
Analysis of Algorithms

NP Completeness

2

NP-Completeness

• Polynomial-time algorithms

on inputs of size n, worst-case running time

is O(nk), for a constant k

• Not all problems can be solved in polynomial

time

– Some problems cannot be solved by any computer no

matter how much time is provided (Turing’s Halting

problem) – such problems are called undecidable

– Some problems can be solved but not in O(nk)

Turing’s Halting Problem

• The halting problem

– Given a program and inputs for it, decide whether it will run forever or

will eventually stop.

– This is not the same thing as actually running a given program and

seeing what happens. The halting problem asks whether there is any

general prescription for deciding how long to run an arbitrary program

so that its halting or non-halting will be revealed.

– In this abstract framework, there are no resource limitations of memory

or time on the program's execution; it can take arbitrarily long, and use

arbitrarily much storage space, before halting.

– Example

• while(1) {x = x+1;}

– The reason the halting problem is famous is because it is undecidable,

which means there is no computable function that correctly determines

which programs halt and which ones do not.

3

4

34.1 Polynomial Time

• Polynomial time solvable problem are regarded

as tractable.

– Even if the current best algorithm for a problem has a

running time of (n100), it is likely that an algorithm

with a much better running time will soon be

discovered.

– Problems for many reasonable models of

computation, that can be solved in one model can be

solved in polynomial in another.

– Polynomial-time solvable problems has a nice closure

property.
f g are polynomial

f g is also polynomial

,

()

5

Class of “P” Problems

• Class P consists of (decision) problems that are

solvable in polynomial time:

there exists an algorithm that can solve the

problem in O(nk), k constant

• Problems in P are also called tractable

• Problems not in P are also called intractable

– Can be solved in reasonable time only for small inputs

6

Decision problems

A class of problems where for each input algorithm

have to produce one of two possible answers - “yes” or

“no”, i.e. computable functions of the type

f: N  {0,1}

7

Optimization & Decision Problems

• Decision problems

– Given an input and a question regarding a problem,

determine if the answer is yes or no

• Optimization problems

– Find a solution with the “best” value

• Optimization problems can be cast as decision

problems that are easier to study

– E.g.: Shortest path: G = unweighted directed graph

• Find a path between u and v that uses the fewest edges

• Does a path exist from u to v consisting of at most k edges?

8

Nondeterministic Algorithms

Nondeterministic algorithm = two stage procedure:

1) Nondeterministic (“guessing”) stage:

generate an arbitrary string that can be thought of as a

candidate solution (“certificate”)

2) Deterministic (“verification”) stage:

take the certificate and the instance to the problem and

returns YES if the certificate represents a solution

• Nondeterministic polynomial (NP) = verification

stage is polynomial

9

Class of “NP” Problems

• Class NP consists of problems that are

verifiable in polynomial time (i.e., could be

solved by nondeterministic polynomial

algorithms)

– If we were given a “certificate” of a solution, we could

verify that the certificate is correct in time polynomial

to the size of the input

10

E.g.: Hamiltonian Cycle

• Given: a directed graph G = (V, E), determine a

simple cycle that contains each vertex in V

– Each vertex can only be visited once

• Certificate:

– Sequence: v1, v2, v3, …, v|V|

• Verification:

1) (vi, vi+1)  E for i = 1, …, |V|

2) (v|V|, v1)  E

hamiltonian

not

hamiltonian

11

Polynomial time algorithm to decide A

Polynomial Reduction Algorithm

• To solve a decision problem A in polynomial time

1. Use a polynomial time reduction algorithm to transform

A into B

2. Run a known polynomial time algorithm for B

3. Use the answer for B as the answer for A

f Polynomial time

algorithm to decide B

A B yes

no

yes

no

12

Reductions

• Given two problems A, B, we say that A is

reducible to B (A p B) if:

1. There exists a function f that converts the input of A

to inputs of B in polynomial time

2. A(i) = YES  B(f(i)) = YES

13

NP-Completeness

• A problem B is NP-complete if:

1) B  NP

2) A p B for all A  NP

• If B satisfies only property 2) we say that B is NP-hard

• No polynomial time algorithm has been discovered for an

NP-Complete problem

• No one has ever proven that no polynomial time

algorithm can exist for any NP-Complete problem

14

NP-Completeness (why NPC?)

• A problem p NP, and any other problem p can

be translated as p in poly time.

• So if p can be solved in poly time, then all

problems in NP can be solved in poly time.

15

Proving NP-Completeness

Theorem: If A is NP-Complete and A p B

 B is NP-Hard

In addition, if B  NP

 B is NP-Complete

Proof: Assume that B  P

Since A p B  A  P contradiction!

 B is NP-Hard

16

Reduction and NP-Completeness

• Suppose we know:

– No polynomial time algorithm exists for problem B

– We have a polynomial reduction f from A to B

 No polynomial time algorithm exists for A

f Problem B
A B yes

no

yes

no

Problem A

17

Proving NP-Completeness

• Prove that the problem B is in NP

– A randomly generated string can be checked in

polynomial time to determine if it represents a solution

• Show that one known NP-Complete problem

can be transformed to B in polynomial time

– No need to check that all NP-Complete problems are

reducible to B

18

Is P = NP?

• Any problem in P is also in NP:

P  NP

• We can solve problems in P, even without

having a certificate

• The big (and open question) is whether P = NP

Theorem: If any NP-Complete problem can be solved

in polynomial time  then P = NP.

P

NP

NP-complete

19

Relation among P, NP, NPC

• P  NP (Sure)

• NPC  NP (sure)

• P = NP (or P  NP, or P  NP) ???

• NPC = NP (or NPC  NP, or NPC  NP) ???

• P  NP: one of the deepest, most perplexing

open research problems in (theoretical)

computer science since 1971.

20

Arguments about P, NP, NPC

• No poly algorithm found for any NPC problem
(even so many NPC problems)

• No proof that a poly algorithm cannot exist for
any of NPC problems, (even having tried so long
so hard).

• Most theoretical computer scientists believe that
NPC is intractable (i.e., hard, and P  NP).

21

View of Theoretical Computer Scientists on P, NP, NPC

NPC

P

NP

P  NP, NPC  NP, P  NPC = 

22

Why discussion on NPC

• If a problem is proved to be NPC, a good evidence for its

intractability (hardness).

• Not waste time on trying to find efficient algorithm for it

• Instead, focus on design approximate algorithm or a

solution for a special case of the problem

• Some problems looks very easy on the surface, but in

fact, is hard (NPC).

23

P & NP-Complete Problems

• Shortest simple path

– Given a graph G = (V, E) find a shortest path from a

source to all other vertices

– Polynomial solution: O(VE)

• Longest simple path

– Given a graph G = (V, E) find a longest path from a

source to all other vertices

– NP-complete

24

P & NP-Complete Problems

• Euler tour

– G = (V, E) a connected, directed graph find a cycle

that traverses each edge of G exactly once (may visit

a vertex multiple times)

– Polynomial solution O(E)

• Hamiltonian cycle

– G = (V, E) a connected, directed graph find a cycle

that visits each vertex of G exactly once

– NP-complete

25

A First NP-complete problem

• Because the technique of reduction relies on

having a problem already known to be NP-

complete in order to prove a different problem

NP-complete,

– we need a “first” NPC problem.

• Circuit-satisfiability problem

26

First NP-complete problem—Circuit

Satisfiability (problem definition)

• Boolean combinational circuit
– Boolean combinational elements, wired together

– Each element, inputs and outputs (binary)

– Limit the number of outputs to 1.

– Called logic gates: NOT gate, AND gate, OR gate.

– true table: giving the outputs for each setting of inputs

– true assignment: a set of boolean inputs.

– satisfying assignment: a true assignment causing the output to be 1

– A circuit is satisfiable if it has a satisfying assignment.

27

Circuit Satisfiability Problem: definition

• Circuit satisfying problem:
– given a boolean combinational circuit composed of AND, OR,

and NOT, is it stisfiable?

• CIRCUIT-SAT={<C>: C is a satisfiable boolean circuit}

• Implication:
– in the area of computer-aided hardware optimization, if a

subcircuit always produces 0, then the subcircuit can be
replaced by a simpler subcircuit that omits all gates and just
output a 0.

28

0
1

1

1
1

0

1

1 1

1

1

x1 1

1

1

x2

x3

Satisfiable

0

1

1

x1

x2

x3

Not Satisfiable!

Circuit Satisfiability Problem

29

Solving circuit-satisfiability problem

• Intuitive solution:

– for each possible assignment, check whether it

generates 1.

– suppose the number of inputs is k, then the total

possible assignments are 2k. So the running time

is (2k). When the size of the problem is (k),

then the running time is not poly.

30

Circuit Satisfiability: Theorem

• Lemma 34.5.

– The circuit-satisfiability problem belongs to the class

NP.

• Lemma 34.6.

– The circuit-satisfiability problem is NP-hard.

• Theorem 34.7.

– The circuit-satisfiability problem is NP-Complete.

31

Circuit-satisfiability problem is

NP-complete
• Lemma 34.5: CIRCUIT-SAT belongs to NP.

• Proof:
– CIRCUIT-SAT is poly-time verifiable.

– Given (an encoding of) a CIRCUIT-SAT problem C and a
certificate, which is an assignment of boolean values to (all) wires
in C.

– The algorithm is constructed as follows: just checks each gates
and then the output wire of C:

• If for every gate, the computed output value matches the value of the
output wire given in the certificate and the output of the whole circuit
is 1, then the algorithm outputs 1, otherwise 0.

• The algorithm is executed in poly time (even linear time).

32

Circuit-satisfiability problem is NP-

complete (cont.)

• Lemma 34.6: (page 991)

– CIRCUIT-SAT is NP-hard.

• Proof:

– Difficult to proof

– If you are interested, read from the book

33

NPC proof –Formula Satisfiability (SAT)

• SAT definition
– n boolean variables: x1, x2,…, xn.

– M boolean connectives: any boolean function with one or two
inputs and one output, such as ,,,,,… and

– Parentheses.

• A SAT  is satisfiable
– if there exists a true assignment which causes  to evaluate to

1.

E.g.:  = (x1  x2)  (x1   x2)  ( x1   x2)

Certificate: x1 = 1, x2 = 0   = 1  1  1 = 1

• SAT={< >:  is a satifiable boolean formula}.

• The historical honor of the first NP-complete problem
ever shown.

34

SAT is NP-complete

• Theorem 34.9: (page 997)

– SAT is NP-complete.

• Proof:

– SAT belongs to NP.

• Given a satisfying assignment, the verifying algorithm

replaces each variable with its value and evaluates the

formula, in poly time.

– SAT is NP-hard (show CIRCUIT-SATp SAT).

35

SAT is NP-complete (cont.)

• CIRCUIT-SATp SAT, i.e., any instance of circuit

satisfiability can be reduced in poly time to an instance of

formula satisfiability.

• Intuitive induction:

– Look at the gate that produces the circuit output.

– Inductively express each of gate’s inputs as formulas.

– Formula for the circuit is then obtained by writing an expression that

applies the gate’s function to its input formulas.

•Unfortunately, this is not a poly reduction
–Shared formula (the gate whose output is fed to 2 or more inputs of

other gates) cause the size of generated formula to grow exponentially.

36

SAT is NP-complete (cont.)

• Correct reduction:
– For every wire xi of C, give a variable xi in the formula.

– Every gate can be expressed as xo(xi1
 xi2

…  xil
)

– The final formula  is the AND of the circuit output variable and
conjunction of all clauses describing the operation of each gate.
(example Figure 34.10)

• Correctness of the reduction
– Clearly the reduction can be done in poly time.

– C is satisfiable if and only if  is satisfiable.

• If C is satisfiable, then there is a satisfying assignment. This means
that each wire of C has a well-defined value and the output of C is 1.
Thus the assignment of wire values to variables in  makes each
clause in  evaluate to 1. So  is 1.

• The reverse proof can be done in the same way.

37

Example of reduction of CIRCUIT-SAT to SAT

= x10(x10(x7 x8 x9))

(x9(x6  x7))

(x8(x5  x6))

(x7(x1 x2 x4))

(x6x4))

(x5(x1  x2))

(x4x3)

INCORRECT REDUCTION: = x10= x7 x8 x9=(x1 x2 x4)  (x5  x6) (x6  x7)

=(x1 x2 x4)  ((x1  x2) x4) (x4  (x1 x2 x4))=….

38

NP-completeness proof structure

39

3-CNF Satisfiability

3-CNF Satisfiability Problem:
– n boolean variables: x1, x2, …, xn

– Literal: xi or  xi (a variable or its negation)

– Clause: cj = an OR of three literals (m clauses)

– Formula:  = c1  c2  …  cm

• E.g.:

 = (x1  x1  x2) 

(x3  x2  x4) 

(x1  x3   x4)

• 3-CNF is NP-Complete

44

Clique

Clique Problem:

– Undirected graph G = (V, E)

– Clique: a subset of vertices in V all connected to each

other by edges in E (i.e., forming a complete graph)

– Size of a clique: number of vertices it contains

Optimization problem:

– Find a clique of maximum size

Decision problem:

– Does G have a clique of size k?

Clique(G, 2) = YES

Clique(G, 3) = NO

Clique(G, 3) = YES

Clique(G, 4) = NO

45

Clique Verifier

• Given: an undirected graph G = (V, E)

• Problem: Does G have a clique of size k?

• Certificate:

– A set of k nodes

• Verifier:

– Verify that for all pairs of vertices in this set there

exists an edge in E

46

CLIQUE is NP-complete

• Theorem 34.11: (page 1003)

– CLIQUE problem is NP-complete.

• Proof:

– CLIQUE NP:

• given G=(V,E) and a set V'V as a certificate for G. The verifying

algorithm checks for each pair of u,vV', whether <u,v> E. time:

O(|V'|2|E|).

– CLIQUE is NP-hard:

• show 3-CNF-SAT pCLIQUE.

• The result is surprising, since from boolean formula to graph.

47

3-CNF p Clique

• Start with an instance of 3-CNF:

–  = C1  C2  …  Ck (k clauses)

– Each clause Cr has three literals: Cr = l1
r  l2

r  l3
r

• Idea:

– Construct a graph G such that  is satisfiable only if

G has a clique of size k

48

3-CNF p Clique

• For each clause Cr = l1
r  l2

r  l3
r place a triple of

vertices v1
r, v2

r, v3
r in V

• Put an edge between two vertices vi
r and vj

s if:

– vi
r and vj

s are in different triples

– li
r is not the negation of lj

s (consistent correspondent

literals)

x1 x2 x3

x1

x2

x3

x1

x2

x3

C1 = x1  x2  x3

C2 = x1  x2  x3 C3 = x1  x2  x3

 = C1  C2  C3

49

3-CNF p Clique

• Suppose  has a

satisfying assignment

– Each clause Cr has a

literal assigned to 1 – this

corresponds to a vertex vi
r

– Picking one such literal

from each Cr  a set V’

of k vertices

x1 x2 x3

x1

x2

x3

x1

x2

x3

C1 = x1  x2  x3

C2 = x1  x2  x3
C3 = x1  x2  x3

 = C1  C2  C3

• Claim: V’ is a clique

– vi
r, vj

s  V’ the corresponding literals are 1  cannot

be complements

– by the design of G the edge (vi
r, vj

s)  E

50

3-CNF p Clique

• Suppose G has a clique

of size k

– No edges between nodes

in the same clause

– Clique contains only one

vertex from each clause

– Assign 1 to vertices in

the clique

– The literals of these vertices cannot belong to

complementary literals

– Each clause is satisfied   is satisfied

x1 x2 x3

x1

x2

x3

x1

x2

x3

C1 = x1  x2  x3

C2 = x1  x2  x3
C3 = x1  x2  x3

 = C1  C2  C3

51

NP-completeness proof structure

52

Vertex Cover

• G = (V, E), undirected graph

• Vertex cover = a subset V’  V

such that covers all the edges

– if (u, v)  E then u  V’ or v  V’ or both.

• Size of a vertex cover = number of vertices in it

Problem:

– Find a vertex cover of minimum size

– Does graph G have a vertex cover of size k?

u v

z w

y x

z w

53

Clique p Vertex Cover

Size[Clique](G) + Size[VxCv](GC) = n

• G has a clique of size k  GC has a vertex cover

of size n – k

• S is a clique in G  V – S is a vertex cover in GC

Clique = 2 VxCv = 2 Clique = 2 VxCv = 3

G GGC GC

54

Clique p Vertex Cover

u v

z w

y x

G GC

• G = (V, E)  GC = (V, EC)

EC = {(u, v):, u, v V, and (u, v) E}

Idea:

G, k (clique)  GC, |V|-k (vertex cover)

u v

z w

y x

57

The Traveling Salesman Problem

• G = (V, E), |V| = n, vertices

represent cities

• Cost: c(i, j) = cost of travel from

city i to city j

• Problem: salesman should make

a tour (hamiltonian cycle):

– Visit each city only once

– Finish at the city he started from

– Total cost is minimum

• TSP = tour with cost at most k

u v

x w
5

3 2

1

1

u, w, v, x, u

58

Traveling-salesman problem is NPC

• TSP={<G,c,k>:

G=(V,E) is a complete graph,

c is a function from VVZ,

kZ, and G has a traveling salesman

tour with cost at most k.}

• Theorem 34.14: (page 1012)

– TSP is NP-complete.

59

TSP  NP

• Certificate:

– Sequence of n vertices, cost

– E.g.: u, w, v, x, u, 7

• Verification:

– Each vertex occurs only once

– Sum of costs is at most k

u v

x w
5

3 2

1

1

60

HAM-CYCLE p TSP

• Start with an instance of Hamiltonian cycle G = (V, E)

• Form the complete graph G’ = (V, E’)

E’ = {(i, j): i, j  V and i  j}

0 if (i, j)  E

1 if (i, j)  E

• TSP: G’, c, 0

• G has a hamiltonian cycle 

G’ has a tour of cost at most 0

u v

x w
5

3 2

1

1

u v

x w

1

0

0 0

0

0

c(i, j) =

61

HAM-CYCLE p TSP

• G has a hamiltonian cycle h

 Each edge in h  E  has cost 0 in G’

 h is a tour in G’ with cost 0

• G’ has a tour h’ of cost at most 0

 Each edge on tour must have cost 0

 h’ contains only edges in E

u v

x w
5

3 2

1

1

u v

x w

1

0

0 0

0

0

62

Some popular NP-complete

problems

63

Some popular NP-complete

problems

64

Some popular NP-complete

problems

65

Some popular NP-complete

problems

66

Some popular NP-complete

problems

67

Some popular NP-complete

problems

68

Some popular NP-complete

problems

69

Some popular NP-complete

problems

70

Some popular NP-complete

problems

71

Some popular NP-complete

problems

72

Some popular NP-complete

problems

73

Readings

• Chapter 34

