
NETWORK FLOW

Usage Places

Network Vertex Edges Flow
communication telephone exchanges

computers, satellites
cables, fiber optics,
microwave relays

voice, video, packets

circuits gates, registers,
processors

wires current

mechanical Joints rods, beams, springs heat, energy

hydraulic reservoirs, pumping
stations, lakes

pipelines fluid, oil

financial stocks, currency transactions money

transportation airports, rail yards,
street intersections

highways, railways,
airway routes

freight, vehicles,
passengers

chemical sites bonds energy

Example Graph

-

Max. capacity of edgeActual flow through
this edge

Source node

Sink node

Simplified Model

The network is modeled simply as
a) a directed graph G = (V,E) with
b) non-negative capacity on each edge,
c) a single source node, s, and
d) a single sink node, t

Some assumptions…

We will simplify our discussion by
assuming the following:

(i) No edge enters s, the source
(ii) No edge leaves t, the sink
(iii) At least one edge is incident to each

node
(iv) All capacities are integers

What is Network Flow?
■ Each edge (u,v) has a nonnegative capacity c(u,v).
■ If (u,v) is not in E, assume c(u,v)=0.
■ We have a source s, and a sink t.
■ Assume that every vertex v in V is on some path from s to t.
■ c(s,v1)=16; c(v1,s)=0; c(v2,v3)=0

Formalization

Formalization

Flow network – G=(V,E)

Formalization

Flow network – G=(V,E)
– Directed, each edge has capacity c(u,v) ≥ 0

Formalization

Flow network – G=(V,E)
– Directed, each edge has capacity c(u,v) ≥ 0
– Two special vertices: source s, and sink t

Formalization

Flow network – G=(V,E)
– Directed, each edge has capacity c(u,v) ≥ 0
– Two special vertices: source s, and sink t
– For any other vertex v, there is a path s→…→v→…→t

Formalization

Flow network – G=(V,E)
– Directed, each edge has capacity c(u,v) ≥ 0
– Two special vertices: source s, and sink t
– For any other vertex v, there is a path s→…→v→…→t

Flow – f : V × V → R

Formalization

Flow network – G=(V,E)
– Directed, each edge has capacity c(u,v) ≥ 0
– Two special vertices: source s, and sink t
– For any other vertex v, there is a path s→…→v→…→t

Flow – f : V × V → R
– Capacity constraint: ∀u,v ∈ V: f(u,v) ≤ c(u,v)

Formalization

Flow network – G=(V,E)
– Directed, each edge has capacity c(u,v) ≥ 0
– Two special vertices: source s, and sink t
– For any other vertex v, there is a path s→…→v→…→t

Flow – f : V × V → R
– Capacity constraint: ∀u,v ∈ V: f(u,v) ≤ c(u,v)
– Skew symmetry: ∀u,v ∈ V: f(u,v) = –f(v,u)

Formalization

Flow network – G=(V,E)
– Directed, each edge has capacity c(u,v) ≥ 0
– Two special vertices: source s, and sink t
– For any other vertex v, there is a path s→…→v→…→t

Flow – f : V × V → R
– Capacity constraint: ∀u,v ∈ V: f(u,v) ≤ c(u,v)
– Skew symmetry: ∀u,v ∈ V: f(u,v) = –f(v,u)
– Flow conservation: ∀u ∈ V – {s, t}:

∑
v∈V

f(u, v) = ∑
v∈V

f(v, u)

Flow in a Flow Network
– A flow in the network is an integer-valued

function f defined on the edges of G satisfying 0
≤ f(i,j) ≤ c(i,j) for every edge (i,j) in E.

The Value of a Flow
▪The value of a flow is given by

∑∑
∈∈

==
VvVv

tvfvsff),(),(||

▪This it the total flow leaving s = the total flow arriving in t

Example:

Example:

|f| = f(s, v1) + f(s, v2) + f(s, v3) + f(s, v4) + f(s, t) =

Example:

|f| = f(s, v1) + f(s, v2) + f(s, v3) + f(s, v4) + f(s, t) =
 11 + 8 + 0 + 0 + 0 = 19

Example:

|f| = f(s, v1) + f(s, v2) + f(s, v3) + f(s, v4) + f(s, t) =
 11 + 8 + 0 + 0 + 0 = 19

|f|= f(s, t) + f(v1, t) + f(v2, t) + f(v3, t) + f(v4, t) =

Example:

|f| = f(s, v1) + f(s, v2) + f(s, v3) + f(s, v4) + f(s, t) =
 11 + 8 + 0 + 0 + 0 = 19

|f|= f(s, t) + f(v1, t) + f(v2, t) + f(v3, t) + f(v4, t) =
 0 + 0 + 0 + 15 + 4 = 19

Example of a Flow
flow

capacity

•f(v2, v1) = 1, c(v2, v1) = 4.

•f(v1, v2) = -1, c(v1, v2) = 10.
•f(v3, s) + f(v3, v1) + f(v3, v2) + f(v3, v4) + f(v3, t) =

• 0 + (-12) + 4 + (-7) + 15 = 0

0

0

A flow in a network

A flow in a network

■ We assume that there is only flow in one direction at a time.

A flow in a network

■ We assume that there is only flow in one direction at a time.

■ Sending 7 trucks from Edmonton to Calgary and 3 trucks from Calgary
to Edmonton has the same net effect as sending 4 trucks from
Edmonton to Calgary.

Maximum flow

Maximum flow
■ What do we want to maximize?

Maximum flow
■ What do we want to maximize?

– Value of the flow f:

(,) (,) (,)
v V

f f s v f s V f V t
∈

= = =∑

Maximum flow
■ What do we want to maximize?

– Value of the flow f:

(,) (,) (,)
v V

f f s v f s V f V t
∈

= = =∑

13

11

54

15

10

14

19

3

s t9

a b

c d
5

13

3

8

6

10
8

2

Some Lemmas:

■ Prove that, f(s,V)=f(V,t)
■ [Lemma26.2] Prove that, |f+f′|=|f|+|f′|
■ Lemma: 26.3
■ Lemma 26.4 |f′| = |f| + |fp| ≥|f|
■ Lemma: 26.5 |f| = f(S,T)
■ Lemma: 26.6 |f| ≤ c(S,T)

Cuts
■ A cut is a partition of V into S and T = V – S, such that s ∈ S and t ∈

T
■ The net flow (f(S,T)) through the cut is the sum of flows f(u,v), where
s ∈ S and t ∈ T
– Includes negative flows back from T to S

■ The capacity (c(S,T)) of the cut is the sum of capacities c(u,v), where
s ∈ S and t ∈ T
– The sum of positive capacities

■ Minimum cut – a cut with the smallest capacity of all cuts.
 |f|= f(S,T) i.e. the value of a max flow is equal to the capacity of a min

cut.

8/13

8/11

5/52/4

10/15

10

6/14

13/19

3/3

s t9

a b

c d
Cut capacity = 24 Min Cut capacity = 21

Max Flow Network
_G = (V, E, s, t, u) _(V, E) = directed graph, no parallel arcs.

_Two distinguished nodes: s = source, t = sink.

_u(e) = capacity of arc e.

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

MAX FLOW: find s-t flow that maximizes net flow out of the source.

Cuts of Flow Networks

■ A cut in a network is a partition of V into S and T=V-S so
that s is in S and t is in T.

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

Capacity = 30

The Net Flow Through a Cut(S,T)

f(S,T) = 12 – 4 + 11 = 19

S T

The
value of
any flow
f in a
flow
network
G is
bounded
from
above
by the
capacity
of any
cut of G.

The Capacity of Cut(S,T)

∑
∈∈

=
TvSu

vucTSc
,

),(),(

c(S,T)= 12+ 14 = 26

CSC373 Algorithm Design and Analysis Announcements

The Ford-Fulkerson Method

The Ford-Fulkerson Method

■ Try to improve the flow, until we reach the maximum.

The Ford-Fulkerson Method

■ Try to improve the flow, until we reach the maximum.
■ The residual capacity of the network with a flow f is

given by:

The Ford-Fulkerson Method

■ Try to improve the flow, until we reach the maximum.
■ The residual capacity of the network with a flow f is

given by:

),(),(),(vufvucvuc f −=

The Ford-Fulkerson Method

■ Try to improve the flow, until we reach the maximum.
■ The residual capacity of the network with a flow f is

given by:

),(),(),(vufvucvuc f −=

Always nonnegative (why?)

Example of residual capacities

Example of residual capacities

Network:

Example of residual capacities

Network:

Residual Network:

Example of residual capacities

Network:

Residual Network:

Augmenting path

The residual network

■ The edges of the residual network are the
edges on which the residual capacity is positive.

Why do we need residual networks?

Why do we need residual networks?

■ Residual networks allow us to reverse
flows if necessary.

Why do we need residual networks?

■ Residual networks allow us to reverse
flows if necessary.

■ If we have taken a bad path then
residual networks allow one to detect
the condition and reverse the flow.

Why do we need residual networks?

■ Residual networks allow us to reverse
flows if necessary.

■ If we have taken a bad path then
residual networks allow one to detect
the condition and reverse the flow.

■ A bad path is one which overlaps with
too many other paths.

Example
Source

Destination1 1

1

1

1

a

b

Example
Source

Destination1 1

1

1

1

a

b
Paths source, a, destinations and source, b destination gives a flow of
2 units.

Example
Source

Destination1 1

1

1

1

a

b
Paths source, a, destinations and source, b destination gives a flow of
2 units.

Path source, a, b, destination overlaps with both the optimal paths.

Example
Source

Destination1 1

1

1

1

a

b
Paths source, a, destinations and source, b destination gives a flow of
2 units.

Path source, a, b, destination overlaps with both the optimal paths.

If we initially choose source, a, b, destination as our path, then no
greedy strategy will be able to augment the network flow any further
(unless we use residual edges which allows recovery)

Example
Source

Destination1 1

1

1

1

a

b
Paths source, a, destinations and source, b destination gives a flow of
2 units.

Path source, a, b, destination overlaps with both the optimal paths.

If we initially choose source, a, b, destination as our path, then no
greedy strategy will be able to augment the network flow any further
(unless we use residual edges which allows recovery)

Verify how we recover in spite of the initial bad choice, if we use the
residual network to augment flows.

Augmenting Paths

Augmenting Paths

■ An augmenting path p is a simple path from s to t on the
residual network.

Augmenting Paths

■ An augmenting path p is a simple path from s to t on the
residual network.

■ We can put more flow from s to t through p.

Augmenting Paths

■ An augmenting path p is a simple path from s to t on the
residual network.

■ We can put more flow from s to t through p.

■ We call the maximum capacity by which we can increase the
flow on p the residual capacity of p.

Augmenting Paths

■ An augmenting path p is a simple path from s to t on the
residual network.

■ We can put more flow from s to t through p.

■ We call the maximum capacity by which we can increase the
flow on p the residual capacity of p.

}on is),(:),(min{)(pvuvucpc ff =

Augmenting Paths - example

Augmenting Paths - example

■ The residual capacity of p = 4.

Augmenting Paths - example

■ The residual capacity of p = 4.
■ Can improve the flow along p by 4.

Maxflow-Mincut Theorem

■ Max-flow min-cut theorem:
– If f is the flow in G, the following conditions are

equivalent:
• 1. f is a maximum flow in G
• 2. The residual network Gf contains no augmenting paths
• 3. |f| = c(S,T) for some cut (S,T) of G

Ford-Fulkerson Method

Example

Resulting Flow =4

Original Network

augmenting path

CSC373 Algorithm Design and Analysis Announcements

Example

Resulting

Flow = 4

Residual Network

augmenting path

Example

Residual Network

Resulting Flow =11

Example

Resulting

Flow =11

Residual Network

augmenting path

Example

Residual Network

Resulting

Flow =19

Example

Resulting

Flow = 19

Residual Network

augmenting path

Example

Residual Network

Resulting

Flow = 23

Example

Residual Network

Resulting

Flow = 23

No augmenting path:

Maxflow=23

The residual network Gf contains no

augmented paths. So f is a maximum

flow in G.

Ford-Fulkerson method, with details
Ford-Fulkerson(G,s,t)
1 for each edge (u,v)∈G.E do
2 f(u,v) = f(v,u) = 0
3 while ∃ path p from s to t in residual network Gf do

4 cf = min{cf(u,v): (u,v)∈p}

5 for each edge (u,v) in p do
6 f(u,v) = f(u,v) + cf

7 f(v,u) = -f(u,v)
8 return f

Ford-Fulkerson method, with details
Ford-Fulkerson(G,s,t)
1 for each edge (u,v)∈G.E do
2 f(u,v) = f(v,u) = 0
3 while ∃ path p from s to t in residual network Gf do

4 cf = min{cf(u,v): (u,v)∈p}

5 for each edge (u,v) in p do
6 f(u,v) = f(u,v) + cf

7 f(v,u) = -f(u,v)
8 return f

The algorithms based on this method differ in how they
choose p in step 3.

Time Analysis I

■ A complete analysis establishing which specific method is
best is a complex task, however, because their running
times depend on

▪ The number of augmenting paths needed to find a
maxflow

▪ The time needed to find each augmenting path

Analysis

Analysis

O(E)

Analysis

O(E)

O(E)

Analysis

Analysis

■ If capacities are all integer, then each augmenting path raises
|f| by ≥ 1.

Analysis

■ If capacities are all integer, then each augmenting path raises
|f| by ≥ 1.

■ If max flow is f*, then need ≤ |f*| iterations

– So time is O(E|f*|).

Analysis

■ If capacities are all integer, then each augmenting path raises
|f| by ≥ 1.

■ If max flow is f*, then need ≤ |f*| iterations

– So time is O(E|f*|).
■ Note that this running time is not polynomial in input size. It

depends on |f*|, which is not a function of |V| or |E|.

Analysis

■ If capacities are all integer, then each augmenting path raises
|f| by ≥ 1.

■ If max flow is f*, then need ≤ |f*| iterations

– So time is O(E|f*|).
■ Note that this running time is not polynomial in input size. It

depends on |f*|, which is not a function of |V| or |E|.

■ If capacities are rational, can scale them to integers.

Analysis

■ If capacities are all integer, then each augmenting path raises
|f| by ≥ 1.

■ If max flow is f*, then need ≤ |f*| iterations

– So time is O(E|f*|).
■ Note that this running time is not polynomial in input size. It

depends on |f*|, which is not a function of |V| or |E|.

■ If capacities are rational, can scale them to integers.

■ If irrational, FORD-FULKERSON might never terminate!

The basic Ford-Fulkerson Algorithm

■ With time O (E |f*|), the algorithm is not polynomial.
■ This problem is real: Ford-Fulkerson may perform very badly

if we are unlucky:

|f*|=2,000,000

Run Ford-Fulkerson on this example

Augmenting Path

Residual Network

Run Ford-Fulkerson on this example

Augmenting Path

Residual Network

Run Ford-Fulkerson on this example

■ Repeat 999,999 more times…

The Edmonds-Karp Algorithm

The Edmonds-Karp Algorithm
■ A small fix to the Ford-Fulkerson algorithm makes it

work in polynomial time.

The Edmonds-Karp Algorithm
■ A small fix to the Ford-Fulkerson algorithm makes it

work in polynomial time.
■ Specify how to compute the path in line 4.

The Edmonds-Karp Algorithm

The Edmonds-Karp Algorithm

■ Compute the path in line 4 using breadth-first
search on residual network.

The Edmonds-Karp Algorithm

■ Compute the path in line 4 using breadth-first
search on residual network.

■ The augmenting path p is the shortest path from s
to t in the residual network (treating all edge
weights as 1).

The Edmonds-Karp Algorithm

■ Compute the path in line 4 using breadth-first
search on residual network.

■ The augmenting path p is the shortest path from s
to t in the residual network (treating all edge
weights as 1).

■ Runs in time O(V E2).

The Edmonds-Karp Algorithm - example

■ Edmonds-Karp’s algorithm runs only 2
iterations on this graph.

Time Complexity

Time Complexity

■ Let, total number of flow augmentations performed by
Edmonds-Karp algorithm is O(VE)

Time Complexity

■ Let, total number of flow augmentations performed by
Edmonds-Karp algorithm is O(VE)

■ BFS to find the augmented path – O(E)

Time Complexity

■ Let, total number of flow augmentations performed by
Edmonds-Karp algorithm is O(VE)

■ BFS to find the augmented path – O(E)
■ So, Total running time is O(VE2)

Conditions

If f is a flow in a flow network G=(V,E), with source s and
sink t, then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmented paths.

3. |f| = c(S,T) for some cut (S,T) (a min-cut).

It is a flow since there is no augmented paths It is maximum
since the sink is not reachable from the source

