
NETWORK FLOW



Usage Places

Network Vertex Edges Flow
communication telephone exchanges  

computers, satellites
cables, fiber optics, 
microwave relays

voice, video, packets

circuits gates, registers,             
processors

wires current

mechanical Joints rods, beams, springs heat, energy

hydraulic reservoirs, pumping 
stations, lakes

pipelines fluid, oil

financial stocks, currency transactions money

transportation airports, rail yards,  
street intersections

highways, railways, 
airway routes

freight, vehicles, 
passengers

chemical sites bonds energy



Example Graph

-

Max. capacity of edgeActual flow through 
this edge

Source node

Sink node



Simplified Model

The network is modeled simply as 
a) a directed graph G = (V,E) with 
b) non-negative capacity on each edge, 
c) a single source node, s, and 
d) a single sink node, t



Some assumptions…

We will simplify our discussion by 
assuming the following: 

(i) No edge enters s, the source 
(ii) No edge leaves t, the sink 
(iii) At least one edge is incident to each 

node 
(iv) All capacities are integers



What is Network Flow?
■ Each edge (u,v) has a nonnegative capacity c(u,v).  
■ If (u,v) is not in E, assume c(u,v)=0. 
■ We have a source s, and a sink t.  
■ Assume that every vertex v in V is on some path from s to t.  
■ c(s,v1)=16; c(v1,s)=0; c(v2,v3)=0
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Formalization

Flow network – G=(V,E)
– Directed, each edge has capacity c(u,v) ≥ 0
– Two special vertices: source s, and sink t
– For any other vertex v, there is a path s→…→v→…→t

Flow – f : V × V → R
– Capacity constraint: ∀u,v ∈ V:  f(u,v) ≤ c(u,v)
– Skew symmetry: ∀u,v ∈ V:  f(u,v) = –f(v,u)
– Flow conservation: ∀u ∈ V – {s, t}:

∑
v∈V

f(u, v) = ∑
v∈V

f(v, u)



Flow in a Flow Network
– A flow in the network is an integer-valued 

function f defined on the edges of G satisfying 0 
≤ f(i,j) ≤ c(i,j) for every edge (i,j) in E.



The Value of a Flow
▪The value of a flow is given by 

∑∑
∈∈
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▪This it the total flow leaving s  = the total flow arriving in t
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Example:

|f| = f(s, v1) + f(s, v2) + f(s, v3) + f(s, v4) + f(s, t) = 
             11    +     8     +     0      +      0    +     0     = 19 

|f|= f(s, t) +  f(v1, t) + f(v2, t) + f(v3, t) +  f(v4, t) =
           0     +     0      +     0     +     15    +       4     = 19 



Example of a Flow
flow

capacity

•f(v2, v1) = 1,         c(v2, v1) = 4. 

•f(v1, v2) = -1,        c(v1, v2) = 10. 
•f(v3, s) + f(v3, v1) + f(v3, v2) + f(v3, v4) + f(v3, t) = 

•    0    +    (-12)   +       4      +    (-7)    +    15     =  0

0

0



A flow in a network 



A flow in a network 

■ We assume that there is only flow in one direction at a time.



A flow in a network 

■ We assume that there is only flow in one direction at a time.

■ Sending 7 trucks from Edmonton to Calgary and 3 trucks from Calgary 
to Edmonton has the same net effect as sending 4 trucks from 
Edmonton to Calgary. 
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– Value of the flow f: 
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Maximum flow
■ What do we want to maximize?

– Value of the flow f: 

( , ) ( , ) ( , )
v V

f f s v f s V f V t
∈
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Some Lemmas:

■ Prove that, f(s,V)=f(V,t)   
■ [Lemma26.2]  Prove that, |f+f′|=|f|+|f′|   
■ Lemma: 26.3 
■ Lemma 26.4  |f′| = |f| + |fp| ≥|f| 
■ Lemma: 26.5   |f| = f(S,T) 
■ Lemma: 26.6   |f| ≤ c(S,T)



Cuts
■ A cut is a partition of V into S and T = V – S, such that s ∈ S and t ∈ 

T 
■ The net flow (f(S,T)) through the cut is the sum of flows f(u,v), where  
s ∈ S and t ∈ T 
– Includes negative flows back from T to S 

■ The capacity (c(S,T)) of the cut is the sum of capacities c(u,v), where  
s ∈ S and t ∈ T 
– The sum of positive capacities 

■ Minimum cut – a cut with the smallest capacity of all cuts. 
 |f|= f(S,T)  i.e. the value of a max flow is equal to the capacity of a min 

cut.
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Cut capacity = 24 Min Cut capacity = 21



Max Flow Network
_G = (V, E, s, t, u) _(V, E) = directed graph, no parallel arcs. 

_Two distinguished nodes:  s = source, t = sink. 

_u(e) = capacity of arc e.
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MAX FLOW:  find s-t flow that maximizes net flow out of the source.



Cuts of Flow Networks

■ A cut in a network is a partition of V into S and T=V-S so 
that s is in S and t is in T.
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Capacity = 30



The Net Flow Through a Cut(S,T)

f(S,T) = 12 – 4 + 11 = 19

S T

The 
value of 
any flow 
f in a 
flow 
network 
G is 
bounded 
from 
above 
by the 
capacity 
of any 
cut of G.



The Capacity of Cut(S,T)

∑
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c(S,T)= 12+ 14 = 26
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The Ford-Fulkerson Method

■ Try to improve the flow, until we reach the maximum. 
■ The residual capacity of the network with a flow f is 

given by: 

),(),(),( vufvucvuc f −=

Always nonnegative (why?)
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Example of  residual capacities 

Network:

Residual Network:

Augmenting path



The residual network

■ The edges of the residual network are the 
edges on which the residual capacity is positive. 
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Why  do we need residual networks?

■ Residual networks allow us to reverse 
flows if necessary.

■ If we have taken a bad path then 
residual networks allow one to detect 
the condition and reverse the flow.

■ A bad path is one which overlaps with 
too many other paths.
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Example 
Source

Destination1 1

1

1

1

a

b
Paths source, a, destinations and source, b destination gives a flow of 
2 units.

Path source, a, b, destination overlaps with both the optimal paths.

If we initially choose source, a, b, destination as our path, then no 
greedy strategy will be able to augment the network flow any further  
(unless we use residual edges which allows recovery)

Verify how we recover in spite of the initial bad choice, if we use the 
residual network to augment flows.
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Augmenting Paths

■ An augmenting path p is a simple path from s to t on the 
residual network. 

■ We can put more flow from s to t through p. 

■ We call the maximum capacity by which we can increase the 
flow on p the residual capacity of p.

}on  is ),( :),(min{)( pvuvucpc ff =



Augmenting Paths - example



Augmenting Paths - example

■ The residual capacity of p = 4. 



Augmenting Paths - example

■ The residual capacity of p = 4. 
■ Can improve the flow along p by 4. 



Maxflow-Mincut Theorem

■ Max-flow min-cut theorem: 
– If f is the flow in G, the following conditions are 

equivalent: 
• 1. f is a maximum flow in G 
• 2. The residual network Gf contains no augmenting paths 
• 3. |f| = c(S,T) for some cut (S,T) of G



Ford-Fulkerson Method



Example                                        

Resulting Flow =4 

Original Network

augmenting path

CSC373                                    Algorithm Design and Analysis                                                      Announcements



Example 

Resulting  

Flow = 4

Residual Network

augmenting path



Example

Residual Network

Resulting Flow =11 



Example

Resulting  

Flow =11 

Residual Network

augmenting path



Example

Residual Network

Resulting  

Flow =19 



Example

Resulting  

Flow = 19

Residual Network

augmenting path



Example

Residual Network

Resulting  

Flow = 23



Example

Residual Network

Resulting  

Flow = 23

No augmenting path:  

Maxflow=23

The residual network Gf contains no  

augmented paths. So f is a maximum 

flow in G. 



Ford-Fulkerson method, with details
Ford-Fulkerson(G,s,t)  
1  for each edge (u,v)∈G.E do  
2     f(u,v) = f(v,u) = 0  
3  while ∃ path p from s to t in residual network Gf do 

4     cf = min{cf(u,v): (u,v)∈p}  

5     for each edge (u,v) in p do 
6         f(u,v) = f(u,v) + cf 

7         f(v,u) = -f(u,v) 
8  return f



Ford-Fulkerson method, with details
Ford-Fulkerson(G,s,t)  
1  for each edge (u,v)∈G.E do  
2     f(u,v) = f(v,u) = 0  
3  while ∃ path p from s to t in residual network Gf do 

4     cf = min{cf(u,v): (u,v)∈p}  

5     for each edge (u,v) in p do 
6         f(u,v) = f(u,v) + cf 

7         f(v,u) = -f(u,v) 
8  return f

The algorithms based on this method differ in how they 
choose p in step 3.



Time Analysis I 

■ A complete analysis establishing which specific method is 
best is a complex task, however, because their running 
times depend on 

▪ The number of augmenting paths needed to find a 
maxflow 

▪ The time needed to find each augmenting path
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Analysis

■ If capacities are all integer, then each augmenting path raises 
|f| by ≥ 1.

■ If max flow is f*, then need ≤ |f*| iterations  

– So time is O(E|f*|).
■ Note that this running time is not polynomial in input size. It 

depends on |f*|, which is not a function of |V| or |E|.

■ If capacities are rational, can scale them to integers.

■ If irrational, FORD-FULKERSON might never terminate!



The basic Ford-Fulkerson Algorithm

■ With time O ( E |f*|),  the algorithm is not polynomial.  
■ This problem is real: Ford-Fulkerson may perform very badly 

if we are unlucky:

|f*|=2,000,000
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Residual Network



Run Ford-Fulkerson on this example

■ Repeat 999,999 more times…
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work in polynomial time. 



The Edmonds-Karp Algorithm
■ A small fix to the Ford-Fulkerson algorithm makes it 

work in polynomial time. 
■ Specify how to compute the path in line 4. 
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The Edmonds-Karp Algorithm

■ Compute the path in line 4 using breadth-first 
search on residual network.

■ The augmenting path p is the shortest path from s 
to t in the residual network (treating all edge 
weights as 1). 

■ Runs in time O(V E2).



The Edmonds-Karp Algorithm - example

■ Edmonds-Karp’s algorithm runs only 2 
iterations on this graph. 
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Time Complexity

■ Let, total number of flow augmentations performed by 
Edmonds-Karp algorithm is O(VE)

■ BFS to find the augmented path – O(E)
■ So, Total running time is O(VE2)



Conditions

If f is a flow in a flow network G=(V,E), with source s and 
sink t, then the following conditions are equivalent: 

1. f is a maximum flow in G. 

2. The residual network Gf contains no augmented paths.   

3. |f| = c(S,T) for some cut (S,T) (a min-cut). 

It is a flow since there is no augmented paths It is maximum 
since the sink is not reachable from the source




