Combinatorial Optimization
CSE 301

Lecture 3
Dynamic Programming Il



Dynamic Programming

* An algorithm design technique for optimization

problems (similar to divide and conquer)

* Applicable when subproblems are not

Independent

— Subproblems share subsubproblems

— A divide and conquer approach would repeatedly
solve the common subproblems

— Dynamic programming solves every subproblem just
once and stores the answer In a table



DP - Two key Ingredients

* Two key ingredients for an optimization problem
to be suitable for a dynamic-programming
solution:

1. optimal substructures 2. overlapplng subproblems

\/ Subproblems are dependent.

Each substructure is (otherwise, a divide-and-
optimal. conquer approach is the

(Principle of optimality) ~ ; choice.)



Elements of Dynamic Programming

« Optimal Substructure

— An optimal solution to a problem contains within it an
optimal solution to subproblems

— Optimal solution to the entire problem is build in a
bottom-up manner from optimal solutions to
subproblems

« Overlapping Subproblems

— If a recursive algorithm revisits the same subproblems
over and over = the problem has overlapping
subproblems



Dynamic Programming

» Used for optimization problems

— A set of choices must be made to get an optimal

solution

— Find a solution with the optimal value (minimum or

maximum)

— There may be many solutions that return the optimal

value: an optimal solution



Typical Steps of DP Algorithm

. Characterize the structure of an optimal
solution

. Recursively define the value of an optimal
solution

. Compute the value of an optimal solution in a
bottom-up fashion

. Construct an optimal solution from computed
Information



Memoilzation

A variation of DP
Keep the same efficiency as DP
But in a top-down manner.

|dea:

— Each entry in table initially contains a value
Indicating the entry has yet to be filled in.

— When a subproblem is first encountered, its
solution needs to be solved and then is stored in
the corresponding entry of the table.

— If the subproblem Is encountered again in the
future, just look up the table to take the value.



Memoized Matrix-Chain

Alg.: MEMOIZED-MATRIX-CHAIN(p)

1. n<« length[p]-1

2. fori<1ton
Initialize the m table with
: . large values that indicate
3 do fOI’J < 1ton > whether the values of m[i, j]
o have been computed
4, do m[i, j] « o
5 return LOOKUP'CHAIN(p, 1, n) — Top_down approach



Memoized Matrix-Chain

Alz.: LOOKUP-CHAIN(p, i, j) Running time is O(n?)

1. ifmli, j] <o

2. then return m[i, §]

3. iz

4. thenmli, j] <0 mi 1= min {mfi, K+ mk+1, ] + p,.pyp)
5. elsefork«itoj-1 i<k

6. do q « LOOKUP-CHAIN(p, i, k) +

LOOKUP-CHAIN(p, k+1, j) + Pi-1PkP;
if g<mli, j]
then m[i, j]<q

@ A

9. return m[i, j] 9



Dynamic Progamming vs. Memoization

Advantages of dynamic programming vs.
memoized algorithms

— No overhead for recursion, less overhead for
maintaining the table

— The regular pattern of table accesses may be used to
reduce time or space requirements

Advantages of memoized algorithms vs.
dynamic programming
— Some subproblems do not need to be solved

— Easier to think and to implement

10



Elements of Dynamic Programming

« Optimal Substructure

— An optimal solution to a problem contains within it an
optimal solution to subproblems

— Optimal solution to the entire problem is build in a
bottom-up manner from optimal solutions to
subproblems

« Overlapping Subproblems

— If a recursive algorithm revisits the same subproblems
over and over = the problem has overlapping
subproblems

11



Optimal Substructure - Examples

« Matrix multiplication

— Optimal parenthesization of A; - A;,; -+ A, that splits
the product between A, and A,,; contains:

an optimal solution to the problem of parenthesizing
Aixand Ay

12



Parameters of Optimal Substructure

 How many subproblems are used in an optimal
solution for the original problem
— Matrix multiplication: Two subproblems (subproducts A , Ari.j)
 How many choices we have In determining
which subproblems to use in an optimal solution

— Matrix multiplication: j - i choices for k (splitting the product)

13



Parameters of Optimal Substructure

* Intuitively, the running time of a dynamic
programming algorithm depends on two factors:
— Number of subproblems overall

— How many choices we look at for each subproblem
« Matrix multiplication:
- O(n?) subproblems (1 <i<j<n)

— At most n-1 choices ®(n3) overall

14



Summary

« DP two important properties
e Four steps of DP.

 Differences among divide-and-conquer
algorithms, DP algorithms, and Memoized

algorithm.

* Writing DP programs and analyze their running
time and space requirement.

15



Further Reading

TSP — Travelling Salesman Problem (Sahni)
« OBST — Optimal Binary Search Tree (Cormen)
« Optimal Polygon Triangulation (Sahni)

16



