
Maximum Flow (Part 2)

Net flow and value of a flow

Net Flow:

positive or negative value

of f(u,v)

Value of a Flow f:

Def:
|f| =  f(s,v)
 v  V

S t

v1

v2

v3

v4

6/8

3/3

4/6

8/8

5/6

6/6

3/3

1/3

u

v

8/10 3/4

u

v

5/10 4

f(u,v) = 5

f(v,u) = -5

Ford Fulkerson – residual networks

S t

v1

v2

v3

v4

12/12

11/14

Flow network G = (V,E)

cf(u,v) = c(u,v) – f(u,v)

S t

v1

v2

v3

v4

residual network Gf = (V,Ef)

11

12

3

The residual network Gf of a given flow network G with a valid flow f consists

of the same vertices v  V as in G which are linked with residual edges (u,v) 

Ef that can admit more strictly positive net flow.

The residual capacity cf represents the weight of each edge Ef and is the

amount of additional net flow f(u,v) before exceeding the capacity c(u,v)

Ford Fulkerson – augmenting paths

S t

v1

v2

v3

v4

12/12

11/14

Flow network G = (V,E)

S t

v1

v2

v3

v4

12

3

residual network Gf = (V,Ef)

11

Our virtual flow fp along the

augmenting path p in Gf

cf(p) if (u,v) is on p

fp(u,v) = - cf(p) if (v,u) is on p

0 otherwise

We define a flow: fp: V x V  R such as:

Ford Fulkerson – augmenting the flow

S t

v1

v2

v3

v4

12/12

11/14

Flow network G = (V,E)

S t

v1

v2

v3

v4

12

3

residual network Gf = (V,Ef)

11

Our virtual flow fp along the

augmenting path p in Gf

New flow: f´: V x V  R : f´=f + fp

cf(p) if (u,v) is on p

fp(u,v) = - cf(p) if (v,u) is on p

0 otherwise

We define a flow: fp: V x V  R such as:

Ford Fulkerson – new valid flow
proof of capacity constraint

Proof:

fp (u ,v) < cf (u ,v) = c (u ,v) – f (u ,v)

 (f + fp) (u ,v) = f (u ,v) + fp (u ,v) < c (u ,v)

Lemma:

f´ : V x V  R : f´ = f + fp in G

Capacity constraint:

For all u,v  V, we require f(u,v) < c(u,v)

cf(p) if (u,v) is on p

fp(u,v) = - cf(p) if (v,u) is on p

0 otherwise

cf(p) = min{cf (u,v): (u,v) is on p}

cf(u,v) = c(u,v) – f(u,v)

Ford Fulkerson – new valid flow
proof of Skew symmetry

Proof:

(f + fp)(u ,v) = f (u ,v) + fp (u ,v) = - f (v ,u) – fp (v ,u)

= - (f (v ,u) + fp (v ,u)) = - (f + fp) (v ,u)

Skew symmetry:

For all u,v  V, we require f(u,v) = - f(v,u)

Lemma:

f´ : V x V  R : f´ = f + fp in G

Ford Fulkerson – new valid flow
proof of flow conservation

Proof:

u  V – {s ,t}   (f + fp) (u ,v) =  (f(u ,v) + fp (u ,v))

=  f (u ,v) +  fp (u ,v) = 0 + 0 = 0

Flow conservation:

For all u  V - {s,t} :  f(u,v) = 0
v  V

v  V v  V

v  V v  V

Lemma:

f´ : V x V  R : f´ = f + fp in G

Ford Fulkerson – new valid flow

Proof:

| (f + fp) | =  (f + fp) (s ,v) =  (f (s ,v) + fp (s ,v))

=  f (s ,v) +  fp (s ,v) = | f | + | fp |

Lemma:

| (f + fp) | = | f | + | fp |

v  V v  V

v  V v  V

Value of a Flow f:

Def:
|f| =  f(s,v)

v  V

Ford Fulkerson – new valid flow

Lemma:

| (f + fp) | = | f | + | fp | > | f |

f´ : V x V  R : f´ = f + fp in G

Lemma shows:

if an augmenting path can be found then the above flow

augmentation will result in a flow improvement.

Question: If we cannot find any more an augmenting path

is our flow then maximum?

Idea: The flow in G is maximum  the residual Gf

contains no augmenting path.

Ford Fulkerson – cuts of flow networks

Lemma:

the value of a flow in a network is the net flow across any cut of the

network
f (S ,T) = | f |

S t

v1

v2

v3

v4

12/12

11/14

Ford Fulkerson – cuts of flow networks

Assumption:

the value of a flow in a network is the net flow across any cut of the

network

Lemma: f (S ,T) = | f |

f (S, T) = f (S, V-S)

= f (S, V) – f (S, S)

= f (S, V) = f (s  [S-s], V)

= f (s, V) + f (S-s, V)

= f (s, V) = | f |

Working with flows:

X,Y,Z  V and X  Y = 

f (X, Y) =   f (x, y)

f (X, X) = 0

f (X, Y) = - f (Y, X)

f (u, V) = 0 for all u  V \ {s, t}

f (X Y, Z) = f (X, Z) + f (Y, Z)

f (Z, X  Y) = f (Z, X) + f (Z, Y)

x  X y Y

Proof:

Ford Fulkerson – cuts of flow networks

Assumption:

The value of any flow f in a flow network G is bounded from above

by the capacity of any cut of G

Lemma: | f | < c (S, T)

| f | = f (S, T)

=   f (u, v)

<   c (u, v)

= c (S, T)

v Tu S

v Tu S S t

v1

v2

v3

v4

12/12

11/14

F. Fulkerson: Max-flow min-cut theorem

If f is a flow in a flow network G = (V,E) with source s and sink t,

then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. | f | = c (S, T) for some cut (S, T) of G.

proof:

(1)  (2):

We assume for the sake of contradiction that f is a maximum flow in G but that

there still exists an augmenting path p in Gf.

Then as we know from above, we can augment the flow in G according to the

formula: f´= f + fp. That would create a flow f´that is strictly greater than

the former flow f which is in contradiction to our assumption that f is a

maximum flow.

F. Fulkerson: Max-flow min-cut theorem

If f is a flow in a flow network G = (V,E) with source s and sink t,

then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. | f | = c (S, T) for some cut (S, T) of G.

proof:

(2)  (3):

S t

v1

v2

v3

v4

6/8

3/3

4/6

8/8

5/6

6/6

3/3

1/3
S t

v1

v2

v3

v4

2

3

2

8

1

6

3

2

5

6 1
4

residual network Gforiginal flow network G

F. Fulkerson: Max-flow min-cut theorem

If f is a flow in a flow network G = (V,E) with source s and sink t,

then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. | f | = c (S, T) for some cut (S, T) of G.

proof:

(2)  (3): Define

S = {v V |  path p from s to v in Gf }

T = V \ S (note t  S according to (2)) S t

v1

v2

v3

v4

2

3

2

8

1

6

3

2

5

6 1
4

residual network Gf

F. Fulkerson: Max-flow min-cut theorem

If f is a flow in a flow network G = (V,E) with source s and sink t,

then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. | f | = c (S, T) for some cut (S, T) of G.

proof:

(2)  (3): Define

S = {v V |  path p from s to v in Gf }

T = V \ S (note t  S according to (2))

 for  u  S, v  T: f (u, v) = c (u, v)

(otherwise (u, v)  Ef and v  S)

 | f | = f (S, T) = c (S, T)

1

S t

v1

v2

v3

v4

6/8

3/3

4/6

8/8

5/6

6/6

3/3

1/3

original network G

F. Fulkerson: Max-flow min-cut theorem

If f is a fow in a flow network G = (V,E) with source s and sink t,

then the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. | f | = c (S, T) for some cut (S, T) of G.

proof:

(3)  (1): as proofed before | f | = f (S, T) < c (S, T)

the statement of (3) : | f | = c (S, T) implies that f is a maximum flow

Reduction to Maximum Flow

R1: Multiple sources and sinks
• Problem:

– What if you have a problem with more
than one source and more than one
sink?

– The network at the top has three
sources (0, 1, and 2) and two sinks (5
and 6).

• Reduction: Create a network which
– is a copy of the original network

– with the addition of a new source 7 and

– a new sink 8.

– There is an edge from 7 to each
original-network source with capacity
equal to the sum of the capacities of
that source's outgoing edges,

– an edge from each original-network
sink to 8 with capacity equal to the
sum of the capacities of that sink's
incoming edges.

R2: Removing vertex capacities
• Problem:

– Given a flow network, find a
maxflow satisfying additional
constraints specifying that the flow
through each vertex must not
exceed some fixed capacity.

• Reduction: Create a new network

– Associate a new vertex u* (where
u* denotes u+V) with each vertex u,

– add an edge u-u* whose capacity is
the capacity of u,

– include an edge u*-v for each edge
u-v.

R4: Reduction from undirected networks

• Problem:

– Given an undirected weighted graph find the

maximum flow

• Reduction: Create a network s.t.

– we can consider it to be a directed network

with edges in each direction.

R5: Feasible flow
• Problem:

– Suppose that a weight is assigned to each vertex in a flow
network and is to be interpreted as supply (if positive) or
demand (if negative), with the sum of the vertex weights
equal to zero. Define a flow to be feasible if the difference
between each vertex's outflow and inflow is equal to that
vertex's weight (supply if positive and demand if negative).
Given such a network, determine whether or not a
feasible flow exists.

R5: Reduction from feasible solution
• Reduction: Create a network

– by adding edges from a new source

vertex to the supply vertices (each

with capacity equal to the amount of

the supply) and

– edges to a new sink vertex from the

demand vertices (each with capacity

equal to the amount of the demand).

– The network has a feasible flow if

and only if this network has a flow (a

maxflow) that fills all the edges from

the sink and all the edges to the

source.

R6: Bipartite matching
• Problem:

– Given a bipartite graph, find a set of
edges of maximum cardinality such that
each vertex is connected to at most one
other vertex.

• Reduction: Construct an st-network
– by directing all the edges from the top

row to the bottom row,

– adding a new source with edges to each
vertex on the top row,

– adding a new sink with edges to each
vertex on the bottom row, and

– assigning capacity 1 to all edges.

– In any flow, at most one outgoing edge
from each vertex on the top row can be
filled and at most one incoming edge to
each vertex on the bottom row can be
filled, so a solution to the maxflow
problem on this network gives a
maximum matching for the bipartite
graph.

Model for Matching Problem

• Group1 on leftmost set, Group2 on rightmost

set, edges if they are compatible

A

B

C

D

X

Y

Z

G1 G2

A

B

C

D

X

Y

Z

A matching

A

B

C

D

X

Y

Z

Optimal matching

Solution Using Max Flow

• Add a supersouce, supersink, make each

undirected edge directed with a flow of 1

A

B

C

D

X

Y

Z

A

B

C

D

X

Y

Z

s
t

Since the input is 1, flow conservation prevents multiple matchings

Edge Connectivity

• What is the minimum number of edges that

need to be removed to separate a given graph

into two pieces?

• Find a set of edges of minimal cardinality that

does this separation.

Edge Connectivity for undirected graph
• Theorem:

– The time required to determine the edge connectivity of an undirected graph is O(E2).

• Proof:
– We can compute the minimum size of any cut that separates two given vertices by

computing the maxflow in the st-network formed from the graph by assigning unit capacity
to each edge.

– The edge connectivity is equal to the minimum of these values over all pairs of vertices.

– We do not need to do the computation for all pairs of vertices,

– Let s* be a vertex of minimal degree in the graph.

– Note that the degree of s* can be no greater than 2E/V.

– Consider any minimum cut of the graph.
• By definition, the number of edges in the cut set is equal to the graph's edge connectivity.

• The vertex s* appears in one of the cut's vertex sets, and the other set must have some vertex t,

• so the size of any minimal cut separating s* and t must be equal to the graph's edge connectivity.
Therefore, if we solve V-1 maxflow problems (using s* as the source and each other vertex as the
sink), the minimum flow value found is the edge connectivity of the network.

– Now, any augmenting-path maxflow algorithm with s* as the source uses at most 2E/V
paths;

– so, if we use any method that takes at most E steps to find an augmenting path, we have a
total of at most (V – 1)(2 E/V)E steps to find the edge connectivity and that implies the
stated result.

Vertex Connectivity

• What is the minimum number of vertices that

need to be removed to separate a given graph

into two pieces?

• Assignment

Min Cost Maximum Flow

• Flow cost:
– The flow cost of an edge in a flow network with edge costs is the product of

that edge's flow and cost. The cost of a flow is the sum of the flow costs of
that flow's edges.

• Mincost maxflow:
– Given a flow network with edge costs, find a maxflow such that no other

maxflow has lower cost.

• These flows all have the same (maximal) value, but their costs (the sum of
the products of edge flows and edge costs) differ. The maxflow in the center
has minimal cost (no maxflow has lower cost).

Extended def: “Residual Network”

• Residual network

– Given a flow in a flow network with edge costs, the

residual network for the flow has the

• same vertices as the original and

• one or two edges in the residual network for each edge in

the original,

• For each edge u-v in the original, let f be the flow, c the

capacity, and x the cost.

– If f is positive, include an edge v-u in the residual with capacity f

and cost -x;

– if f is less than c, include an edge u-v in the residual with capacity

c-f and cost x.

Mincost Maxflo Theorem

• Theorem:

– A maxflow is a mincost maxflow if and only if its

residual network contains no negative-cost

(directed) cycle.

How to solve Mincost Maxflow Problem

• Algorithm:

– Find a maxflow.

– Augment the flow along any negative-cost cycle in

the residual network, continuing until none remain.

• Implementation:

– We use any maxflow implementation to find the

initial maxflow and the Bellman–Ford algorithm to

find negative cycles

