String Matching

Pattern Matching

 \boxtimes Given a text string T[0..n-1] and a pattern P[0..m-1], find all occurrences of the pattern within the text.

 $\text{Example: } T = 000010001010001$ and $P =$ 0001, the occurrences are:

- **first occurrence starts at** $T[1]$
- second occurrence starts at T[5]
- \blacksquare third occurrence starts at T[11]

String matching 3

Naïve algorithm

for $(s = 0; s \le n-m; s++)$ if $P[0..m-1]$ equal to $T[s..s+m-1]$ output s;

Example:

Worst-case running time = O(nm).

Rabin-Karp Algorithm

<u>⊠Key</u> idea:

- \blacksquare think of the pattern P[0..m-1] as a key, transform (hash) it into an equivalent integer *p*
- **Similarly, we transform substrings in the text string** T[] into integers
	- \textcircled{r} For s=0,1,...,n-m, transform T[s..s+m-1] to an equivalent integer ts

 \blacksquare The pattern occurs at position s if and only if $p=t_s$ \boxtimes If we compute p and t, quickly, then the pattern matching problem is reduced to comparing p with n-m+1 integers

Rabin-Karp Algorithm …

\boxtimes How to compute p?

 $p = 2^{m-1} P[0] + 2^{m-2} P[1] + ... + 2 P[m-2] + P[m-1]$

⊠ Using horner's rule

$$
p = P[m-1] + 2*(P[m-2] + 2*(P[m-3] + ... 2*(P[1] + 2*P[0])...).
$$

$$
p = 0;
$$

for (i = 0; i < m; i++)
 $p = 2*p + P[i];$

This takes O(m) time, assuming each arithmetic operation can be done in O(1) time.

Rabin-Karp Algorithm …

 $\mathbb Z$ Similarly, to compute the (n-m+1) integers $t_{\rm s}$ from the text string

 \mathbb{R} This takes O((n – m + 1) m) time, assuming that each arithmetic operation can be done in O(1) time. \boxtimes This is a bit time-consuming.

String matching 7

Rabin-Karp Algorithm

 \boxtimes A better method to compute the integers is:

```
t[0] = 0;
offset = 1;
for (i = 0; i < m; i++)offset = 2*offset:
for (i = 0; i < m; i++)t[0] = 2*t[0] + T[i];for (s = 1; s \le m-m; s++)t[s] = 2*(t[s-1] - offset*T[s-1]) + T[s+m-1];
```
This takes O(n+m) time, assuming that each arithmetic operation can be done in O(1) time.

Problem

- \boxtimes The problem with the previous strategy is that when m is large, it is unreasonable to assume that each arithmetic operation can be done in O(1) time.
	- In fact, given a very long integer, we may not even be able to use the default integer type to represent it.
- \boxtimes Therefore, we will use modulo arithmetic. Let q be a prime number so that 2q can be stored in one computer word.
	- This makes sure that all computations can be done using single-precision arithmetic.

```
p = 0;for (i = 0; i < m; i++)p = (2*p + P[i]) % q;t[0] = 0;offset = 1;
for (i = 0; i < m; i++)offset = 2*offset % q;
for (i = 0; i < m; i++)t[0] = (2*t[0] + T[i]) % q;for (s = 1; s \leq n-m; s++)t[s] = (2*(-t[s-1] - offset*T[s-1]) + T[s+m-1]) % q;
```
 \boxtimes Once we use the modulo arithmetic, when p=t $_{\rm s}$ for some s, we can no longer be sure that P[0 .. M-1] is equal to $T[s.. S+ m-1]$

 \boxtimes Therefore, after the equality test $p = t_s$, we should compare P[0..m-1] with T[s..s+m-1] character by character to ensure that we really have a match.

 \boxtimes So the worst-case running time becomes O(nm), but it avoids a lot of unnecessary string matchings in practice.