
Combinatorial Optimization

CSE 301

All Pairs of Shortest Path

2

All-Pairs Shortest Paths

• Given:

– Directed graph G = (V, E)

– Weight function w : E → R

• Compute:

– The shortest paths between all pairs

of vertices in a graph

– Representation of the result: an

n × n matrix of shortest-path

distances δ(u, v)

1

2

3

5 4

3

-4 7

6

2

4

1
-5

8

3

Dijkstra (G, w, s)

1. INITIALIZE-SINGLE-SOURCE(V, s)

2. S ←

3. Q ← V[G]

4. while Q

5. do u ← EXTRACT-MIN(Q)

6. S ← S {u}

7. for each vertex v Adj[u]

8. do RELAX(u, v, w)

Running time: O(VlgV + ElgV) = O(ElgV)

(V)

O(V) build min-heap

Executed O(V) times

O(lgV)

O(E) times; O(lgV)

4

BELLMAN-FORD(V, E, w, s)

1. INITIALIZE-SINGLE-SOURCE(V, s)

2. for i ← 1 to |V| - 1

3. do for each edge (u, v) E

4. do RELAX(u, v, w)

5. for each edge (u, v) E

6. do if d[v] > d[u] + w(u, v)

7. then return FALSE

8. return TRUE

Running time: O(VE)

(V)

O(V)

O(E)

O(E)

O(VE)

5

All-Pairs Shortest Paths - Solutions

• Run BELLMAN-FORD once from each vertex:

– O(V2E), which is O(V4) if the graph is dense

(E = (V2))

• If no negative-weight edges, could run

Dijkstra’s algorithm once from each vertex:

– O(VElgV) with binary heap, O(V3lgV) if the graph is

dense

• We can solve the problem in O(V3), with no

elaborate data structures

6

All-Pairs Shortest Paths

• Assume the graph (G) is given as

adjacency matrix of weights

– W = (wij), n x n matrix, |V| = n

– Vertices numbered 1 to n

if i = j

wij = if i j , (i, j) E

if i j , (i, j) E

• Output the result in an n x n matrix

D = (dij), where dij = δ(i, j)

• Solve the problem using dynamic programming

0

weight of (i, j)
∞

1

2

3

5 4

3

-4 7

6

2

4

1
-5

8

7

Optimal Substructure of a Shortest Path

• All subpaths of a shortest

path are shortest paths

• Let p: a shortest path p

from vertex i to j that

contains at most m edges

• If i = j

– w(p) = 0 and p has no

edges

p’

k
i

11

j

at most m edges

at most m - 1 edges

• If i j: p = i k j

– p’ has at most m-1

edges

– p’ is a shortest path

δ(i, j) = δ(i, k) + wkj

8

Recursive Solution

• lij
(m) = weight of shortest path i j that contains

at most m edges

• m = 0: lij
(0) = if i = j

if i j

• m 1: lij
(m) =

– Shortest path from i to j with at most m – 1 edges

– Shortest path from i to j containing at most m edges,

considering all possible predecessors (k) of j

k
i

11

j

at most m edges

lij
(m-1)min { , }

= min {lik
(m-1) + wkj}

1 k n

0

min {lik
(m-1) + wkj}

1 k n

9

Computing the Shortest Paths

• m = 1: lij
(1) =

– The path between i and j is restricted to 1 edge

• Given W = (wij), compute: L(1), L(2), …, L(n-1), where

L(m) = (lij
(m))

• L(n-1) contains the actual shortest-path weights

Given L(m-1) and W compute L(m)

– Extend the shortest paths computed so far by one more edge

• If the graph has no negative cycles: all simple shortest

paths contain at most n - 1 edges

δ(i, j) = lij
(n-1) and lij

(n) = lij
(n+1). . .

wij L(1) = W

= lij
(n-1)

10

Extending the Shortest Path

lij
(m) = min {lik

(m-1) + wkj}
1 k n

n x n

i

j

i

L(m-1) W

* =

k
j

k

L(m)

Replace: min +

+

Computing L(m) looks like

matrix multiplication

11

EXTEND(L, W, n)

1. create L’, an n × n matrix

2. for i ← 1 to n

3. do for j ← 1 to n

4. do lij’ ←∞

5. for k ← 1 to n

6. do lij’ ← min(lij’, lik + wkj)

7. return L’

Running time: (n3)

lij
(m) = min {lik

(m-1) + wkj}
1 k n

12

SLOW-ALL-PAIRS-SHORTEST-PATHS(W, n)

1. L(1) ← W

2. for m ← 2 to n - 1

3. do L(m) ←EXTEND (L(m - 1), W, n)

4. return L(n - 1)

Running time: (n4)

13

Example

1

2

3

5 4

3

-4 7

6

2

4

1
-5

8

0 3 8 -4

 0 1 7

 4 0

2 -5 0

 6 0

L(m-1) = L(1) W

L(m) = L(2)

0 3 8 -4

 0 1 7

 4 0

2 -5 0

 6 0

0 3 8 2 -4

3 0 -4 1 7

 4 0 5 11

2 -1 -5 0 -2

8 1 6 0

… and so on until L(4)

lij
(m) = min {lik

(m-1) + wkj}
1 k n

14

Improving Running Time

• No need to compute all L(m) matrices

• If no negative-weight cycles exist:

L(m) = L(n - 1) for all m n – 1

• We can compute L(n-1) by computing the sequence:

L(1) = W L(2) = W2 = W W

L(4) = W4 = W2 W2 L(8) = W8 = W4 W4 …

)1lg(
21

n

WL n

12 nx

15

FASTER-APSP(W, n)

1. L(1) ← W

2. m ← 1

3. while m < n - 1

4. do L(2m) ← EXTEND(L(m), L(m), n)

5. m ← 2*m

6. return L(m)

• OK to overshoot: products don’t change after

L(n - 1)

• Running Time: (n3lg n)

16

The Floyd-Warshall Algorithm

• Given:

– Directed, weighted graph G = (V, E)

– Negative-weight edges may be

present

– No negative-weight cycles could be

present in the graph

• Compute:

– The shortest paths between all pairs

of vertices in a graph

1

2

3

5 4

3

-4 7

6

2

4

1
-5

8

17

The Structure of a Shortest Path

• Vertices in G are given by

V = {1, 2, …, n}

• Consider a path p = v1, v2, …, vl

– An intermediate vertex of p is any

vertex in the set {v2, v3, …, vl-1}

– E.g.: p = 1, 2, 4, 5: {2, 4}

p = 2, 4, 5: {4}

5

1

3

4

2
3

1

6
0.5

2

2

18

The Structure of a Shortest Path

• For any pair of vertices i, j V, consider all

paths from i to j whose intermediate vertices

are all drawn from a subset {1, 2, …, k}

– Find p, a minimum-weight path from these paths

i j

No vertex on these paths has index > k

p1

pu

pt

19

Example

• d13
(0) =

• d13
(1) =

• d13
(2) =

• d13
(3) =

• d13
(4) =

1

3

4

2
3

1

6
0.5

2

6

6

5

5

4.5

dij
(k) = the weight of a shortest path from vertex

i to vertex j with all intermediary vertices drawn

from {1, 2, …, k}

20

The Structure of a Shortest Path

• k is not an intermediate vertex of path p

– Shortest path from i to j with intermediate

vertices from {1, 2, …, k} is a shortest path

from i to j with intermediate vertices from

{1, 2, …, k - 1}

• k is an intermediate vertex of path p

– p1 is a shortest path from i to k

– p2 is a shortest path from k to j

– k is not intermediary vertex of p1, p2

– p1 and p2 are shortest paths from i to k with

vertices from {1, 2, …, k - 1}

i j

k

i

k

j

p1 p2

21

A Recursive Solution (cont.)

• k = 0

• dij
(k) =

dij
(k) = the weight of a shortest path from

vertex i to vertex j with all intermediary

vertices drawn from {1, 2, …, k}

wij

22

A Recursive Solution (cont.)

• k 1

• Case 1: k is not an intermediate

vertex of path p

• dij
(k) =

i j

k

dij
(k) = the weight of a shortest path from vertex i to

vertex j with all intermediary vertices drawn from

{1, 2, …, k}

dij
(k-1)

23

A Recursive Solution (cont.)

• k 1

• Case 2: k is an intermediate

vertex of path p

• dij
(k) =

dij
(k) = the weight of a shortest path from vertex i to

vertex j with all intermediary vertices drawn from

{1, 2, …, k}

i

k

j

dik
(k-1) + dkj

(k-1)

24

Computing the Shortest Path Weights

• dij
(k) = wij if k = 0

min {dij
(k-1) , dik

(k-1) + dkj
(k-1) } if k 1

• The final solution: D(n) = (dij
(n)):

dij
(n) = (i, j) i, j V

j

i

D(k-1)

i

j

D(k)

+

(i, k)

(k, j)

25

The Floyd-Warshall algorithm

Floyd-Warshall(W[1..n][1..n])

01 D W // D(0)

02 for k 1 to n do // compute D(k)

03 for i 1 to n do

04 for j 1 to n do

05 if D[i][k] + D[k][j] < D[i][j] then

06 D[i][j] D[i][k] + D[k][j]

07 return D

Running Time: O(n3)

26

Computing predecessor matrix

– Updating: p(k)(i,j) = p(k-1)(i,j) if(d(k-1)(i,j)<=d(k-1)(i,k)+(d(k-1)(k,j)

– p(k-1)(k,j) if(d(k-1)(i,j) > d(k-1)(i,k)+(d(k-1)(k,j)

 How do we compute the predecessor
matrix?

 Initialization:
(0)

if or
(,)

 if and

ij

ij

nil i j w
p i j

i i j w

 <

Floyd-Warshall(W[1..n][1..n])

01 …

02 for k 1 to n do // compute D(k)

03 for i 1 to n do

04 for i 1 to n do

05 if D[i][k] + D[k][j] < D[i][j] then

06 D[i][j] D[i][k] + D[k][j]

07 P[i][j] P[k][j]

08 return D

27

Example

1

2

3

5 4

3

-4 7

6

2

4

1
-5

8

0 3 8 -4

 0 1 7

 4 0

2 -5 0

 6 0

D(0) = W D(1)

5 -5 -2

0 3 8 -4

 0 1 7

 4 0

2 0

 6 0D(2)

4

5 11

0 3 8 -4

 0 1 7

 4 0

2 5 -5 0 -2

 6 0

D(4)

-1

3 -4 -1

7 3

8 5 1

0 3 4 -4

0 1

4 0 5

2 -1 -5 0 -2

6 0

dij
(k) = min {dij

(k-1) , dik
(k-1) + dkj

(k-1) }

1

2

3

4

5

1 2 3 4 5 1 2 3 4 5

1

2

3

4

5

1

2

3

4

5

1 2 3 4 5 D(3)

-1

0 3 8 4 -4

 0 1 7

 4 0 5 11

2 -5 0 -2

 6 0

Example

1

2

3

5 4

3

-4 7

6

2

4

1
-5

8

0 1 -3 2 -4

3 0 -4 1 -1

7 4 0 5 3

2 -1 -5 0 -2

8 5 1 6 0

D(5) P(5)

3 4 1

- 3 4 5 1

4 - 4 2 1

4 3 - 2 1

4 -

4 3 4 5 -

dij
(k) = min {dij

(k-1) , dik
(k-1) + dkj

(k-1) }

1

2

3

4

5

1 2 3 4 5 1 2 3 4 5

1

2

3

4

5

Source: 5, Destination: 1

Shortest path: 8

Path: 5 …1 : 5…4…1: 5->4…1: 5->4->1

Source: 1, Destination: 3

Shortest path: -3

Path: 1 …3 : 1…4…3: 1…5…4…3: 1->5->4->3

PrintPath for Warshall’s Algorithm

PrintPath(s, t)

{

if(P[s][t]==nil) {print(“No path”);return;}

else if (P[s][t]==s){

print(s);

}

else{

print_path(s,P[s][t]);

print_path(P[s][t], t);

}

}

Print (t) at the end of the PrintPath(s,t)

29

Question

• Why should we use D[i, j] instead of D(k)[i, j]?

• Exercise:

– 25.2-4: Memory O(n2)

– 25.2-6: Negative weight cycle

– Find the shortest positive cycle

30

31

Transitive closure of the graph

• Input:

– Un-weighted graph G: W[i][j] = 1, if (i,j)E, W[i][j] = 0

otherwise.

• Output:

– T[i][j] = 1, if there is a path from i to j in G, T[i][j] = 0

otherwise.

• Algorithm:

– Just run Floyd-Warshall with weights 1, and make

T[i][j] = 1, whenever D[i][j] <

– More efficient: use only Boolean operators

32

Transitive closure algorithm

Transitive-Closure(W[1..n][1..n])

01 T W // T(0)

02 for k 1 to n do // compute T(k)

03 for i 1 to n do

04 for i 1 to n do

05 T[i][j] T[i][j] (T[i][k] T[k][j])

06 return T

33

Readings

• Chapters 25

