Combinatorial Optimization CSE 301

All Pairs of Shortest Path

All-Pairs Shortest Paths

• **Given:**

– Directed graph $G = (V, E)$

 $-$ Weight function w : $E \rightarrow R$

• **Compute:**

- The shortest paths between all pairs of vertices in a graph
- Representation of the result: an $n \times n$ matrix of shortest-path distances δ(u, v)

Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s) $\leftarrow \Theta(V)$
- 2. $S \leftarrow \varnothing$
- 3. $Q \leftarrow V[G] \leftarrow O(V)$ build min-heap
- 4. **while** Q Executed O(V) times
- $5.$ **do** $u \leftarrow \text{EXTRACT-MIN}(Q) \leftarrow O(\text{IgV})$
- 6. $S \leftarrow S \cup \{u\}$
- 7. **for** each vertex $v \in Adj[u]$
- 8. **do** $RELAX(u, v, w) \leftarrow O(E)$ times; $O(\frac{1}{g}V)$ Running time: O(VlgV + ElgV) = O(ElgV)

BELLMAN-FORD(V, E, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s) $\leftarrow \Theta(V)$
- 2. **for** i ← 1 to $|V|$ 1
- 3. **do for** each edge $(u, v) \in E$ 4. **do** RELAX(u, v, w)
- 5. **for** each edge $(u, v) \in E$
- 6. **do if** d[v] > d[u] + w(u, v)
- 7. **then return** FALSE
- 8. **return** TRUE

Running time: O(VE)

O(V)

 $O(E)$

O(VE)

All-Pairs Shortest Paths - Solutions

- Run **BELLMAN-FORD** once from each vertex:
	- $O(V^2E)$, which is $O(V^4)$ if the graph is dense $(E = \Theta(V^2))$
- If no negative-weight edges, could run **Dijkstra's** algorithm once from each vertex:
	- $O(VElqV)$ with binary heap, $O(V^3lqV)$ if the graph is dense
- We can solve the problem in $O(V^3)$, with no elaborate data structures

All-Pairs Shortest Paths

1

3

2

2

6

- Assume the graph (G) is given as adjacency matrix of weights
	- W = (w_{ij}) , n x n matrix, $|V|$ = n
	- Vertices numbered 1 to n

values numbered 1 to n

\nif
$$
i = j
$$

\nweight of (i, j) if $i \neq j$, $(i, j) \in E$

\nweight of (i, j) if $i \neq j$, $(i, j) \notin E$

• Output the result in an n x n matrix

 $D = (d_{ij})$, where $d_{ij} = \delta(i, j)$

• Solve the problem using dynamic programming

3

-5

4

8

1

Optimal Substructure of a Shortest Path

- All subpaths of a shortest path are shortest paths
- Let p: a shortest path p from vertex i to j that contains at most m edges
- If $i = j$
	- $w(p) = 0$ and p has no edges

at most m - 1 edges

- If $i \neq j$: $p = i \stackrel{p'}{\rightsquigarrow} k \rightarrow j$
	- p' has at most m-1 edges
	- p' is a shortest path
	- $\delta(i, j) = \delta(i, k) + w_{ki}$

Recursive Solution

- \cdot $I_{ij}^{(m)}$ = weight of shortest path $i \rightarrow j$ that contains at most m edges at most m edges
- m = 0: $I_{ij}^{(0)} = \int 0$ if i = j if $i \neq j$ k i j 0 ∞
- $m \ge 1$: $I_{ij}^{(m)} = min \{ I_{ij}^{(m-1)}$, $min \{ I_{ik}^{(m-1)} + w_{kj} \} \}$ = min { I_{ik} ^(m-1) + W_{kj} } $1 < k < n$ min { I_{ik} ^(m-1) + W_{kj} } $1 \leq k \leq n$
	- Shortest path from i to j with at most m 1 edges
	- Shortest path from i to j containing at most m edges, considering all possible predecessors (k) of j

Computing the Shortest Paths

- m = 1: $I_{ij}^{(1)} = w_{ij}$ L⁽¹⁾ = W
	- The path between i and j is restricted to 1 edge
- Given $W = (w_{ii})$, compute: $L^{(1)}$, $L^{(2)}$, ..., $L^{(n-1)}$, where $L^{(m)} = (I_{ij}^{(m)})$
- L⁽ⁿ⁻¹⁾ contains the actual shortest-path weights Given $L^{(m-1)}$ and $W \Rightarrow$ compute $L^{(m)}$
	- Extend the shortest paths computed so far by one more edge
- If the graph has no negative cycles: all simple shortest paths contain at most n - 1 edges

$$
\delta(i, j) = I_{ij}^{(n-1)}
$$
 and $I_{ij}^{(n)} = I_{ij}^{(n+1)}$ = $I_{ij}^{(n-1)}$

Extending the Shortest Path

Replace: $min \rightarrow +$ $+$

Computing $L^{(m)}$ looks like matrix multiplication

EXTEND(L, W, n)

- 1. create L', an n x n matrix
- 2. **for** $i \leftarrow 1$ to n
- 3. **do for** $j \leftarrow 1$ to n
- $I_{ij}^{(m)} = min \{I_{ik}^{(m-1)} + W_{kj}\}$ $1 \leq k \leq n$
- 4. **do** l ij' ←∞
- 5. **for** $k \leftarrow 1$ **to** n
- 6. **do** $I_{ij}' \leftarrow min(I_{ij}', I_{ik} + w_{kj})$

7. **return** L'

Running time: $\Theta(n^3)$

SLOW-ALL-PAIRS-SHORTEST-PATHS(W, n)

- 1. $L^{(1)} \leftarrow W$
- 2. **for** $m \leftarrow 2$ to $n 1$
- 3. **do** $L^{(m)} \leftarrow$ **EXTEND** $(L^{(m-1)}, W, n)$
- 4. **return** L (n 1)

Running time: $\Theta(n^4)$

Example

 $I_{ij}^{(m)} = min \{I_{ik}^{(m-1)} + W_{kj}\}$ $1 \leq k \leq n$

 \ldots and so on until $L^{(4)}$

Improving Running Time

- No need to compute all $L^{(m)}$ matrices
- If no negative-weight cycles exist:

 $L^{(m)} = L^{(n-1)}$ for all $m \ge n - 1$

- We can compute $L^{(n-1)}$ by computing the sequence: $\mathsf{L}^{(1)} = \mathsf{W}$ $L^{(2)} = W^2 = W \cdot W$
	- $L^{(4)} = W^4 = W^2 \bullet W^2$ L $(N^8) = W^8 = W^4 \cdot W^4$

$$
\Rightarrow 2^{x} = n - 1
$$

$$
L^{(n-1)} = W^{2^{\lceil \lg(n-1) \rceil}}
$$

FASTER-APSP(W, n)

- 1. $L^{(1)} \leftarrow W$
- 2. $m \leftarrow 1$
- **3. while** m < n 1
- **4. do** $L^{(2m)}$ ← EXTEND($L^{(m)}$, $L^{(m)}$, n)
- $5.$ m \leftarrow 2^{*}m
- **6. return** L (m)
- OK to overshoot: products don't change after $L(n - 1)$
- **Running Time:** $\Theta(n^3|q\)$

The Floyd-Warshall Algorithm

- **Given:**
	- Directed, weighted graph $G = (V, E)$
	- Negative-weight edges may be present
	- No negative-weight cycles could be present in the graph

• **Compute:**

– The shortest paths between all pairs of vertices in a graph

The Structure of a Shortest Path

- Vertices in G are given by
	- $V = \{1, 2, ..., n\}$
- Consider a path $p = \langle v_1, v_2, ..., v_l \rangle$
	- An **intermediate** vertex of p is any

vertex in the set $\{ {\sf v}_2, \, {\sf v}_3, \, ... , \, {\sf v}_{\sf I\!-\!1} \}$

$$
- E.g.: p = \langle 1, 2, 4, 5 \rangle: \{2, 4\}
$$

$$
p = \langle 2, 4, 5 \rangle: \{4\}
$$

The Structure of a Shortest Path

- For any pair of vertices $i, j \in V$, consider all paths from i to j whose intermediate vertices are all drawn from a subset {1, 2, …, k}
	- Find p, a minimum-weight path from these paths

No vertex on these paths has index $> k$

Example

• $d_{13}^{(0)} = 6$ • $d_{13}^{(1)} = 6$ • $d_{13}^{(2)} = 5$ • $d_{13}^{(3)} = 5$ • $d_{13}^{(4)} = 4.5$ 1 3 4 \mathcal{P} 3 1 6 0.5 2 $d_{ij}^{(k)}$ = the weight of a shortest path from vertex i to vertex j with all intermediary vertices drawn from $\{1, 2, ..., k\}$

j

The Structure of a Shortest Path

- k is not an intermediate vertex of path p
	- Shortest path from i to j with intermediate vertices from $\{1, 2, ..., k\}$ is a shortest path from i to j with intermediate vertices from $\{1, 2, ..., k - 1\}$
- k is an intermediate vertex of path p
	- $\,$ p₁ is a shortest path from i to k
	- $\,$ p $_{2}$ is a shortest path from k to j
	- $-$ k is not intermediary vertex of p_1 , p_2
	- $-$ p₁ and p₂ are shortest paths from i to k with vertices from $\{1, 2, ..., k - 1\}$

k

i

A Recursive Solution (cont.)

 d_{ij} ^(k) = the weight of a shortest path from vertex i to vertex j with all intermediary vertices drawn from {1, 2, …, k}

• $k = 0$

•
$$
d_{ij}^{(k)} = w_{ij}
$$

A Recursive Solution (cont.)

 d_{ij} ^(k) = the weight of a shortest path from vertex i to vertex j with all intermediary vertices drawn from $\{1, 2, ..., k\}$

- $k > 1$
- **Case 1:** k is not an intermediate vertex of path p

•
$$
d_{ij}^{(k)} = d_{ij}^{(k-1)}
$$

A Recursive Solution (cont.)

 d_{ij} ^(k) = the weight of a shortest path from vertex i to vertex j with all intermediary vertices drawn from $\{1, 2, ..., k\}$

• $k > 1$

• **Case 2:** k is an intermediate vertex of path p

•
$$
d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}
$$

Computing the Shortest Path Weights

- $d_{ij}^{(k)} = | w_{ij} |$ if $k = 0$ $\textsf{min} \ \{ \mathsf{d}_{\mathsf{i}\mathsf{j}}^{(\mathsf{k-1})}$, $\mathsf{d}_{\mathsf{i}\mathsf{k}}^{(\mathsf{k-1})}$ + $\mathsf{d}_{\mathsf{k}\mathsf{j}}^{(\mathsf{k-1})}$ } if $\mathsf{k} \geq 1$
- The final solution: $D^{(n)} = (d_{ij}^{(n)})$:

 $d_{ij}^{(n)} = \delta(i, j) \ \forall \ i, j \in V$

The Floyd-Warshall algorithm

```
Floyd-Warshall(W[1..n][1..n])
01 D \leftarrow W // D^{(0)}02 for k \leftarrow 1 to n do // compute D^{(k)}03 for i \leftarrow 1 to n do
04 for \dot{ } \leftarrow 1 to n do
05 if D[i][k] + D[k][j] < D[i][j] then
06 D[i][j] \leftarrow D[i][k] + D[k][j]07 return D
```
Running Time: O(n³)

Computing predecessor matrix

- *How do we compute the predecessor matrix?* **Initialization:** (0) if $i = j$ or (i, j) *ij nil* $\;$ *if* $i = j$ or w_j $p^{\scriptscriptstyle{(0)}}(i,j)$ $\begin{cases} nil & \text{if } i = j \text{ or } w_{ii} = \infty \end{cases}$ \equiv $=\{$
	- Updating: *p (k)(i,j) = p(k-1)(i,j) if(d(k-1)(i,j)<=d(k-1)(i,k)+(d(k-1)(k,j) ij* i if $i \neq j$ and w_i $\begin{cases} i & \text{if } i \neq j \text{ and } w_{ij} < \infty \end{cases}$

if $i \neq j$ and

 $p^{(k-1)}(k,j)$ if($d^{(k-1)}(i,j) > d^{(k-1)}(i,k)+(d^{(k-1)}(k,j))$ **Floyd-Warshall**(W[1..n][1..n])

```
01 …
02 for k \leftarrow 1 to n do // compute D^{(k)}03 for i \leftarrow 1 to n do
04 for i \leftarrow1 to n do
05 if D[i][k] + D[k][j] < D[i][j] then
06 D[i][j] \leftarrow D[i][k] + D[k][j]07 P[i][j] \leftarrow P[k][j]08 return D
```
Example -4 $\overline{2}$ -5 $0 | 3 | 8 | \infty | -4$ ∞ \mid $\mathsf{0}$ \mid ∞ \mid 1 \mid $\mathsf{7}$ ∞ $\mid 4 \mid 0 \mid \infty$ \mid ∞ $D^{(0)} = W$ 1 2 3 4 5 $D^{(1)}$ $0 | 3 | 8 | \infty | -4$ ∞ \mid $\textsf{0}$ \mid ∞ \mid $\textsf{1}$ \mid $\textsf{7}$ ∞ $\mid 4 \mid 0 \mid \infty$ \mid ∞ $d_{ij}^{(k)} = min \{ d_{ij}^{(k-1)} , d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \}$ 2 3 4 5 2 3 4 5

 $2 \mid \infty \mid -5 \mid 0 \mid \infty$

 ∞ \mid ∞ \mid ∞ \mid ∞ \mid ∞ \mid ∞

5 \leftarrow 4

 $D^{(2)}$ 5 0 ∞ 0 ∞ 6 0 5 ∞ 6 0 ∞ 6 0

 $D⁽⁴⁾$

 $2 \mid 5 \mid$ -5 \mid 0 \mid -2

Example $d_{ij}^{(k)} = min \{ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \}$

Source: 5, Destination: 1 Shortest path: 8 Path: 5 …1 : 5…4…1: 5->4…1: 5->4->1

Source: 1, Destination: 3 Shortest path: -3 Path: 1 …3 : 1…4…3: 1…5…4…3: 1->5->4->3

PrintPath for Warshall's Algorithm

```
PrintPath(s, t)
{
  if(P[s][t]==nil) {print("No path"); return; }
  else if (P[s][t]=s){
      print(s);
  }
  else{
      print path(s, P[s][t]);
      print path(P[s][t], t);
  }
}
Print (t) at the end of the PrintPath(s,t)
```
Question

- Why should we use $D[i, j]$ instead of $D^{(k)}[i, j]$?
- Exercise:
	- $-25.2 4$: Memory O(n²)
	- 25.2-6: Negative weight cycle
	- Find the shortest positive cycle

Transitive closure of the graph

- Input:
	- $-$ Un-weighted graph *G*: *W*[*i*][*j*] = 1, if $(i, j) \in E$, *W*[*i*][*j*] = 0 otherwise.
- Output:
	- π *i* $[$ $]$ $=$ 1, if there is a path from *i* to *j* in *G*, π *i* $[$ $]$ $=$ 0 otherwise.
- Algorithm:
	- Just run Floyd-Warshall with weights 1, and make $T[i][j] = 1$, whenever $D[i][j] < \infty$.
	- More efficient: use only Boolean operators

Transitive closure algorithm

```
Transitive-Closure(W[1..n][1..n])
01 T \leftarrow W // T<sup>(0)</sup>
02 for k \leftarrow 1 to n do // compute T^{(k)}03 for i \leftarrow1 to n do
04 for i \leftarrow 1 to n do
05 T[i][j] \leftarrow T[i][j] \vee (T[i][k] \wedge T[k][j])06 return T
```
Readings

• Chapters 25