
Combinatorial Optimization

CSE 301

Lecture 3

Dynamic Programming III

2

Dynamic Programming

• An algorithm design technique for optimization

problems (similar to divide and conquer)

• Applicable when subproblems are not

independent

– Subproblems share subsubproblems

– A divide and conquer approach would repeatedly

solve the common subproblems

– Dynamic programming solves every subproblem just

once and stores the answer in a table

3

DP - Two key ingredients

• Two key ingredients for an optimization problem

to be suitable for a dynamic-programming

solution:

Each substructure is

optimal.

(Principle of optimality)

1. optimal substructures 2. overlapping subproblems

Subproblems are dependent.

(otherwise, a divide-and-

conquer approach is the

choice.)

4

Elements of Dynamic Programming

• Optimal Substructure

– An optimal solution to a problem contains within it an

optimal solution to subproblems

– Optimal solution to the entire problem is build in a

bottom-up manner from optimal solutions to

subproblems

• Overlapping Subproblems

– If a recursive algorithm revisits the same subproblems

over and over  the problem has overlapping

subproblems

5

Dynamic Programming

• Used for optimization problems

– A set of choices must be made to get an optimal

solution

– Find a solution with the optimal value (minimum or

maximum)

– There may be many solutions that return the optimal

value: an optimal solution

6

Typical Steps of DP Algorithm

1. Characterize the structure of an optimal

solution

2. Recursively define the value of an optimal

solution

3. Compute the value of an optimal solution in a

bottom-up fashion

4. Construct an optimal solution from computed

information

7

Memoization

• A variation of DP

• Keep the same efficiency as DP

• But in a top-down manner.

• Idea:
– Each entry in table initially contains a value

indicating the entry has yet to be filled in.

– When a subproblem is first encountered, its
solution needs to be solved and then is stored in
the corresponding entry of the table.

– If the subproblem is encountered again in the
future, just look up the table to take the value.

8

Memoized Matrix-Chain

Alg.: MEMOIZED-MATRIX-CHAIN(p)

1. n  length[p] – 1

2. for i  1 to n

3. do for j  i to n

4. do m[i, j]  

5. return LOOKUP-CHAIN(p, 1, n)

Initialize the m table with

large values that indicate

whether the values of m[i, j]
have been computed

Top-down approach

9

Memoized Matrix-Chain

Alg.: LOOKUP-CHAIN(p, i, j)

1. if m[i, j] < 

2. then return m[i, j]

3. if i = j

4. then m[i, j]  0

5. else for k  i to j – 1

6. do q  LOOKUP-CHAIN(p, i, k) +

LOOKUP-CHAIN(p, k+1, j) + pi-1pkpj

7. if q < m[i, j]

8. then m[i, j]  q

9. return m[i, j]

Running time is O(n3)

m[i, j] = min {m[i, k] + m[k+1, j] + pi-1pkpj}

ik<j

10

Dynamic Progamming vs. Memoization

• Advantages of dynamic programming vs.

memoized algorithms

– No overhead for recursion, less overhead for

maintaining the table

– The regular pattern of table accesses may be used to

reduce time or space requirements

• Advantages of memoized algorithms vs.

dynamic programming

– Some subproblems do not need to be solved

– Easier to think and to implement

11

Elements of Dynamic Programming

• Optimal Substructure

– An optimal solution to a problem contains within it an

optimal solution to subproblems

– Optimal solution to the entire problem is build in a

bottom-up manner from optimal solutions to

subproblems

• Overlapping Subproblems

– If a recursive algorithm revisits the same subproblems

over and over  the problem has overlapping

subproblems

12

Optimal Substructure - Examples

• Matrix multiplication

– Optimal parenthesization of Ai  Ai+1  Aj that splits

the product between Ak and Ak+1 contains:

an optimal solution to the problem of parenthesizing

Ai..k and Ak+1..j

13

Parameters of Optimal Substructure

• How many subproblems are used in an optimal

solution for the original problem

– Matrix multiplication:

• How many choices we have in determining

which subproblems to use in an optimal solution

– Matrix multiplication:

Two subproblems (subproducts Ai..k, Ak+1..j)

j - i choices for k (splitting the product)

14

Parameters of Optimal Substructure

• Intuitively, the running time of a dynamic

programming algorithm depends on two factors:

– Number of subproblems overall

– How many choices we look at for each subproblem

• Matrix multiplication:

– (n2) subproblems (1  i  j  n)

– At most n-1 choices (n3) overall

15

Summary
• DP two important properties

• Four steps of DP.

• Differences among divide-and-conquer
algorithms, DP algorithms, and Memoized
algorithm.

• Writing DP programs and analyze their running
time and space requirement.

Further Reading

• TSP – Travelling Salesman Problem (Sahni)

• OBST – Optimal Binary Search Tree (Cormen)

• Optimal Polygon Triangulation (Sahni)

16

