Then Nx0 D 0,
and the remaining solution values of Nx satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX.A; b; c/

1 let k be the index of the minimum bi

2 if bk # 0 // is the initial basic solution feasible?
3 return .f1; 2; : : : ; ng ; fnC 1; nC 2; : : : ; nCmg ; A; b; c; 0/
4 form Laux by adding !x0 to the left-hand side of each constraint

and setting the objective function to !x0

5 let .N; B; A; b; c; !/ be the resulting slack form for Laux
6 l D nC k
7 // Laux has nC 1 nonbasic variables and m basic variables.
8 .N; B; A; b; c; !/ D PIVOT.N; B; A; b; c; !; l; 0/
9 // The basic solution is now feasible for Laux.

10 iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
to Laux is found

11 if the optimal solution to Laux sets Nx0 to 0
12 if Nx0 is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of Laux, remove x0 from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
16 else return “infeasible”

Test solution with N = {1, 2, . . . , n}, B = {n + 1, n +

2, . . . , n + m}, x i = bi for i ∈ B, x i = 0 otherwise.

` will be the leaving variable so

that x` has the most negative value.

Pivot step with x` leaving and x0 entering.

This pivot step does not change

the value of any variable.

III. Linear Programming Finding an Initial Solution 44

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximize − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximize − x0

subject to
2x1 − x2 − x0 ≤ 2
x1 − 5x2 − x0 ≤ −4

x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximize − x0

subject to
2x1 − x2 − x0 ≤ 2

x1 − 5x2 − x0 ≤ −4
x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximize − x0

subject to
2x1 − x2 − x0 ≤ 2

x1 − 5x2 − x0 ≤ −4
x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximize − x0

subject to
2x1 − x2 − x0 ≤ 2

x1 − 5x2 − x0 ≤ −4
x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (1/3)

maximize 2x1 − x2

subject to
2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

maximize − x0

subject to
2x1 − x2 − x0 ≤ 2

x1 − 5x2 − x0 ≤ −4
x1, x2, x0 ≥ 0

Formulating the auxiliary linear program

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

Converting into slack form

Basic solution
(0, 0, 0, 2,−4) not feasible!

III. Linear Programming Finding an Initial Solution 45

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leaving

Basic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (2/3)

z = − x0

x3 = 2 − 2x1 + x2 + x0

x4 = −4 − x1 + 5x2 + x0

z = −4 − x1 + 5x2 − x4

x0 = 4 + x1 − 5x2 + x4

x3 = 6 − x1 − 4x2 + x4

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

Pivot with x0 entering and x4 leaving

Pivot with x2 entering and x0 leavingBasic solution (4, 0, 0, 6, 0) is feasible!

Optimal solution has x0 = 0, hence the initial problem was feasible!

III. Linear Programming Finding an Initial Solution 46

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − x2 = 2x1 − (4

5 −
x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables

2x1 − x2 = 2x1 − (4
5 −

x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − x2 = 2x1 − (4

5 −
x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − x2 = 2x1 − (4

5 −
x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Example of INITIALIZE-SIMPLEX (3/3)

z = − x0

x2 = 4
5 − x0

5 +
x1
5 +

x4
5

x3 = 14
5 +

4x0
5 − 9x1

5 +
x4
5

z = −4
5 +

9x1
5 − x4

5
x2 = 4

5 +
x1
5 +

x4
5

x3 = 14
5 − 9x1

5 +
x4
5

Set x0 = 0 and express objective function
by non-basic variables2x1 − x2 = 2x1 − (4

5 −
x0
5 +

x1
5 +

x4
5)

Basic solution (0, 4
5 ,

14
5 , 0), which is feasible!

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the
basic solution is feasible.

Lemma 29.12

III. Linear Programming Finding an Initial Solution 47

Fundamental Theorem of Linear Programming

Any linear program L, given in standard form, either

1. has an optimal solution with a finite objective value,

2. is infeasible, or

3. is unbounded.

Theorem 29.13 (Fundamental Theorem of Linear Programming)

If L is infeasible, SIMPLEX returns “infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)

III. Linear Programming Finding an Initial Solution 48

Fundamental Theorem of Linear Programming

Any linear program L, given in standard form, either

1. has an optimal solution with a finite objective value,

2. is infeasible, or

3. is unbounded.

Theorem 29.13 (Fundamental Theorem of Linear Programming)

If L is infeasible, SIMPLEX returns “infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)

III. Linear Programming Finding an Initial Solution 48

Workflow for Solving Linear Programs

Linear Program (in any form)

Standard Form

Slack Form

No Feasible Solution
INITIALIZE-SIMPLEX terminates

Feasible Basic Solution
INITIALIZE-SIMPLEX followed by SIMPLEX

LP bounded
SIMPLEX returns optimum

LP unbounded
SIMPLEX terminates

III. Linear Programming Finding an Initial Solution 49

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

Linear Programming and Simplex: Summary and Outlook

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Linear Programming

In practice: usually terminates in
polynomial time, i.e., O(m + n)

In theory: even with anti-cycling may
need exponential time

Simplex Algorithm

Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

x1

x2

x3

Interior-Point Methods: traverses the
interior of the feasible set of solutions
(not just vertices!)

Polynomial-Time Algorithms

x1

x2

x3

III. Linear Programming Finding an Initial Solution 50

	Introduction
	Standard and Slack Forms
	Formulating Problems as Linear Programs
	Simplex Algorithm
	Finding an Initial Solution

