
Combinatorial Optimization

CSE 301

Lecture 3

Dynamic Programming III



2

Dynamic Programming

• An algorithm design technique for optimization 

problems (similar to divide and conquer)

• Applicable when subproblems are not 

independent

– Subproblems share subsubproblems

– A divide and conquer approach would repeatedly 

solve the common subproblems

– Dynamic programming solves every subproblem just 

once and stores the answer in a table
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DP - Two key ingredients

• Two key ingredients for an optimization problem 

to be suitable for a dynamic-programming 

solution:

Each substructure is 

optimal.

(Principle of optimality)

1. optimal substructures 2. overlapping subproblems

Subproblems are dependent.

(otherwise, a divide-and-

conquer approach is the 

choice.)
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Elements of Dynamic Programming

• Optimal Substructure

– An optimal solution to a problem contains within it an 

optimal solution to subproblems

– Optimal solution to the entire problem is build in a 

bottom-up manner from optimal solutions to 

subproblems

• Overlapping Subproblems

– If a recursive algorithm revisits the same subproblems 

over and over  the problem has overlapping 

subproblems
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Dynamic Programming

• Used for optimization problems

– A set of choices must be made to get an optimal 

solution

– Find a solution with the optimal value (minimum or 

maximum)

– There may be many solutions that return the optimal 

value: an optimal solution
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Typical Steps of DP Algorithm

1. Characterize the structure of an optimal 

solution

2. Recursively define the value of an optimal 

solution

3. Compute the value of an optimal solution in a 

bottom-up fashion

4. Construct an optimal solution from computed 

information
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Memoization 

• A variation of DP

• Keep the same efficiency as DP

• But in a top-down manner.

• Idea:
– Each entry in table initially contains a value 

indicating  the entry has yet to be filled in.

– When a subproblem is first encountered, its 
solution needs to be solved and then is stored in 
the corresponding entry of the table.

– If the subproblem is encountered again in the 
future, just look up the table to take the value.  
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Memoized Matrix-Chain

Alg.: MEMOIZED-MATRIX-CHAIN(p)

1. n  length[p] – 1

2. for i  1 to n

3. do for j  i to n

4. do m[i, j]  

5. return LOOKUP-CHAIN(p, 1, n)

Initialize the m table with

large values that indicate 

whether the values of m[i, j]
have been computed

Top-down approach
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Memoized Matrix-Chain

Alg.: LOOKUP-CHAIN(p, i, j)

1. if m[i, j] < 

2. then return m[i, j]

3. if i = j

4. then m[i, j]  0

5. else for k  i to j – 1

6. do q  LOOKUP-CHAIN(p, i, k) +

LOOKUP-CHAIN(p, k+1, j) + pi-1pkpj

7. if q < m[i, j]

8. then m[i, j]  q

9. return m[i, j]

Running time is O(n3)

m[i, j] =  min {m[i, k] + m[k+1, j] + pi-1pkpj} 

ik<j
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Dynamic Progamming vs. Memoization

• Advantages of dynamic programming vs. 

memoized algorithms

– No overhead for recursion, less overhead for 

maintaining the table

– The regular pattern of table accesses may be used to 

reduce time or space requirements

• Advantages of memoized algorithms vs. 

dynamic programming

– Some subproblems do not need to be solved

– Easier to think and to implement



11

Elements of Dynamic Programming

• Optimal Substructure

– An optimal solution to a problem contains within it an 

optimal solution to subproblems

– Optimal solution to the entire problem is build in a 

bottom-up manner from optimal solutions to 

subproblems

• Overlapping Subproblems

– If a recursive algorithm revisits the same subproblems 

over and over  the problem has overlapping 

subproblems
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Optimal Substructure - Examples

• Matrix multiplication

– Optimal parenthesization of Ai  Ai+1  Aj that splits 

the product between Ak and Ak+1 contains:

an optimal solution to the problem of parenthesizing 

Ai..k and Ak+1..j
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Parameters of Optimal Substructure

• How many subproblems are used in an optimal 

solution for the original problem

– Matrix multiplication:

• How many choices we have in determining 

which subproblems to use in an optimal solution

– Matrix multiplication:

Two subproblems (subproducts Ai..k, Ak+1..j)

j - i choices for k (splitting the product)
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Parameters of Optimal Substructure

• Intuitively, the running time of a dynamic 

programming algorithm depends on two factors:

– Number of subproblems overall

– How many choices we look at for each subproblem

• Matrix multiplication:

– (n2) subproblems (1  i  j  n)

– At most n-1 choices (n3) overall
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Summary 
• DP two important properties

• Four steps of DP.

• Differences among divide-and-conquer 
algorithms, DP algorithms, and Memoized 
algorithm.

• Writing DP programs and analyze their running 
time and space requirement.



Further Reading

• TSP – Travelling Salesman Problem (Sahni)

• OBST – Optimal Binary Search Tree (Cormen)

• Optimal Polygon Triangulation (Sahni)
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