
String Matching

String matching 2

Pattern Matching

Given a text string T[0..n-1] and a pattern

P[0..m-1], find all occurrences of the pattern

within the text.

Example: T = 000010001010001 and P =

0001, the occurrences are:

 first occurrence starts at T[1]

 second occurrence starts at T[5]

 third occurrence starts at T[11]

String matching 3

Naïve algorithm

Worst-case running time = O(nm).

String matching 4

Rabin-Karp Algorithm

Key idea:

 think of the pattern P[0..m-1] as a key, transform

(hash) it into an equivalent integer p

 Similarly, we transform substrings in the text string

T[] into integers

For s=0,1,…,n-m, transform T[s..s+m-1] to an equivalent

integer ts

 The pattern occurs at position s if and only if p=ts

 If we compute p and ts quickly, then the

pattern matching problem is reduced to

comparing p with n-m+1 integers

String matching 5

Rabin-Karp Algorithm …

How to compute p?

p = 2m-1 P[0] + 2m-2 P[1] + … + 2 P[m-2] + P[m-1]

Using horner’s rule

This takes O(m) time, assuming each arithmetic operation

can be done in O(1) time.

String matching 6

Rabin-Karp Algorithm …

 Similarly, to compute the (n-m+1) integers ts from the
text string

 This takes O((n – m + 1) m) time, assuming that each
arithmetic operation can be done in O(1) time.

 This is a bit time-consuming.

String matching 7

Rabin-Karp Algorithm

A better method to compute the integers is:

This takes O(n+m) time, assuming that each arithmetic

operation can be done in O(1) time.

String matching 8

Problem

 The problem with the previous strategy is that when m

is large, it is unreasonable to assume that each

arithmetic operation can be done in O(1) time.

 In fact, given a very long integer, we may not even be able to

use the default integer type to represent it.

 Therefore, we will use modulo arithmetic. Let q be a

prime number so that 2q can be stored in one

computer word.

 This makes sure that all computations can be done using

single-precision arithmetic.

String matching 9

String matching 10

 Once we use the modulo arithmetic, when p=ts for

some s, we can no longer be sure that P[0 .. M-1] is

equal to T[s .. S+ m -1]

 Therefore, after the equality test p = ts, we should

compare P[0..m-1] with T[s..s+m-1] character by

character to ensure that we really have a match.

 So the worst-case running time becomes O(nm), but it

avoids a lot of unnecessary string matchings in

practice.

