
Instruction Set Architecture

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 2

Outline

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Addressing Modes

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 3

 Critical Interface between hardware and software

 An ISA includes the following …

 Instructions and Instruction Formats

 Data Types, Encodings, and Representations

 Programmable Storage: Registers and Memory

 Addressing Modes: to address Instructions and Data

 Handling Exceptional Conditions (like division by zero)

 Examples (Versions) First Introduced in

 Intel (8086, 80386, Pentium, ...) 1978

 MIPS (MIPS I, II, III, IV, V) 1986

 PowerPC (601, 604, …) 1993

Instruction Set Architecture (ISA)

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 4

Instructions

 Instructions are the language of the machine

We will study the MIPS instruction set architecture

 Known as Reduced Instruction Set Computer (RISC)

 Elegant and relatively simple design

 Similar to RISC architectures developed in mid-1980’s and 90’s

 Very popular, used in many products

 Silicon Graphics, ATI, Cisco, Sony, etc.

 Comes next in sales after Intel IA-32 processors

 Almost 100 million MIPS processors sold in 2002 (and increasing)

 Alternative design: Intel IA-32

 Known as Complex Instruction Set Computer (CISC)

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 5

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Addressing Modes

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 6

Overview of the MIPS Processor

Memory

Up to 232 bytes = 230 words

4 bytes per word

$0

$1

$2

$31

Hi Lo

ALU

F0

F1

F2

F31
FP

Arith

EPC

Cause

BadVaddr

Status

EIU FPU

TMU

Execution &

Integer Unit

(Main proc)

Floating

Point Unit

(Coproc 1)

Trap &

Memory Unit

(Coproc 0)

. . .

. . .

Integer
mul/div

Arithmetic &

Logic Unit

32 General

Purpose

Registers

Integer

Multiplier/Divider

32 Floating-Point

Registers

Floating-Point

Arithmetic Unit

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 7

MIPS General-Purpose Registers

 32 General Purpose Registers (GPRs)

 Assembler uses the dollar notation to name registers

 $0 is register 0, $1 is register 1, …, and $31 is register 31

 All registers are 32-bit wide in MIPS32

 Register $0 is always zero

 Any value written to $0 is discarded

 Software conventions

 There are many registers (32)

 Software defines names to all registers

 To standardize their use in programs

 Example: $8 - $15 are called $t0 - $t7

 Used for temporary values

$0 = $zero

$1 = $at

$2 = $v0

$3 = $v1

$4 = $a0

$5 = $a1

$6 = $a2

$7 = $a3

$8 = $t0

$9 = $t1

$10 = $t2

$11 = $t3

$12 = $t4

$13 = $t5

$14 = $t6

$15 = $t7

$16 = $s0

$17 = $s1

$18 = $s2

$19 = $s3

$20 = $s4

$21 = $s5

$22 = $s6

$23 = $s7

$24 = $t8

$25 = $t9

$26 = $k0

$27 = $k1

$28 = $gp

$29 = $sp

$30 = $fp

$31 = $ra

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 8

MIPS Register Conventions

Name Register Usage

$zero $0 Always 0 (forced by hardware)

$at $1 Reserved for assembler use

$v0 – $v1 $2 – $3 Result values of a function

$a0 – $a3 $4 – $7 Arguments of a function

$t0 – $t7 $8 – $15 Temporary Values

$s0 – $s7 $16 – $23 Saved registers (preserved across call)

$t8 – $t9 $24 – $25 More temporaries

$k0 – $k1 $26 – $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)

$fp $30 Frame pointer (points to stack frame)

$ra $31 Return address (used by jal for function call)

 Assembler can refer to registers by name or by number

 It is easier for you to remember registers by name

 Assembler converts register name to its corresponding number

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 9

Instruction Formats

 All instructions are 32-bit wide, Three instruction formats:

 Register (R-Type)

 Register-to-register instructions

 Op: operation code specifies the format of the instruction

 Immediate (I-Type)

 16-bit immediate constant is part in the instruction

 Jump (J-Type)

 Used by jump instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 10

Instruction Categories

 Integer Arithmetic

 Arithmetic, logical, and shift instructions

 Data Transfer

 Load and store instructions that access memory

 Data movement and conversions

 Jump and Branch

 Flow-control instructions that alter the sequential sequence

 Floating Point Arithmetic

 Instructions that operate on floating-point registers

Miscellaneous

 Instructions that transfer control to/from exception handlers

 Memory management instructions

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 11

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Addressing Modes

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 12

R-Type Format

 Op: operation code (opcode)

 Specifies the operation of the instruction

 Also specifies the format of the instruction

 funct: function code – extends the opcode

 Up to 26 = 64 functions can be defined for the same opcode

 MIPS uses opcode 0 to define R-type instructions

 Three Register Operands (common to many instructions)

 Rs, Rt: first and second source operands

 Rd: destination operand

 sa: the shift amount used by shift instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 13

Integer Add /Subtract Instructions
Instruction Meaning R-Type Format
add $s1, $s2, $s3 $s1 = $s2 + $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x20

addu $s1, $s2, $s3 $s1 = $s2 + $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x21

sub $s1, $s2, $s3 $s1 = $s2 – $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x22

subu $s1, $s2, $s3 $s1 = $s2 – $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x23

 add & sub: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

 addu & subu: same operation as add & sub

 However, no arithmetic exception can occur

 Overflow is ignored

Many programming languages ignore overflow

 The + operator is translated into addu

 The – operator is translated into subu

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 14

Addition/Subtraction Example

 Consider the translation of: f = (g+h) – (i+j)

 Compiler allocates registers to variables

Assume that f, g, h, i, and j are allocated registers $s0 thru $s4

Called the saved registers: $s0 = $16, $s1 = $17, …, $s7 = $23

 Translation of: f = (g+h) – (i+j)

addu $t0, $s1, $s2 # $t0 = g + h

addu $t1, $s3, $s4 # $t1 = i + j

subu $s0, $t0, $t1 # f = (g+h)–(i+j)

 Temporary results are stored in $t0 = $8 and $t1 = $9

 Translate: addu $t0,$s1,$s2 to binary code

 Solution: 000000

op

10001

rs = $s1

10010

rt = $s2

01000

rd = $t0

00000

sa

100001

func

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 15

Logical Bitwise Operations

 Logical bitwise operations: and, or, xor, nor

 AND instruction is used to clear bits: x and 0 = 0

 OR instruction is used to set bits: x or 1 = 1

 XOR instruction is used to toggle bits: x xor 1 = not x

 NOR instruction can be used as a NOT, how?

 nor $s1,$s2,$s2 is equivalent to not $s1,$s2

x

0

0

1

1

y

0

1

0

1

x and y

0

0

0

1

x

0

0

1

1

y

0

1

0

1

x or y

0

1

1

1

x

0

0

1

1

y

0

1

0

1

x xor y

0

1

1

0

x

0

0

1

1

y

0

1

0

1

x nor y

1

0

0

0

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 16

Logical Bitwise Instructions
Instruction Meaning R-Type Format
and $s1, $s2, $s3 $s1 = $s2 & $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x24

or $s1, $s2, $s3 $s1 = $s2 | $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x25

xor $s1, $s2, $s3 $s1 = $s2 ^ $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x26

nor $s1, $s2, $s3 $s1 = ~($s2|$s3) op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x27

 Examples:

Assume $s1 = 0xabcd1234 and $s2 = 0xffff0000

and $s0,$s1,$s2 # $s0 = 0xabcd0000

or $s0,$s1,$s2 # $s0 = 0xffff1234

xor $s0,$s1,$s2 # $s0 = 0x54321234

nor $s0,$s1,$s2 # $s0 = 0x0000edcb

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 17

Shift Operations

 Shifting is to move all the bits in a register left or right

 Shifts by a constant amount: sll, srl, sra

 sll/srl mean shift left/right logical by a constant amount

 The 5-bit shift amount field is used by these instructions

 sra means shift right arithmetic by a constant amount

 The sign-bit (rather than 0) is shifted from the left

shift-in 0. . .shift-out MSB

sll 32-bit register

. . .shift-in 0 shift-out LSB

srl

. . .shift-in sign-bit shift-out LSB

sra

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 18

$s1 = 0x0000abcd

$s1 = 0xcd123400

Shift Instructions
Instruction Meaning R-Type Format
sll $s1,$s2,10 $s1 = $s2 << 10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 0

srl $s1,$s2,10 $s1 = $s2>>>10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 2

sra $s1, $s2, 10 $s1 = $s2 >> 10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 3

sllv $s1,$s2,$s3 $s1 = $s2 << $s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 4

srlv $s1,$s2,$s3 $s1 = $s2>>>$s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 6

srav $s1,$s2,$s3 $s1 = $s2 >> $s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 7

 Shifts by a variable amount: sllv, srlv, srav

 Same as sll, srl, sra, but a register is used for shift amount

 Examples: assume that $s2 = 0xabcd1234, $s3 = 16

sll $s1,$s2,8

sra $s1,$s2,4 $s1 = 0xfabcd123

srlv $s1,$s2,$s3

rt=$s2=10010op=000000 rs=$s3=10011 rd=$s1=10001 sa=00000 f=000110

$s1 = $s2<<8

$s1 = $s2>>4

$s1 = $s2>>>$s3

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 19

Binary Multiplication

 Shift-left (sll) instruction can perform multiplication

 When the multiplier is a power of 2

 You can factor any binary number into powers of 2

 Example: multiply $s1 by 36

 Factor 36 into (4 + 32) and use distributive property of multiplication

 $s2 = $s1*36 = $s1*(4 + 32) = $s1*4 + $s1*32

sll $t0, $s1, 2 ; $t0 = $s1 * 4

sll $t1, $s1, 5 ; $t1 = $s1 * 32

addu $s2, $t0, $t1 ; $s2 = $s1 * 36

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 20

Your Turn . . .

sll $t0, $s1, 1 ; $t0 = $s1 * 2

sll $t1, $s1, 3 ; $t1 = $s1 * 8

addu $s2, $t0, $t1 ; $s2 = $s1 * 10

sll $t0, $s1, 4 ; $t0 = $s1 * 16

addu $s2, $s2, $t0 ; $s2 = $s1 * 26

Multiply $s1 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

Multiply $s1 by 31, Hint: 31 = 32 – 1

sll $s2, $s1, 5 ; $s2 = $s1 * 32

subu $s2, $s2, $s1 ; $s2 = $s1 * 31

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 21

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Addressing Modes

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 22

I-Type Format
 Constants are used quite frequently in programs

 The R-type shift instructions have a 5-bit shift amount constant

What about other instructions that need a constant?

 I-Type: Instructions with Immediate Operands

 16-bit immediate constant is stored inside the instruction

Rs is the source register number

Rt is now the destination register number (for R-type it was Rd)

 Examples of I-Type ALU Instructions:

Add immediate: addi $s1, $s2, 5 # $s1 = $s2 + 5

OR immediate: ori $s1, $s2, 5 # $s1 = $s2 | 5

Op6 Rs5 Rt5 immediate16

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 23

I-Type ALU Instructions
Instruction Meaning I-Type Format
addi $s1, $s2, 10 $s1 = $s2 + 10 op = 0x8 rs = $s2 rt = $s1 imm16 = 10

addiu $s1, $s2, 10 $s1 = $s2 + 10 op = 0x9 rs = $s2 rt = $s1 imm16 = 10

andi $s1, $s2, 10 $s1 = $s2 & 10 op = 0xc rs = $s2 rt = $s1 imm16 = 10

ori $s1, $s2, 10 $s1 = $s2 | 10 op = 0xd rs = $s2 rt = $s1 imm16 = 10

xori $s1, $s2, 10 $s1 = $s2 ^ 10 op = 0xe rs = $s2 rt = $s1 imm16 = 10

lui $s1, 10 $s1 = 10 << 16 op = 0xf 0 rt = $s1 imm16 = 10

 addi: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

 addiu: same operation as addi but overflow is ignored

 Immediate constant for addi and addiu is signed

 No need for subi or subiu instructions

 Immediate constant for andi, ori, xori is unsigned

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 24

 Examples: assume A, B, C are allocated $s0, $s1, $s2

 No need for subi, because addi has signed immediate

 Register 0 ($zero) has always the value 0

Examples: I-Type ALU Instructions

A = B+5; translated as

C = B–1; translated as

addiu $s0,$s1,5

addiu $s2,$s1,-1

A = B&0xf; translated as

C = B|0xf; translated as

andi $s0,$s1,0xf

ori $s2,$s1,0xf

C = 5; translated as

A = B; translated as

ori $s2,$zero,5

ori $s0,$s1,0

rt=$s2=10010op=001001 rs=$s1=10001 imm = -1 = 1111111111111111

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 25

 I-Type instructions can have only 16-bit constants

What if we want to load a 32-bit constant into a register?

 Can’t have a 32-bit constant in I-Type instructions

We have already fixed the sizes of all instructions to 32 bits

 Solution: use two instructions instead of one

Suppose we want: $s1=0xAC5165D9 (32-bit constant)

 lui: load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $s1,0xAC51

ori $s1,$s1,0x65D9 0xAC51 0x65D9$s1=$17

0xAC51 0x0000$s1=$17

clear lower

16 bits

load upper

16 bits

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 26

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Addressing Modes

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 27

J-Type Format

 J-type format is used for unconditional jump instruction:

j label # jump to label

. . .

label:

 26-bit immediate value is stored in the instruction

 Immediate constant specifies address of target instruction

 Program Counter (PC) is modified as follows:

Next PC =

Upper 4 most significant bits of PC are unchanged

Op6 immediate26

immediate26PC4 00
least-significant

2 bits are 00

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 28

 MIPS compare and branch instructions:

beq Rs,Rt,label branch to label if (Rs == Rt)

bne Rs,Rt,label branch to label if (Rs != Rt)

 MIPS compare to zero & branch instructions

Compare to zero is used frequently and implemented efficiently

bltz Rs,label branch to label if (Rs < 0)

bgtz Rs,label branch to label if (Rs > 0)

blez Rs,label branch to label if (Rs <= 0)

bgez Rs,label branch to label if (Rs >= 0)

 No need for beqz and bnez instructions. Why?

Conditional Branch Instructions

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 29

Set on Less Than Instructions

MIPS also provides set on less than instructions

slt rd,rs,rt if (rs < rt) rd = 1 else rd = 0

sltu rd,rs,rt unsigned <

slti rt,rs,im16 if (rs < im16) rt = 1 else rt = 0

sltiu rt,rs,im16 unsigned <

 Signed / Unsigned Comparisons

Can produce different results

Assume $s0 = 1 and $s1 = -1 = 0xffffffff

slt $t0,$s0,$s1 results in $t0 = 1

sltu $t0,$s0,$s1 results in $t0 = 0

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 30

More on Branch Instructions

 MIPS hardware does NOT provide instructions for …

blt, bltu branch if less than (signed/unsigned)

ble, bleu branch if less or equal (signed/unsigned)

bgt, bgtu branch if greater than (signed/unsigned)

bge, bgeu branch if greater or equal (signed/unsigned)

Can be achieved with a sequence of 2 instructions

 How to implement: blt $s0,$s1,label

 Solution: slt $at,$s0,$s1

bne $at,$zero,label

 How to implement: ble $s2,$s3,label

 Solution: slt $at,$s3,$s2

beq $at,$zero,label

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 31

Pseudo-Instructions

 Introduced by assembler as if they were real instructions

 To facilitate assembly language programming

 Assembler reserves $at = $1 for its own use

 $at is called the assembler temporary register

ori $s1, $zero, 0xabcdli $s1, 0xabcd

slt $s1, $s3, $s2sgt $s1, $s2, $s3

nor $s1, $s2, $zeronot $s1, $s2

slt $at, $s1, $s2

bne $at, $zero, label
blt $s1, $s2, label

lui $at, 0xabcd

ori $s1, $at, 0x1234
li $s1, 0xabcd1234

addu $s1, $zero, $s2move $s1, $s2

Conversion to Real InstructionsPseudo-Instructions

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 32

Jump, Branch, and SLT Instructions
Instruction Meaning Format

j label jump to label op6 = 2 imm26

beq rs, rt, label branch if (rs == rt) op6 = 4 rs5 rt5 imm16

bne rs, rt, label branch if (rs != rt) op6 = 5 rs5 rt5 imm16

blez rs, label branch if (rs<=0) op6 = 6 rs5 0 imm16

bgtz rs, label branch if (rs > 0) op6 = 7 rs5 0 imm16

bltz rs, label branch if (rs < 0) op6 = 1 rs5 0 imm16

bgez rs, label branch if (rs>=0) op6 = 1 rs5 1 imm16

Instruction Meaning Format

slt rd, rs, rt rd=(rs<rt?1:0) op6 = 0 rs5 rt5 rd5 0 0x2a

sltu rd, rs, rt rd=(rs<rt?1:0) op6 = 0 rs5 rt5 rd5 0 0x2b

slti rt, rs, imm16 rt=(rs<imm?1:0) 0xa rs5 rt5 imm16

sltiu rt, rs, imm16 rt=(rs<imm?1:0) 0xb rs5 rt5 imm16

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 33

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Addressing Modes

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 34

Translating an IF Statement

 Consider the following IF statement:

if (a == b) c = d + e; else c = d – e;

Assume that a, b, c, d, e are in $s0, …, $s4 respectively

 How to translate the above IF statement?

bne $s0, $s1, else

addu $s2, $s3, $s4

j exit

else: subu $s2, $s3, $s4

exit: . . .

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 35

Compound Expression with AND

 Programming languages use short-circuit evaluation

 If first expression is false, second expression is skipped

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

One Possible Implementation ...

bgtz $s1, L1 # first expression

j next # skip if false

L1: bltz $s2, L2 # second expression

j next # skip if false

L2: addiu $s3,$s3,1 # both are true

next:

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 36

Better Implementation for AND

The following implementation uses less code

Reverse the relational operator

Allow the program to fall through to the second expression

Number of instructions is reduced from 5 to 3

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

Better Implementation ...

blez $s1, next # skip if false

bgez $s2, next # skip if false

addiu $s3,$s3,1 # both are true

next:

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 37

Compound Expression with OR

 Short-circuit evaluation for logical OR

 If first expression is true, second expression is skipped

 Use fall-through to keep the code as short as possible

 bgt, ble, and li are pseudo-instructions

 Translated by the assembler to real instructions

if (($sl > $s2) || ($s2 > $s3)) {$s4 = 1;}

bgt $s1, $s2, L1 # yes, execute if part

ble $s2, $s3, next # no: skip if part

L1: li $s4, 1 # set $s4 to 1

next:

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 38

Your Turn . . .

 Translate the IF statement to assembly language

 $s1 and $s2 values are unsigned

 $s3, $s4, and $s5 values are signed

bgtu $s1, $s2, next

move $s3, $s4

next:

if($s1 <= $s2) {

$s3 = $s4

}

if (($s3 <= $s4) &&

($s4 > $s5)) {

$s3 = $s4 + $s5

}

bgt $s3, $s4, next

ble $s4, $s5, next

addu $s3, $s4, $s5

next:

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 39

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Addressing Modes

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 40

Load and Store Instructions

 Instructions that transfer data between memory & registers

 Programs include variables such as arrays and objects

 Such variables are stored in memory

 Load Instruction:

 Transfers data from memory to a register

 Store Instruction:

 Transfers data from a register to memory

Memory address must be specified by load and store

MemoryRegisters

load

store

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 41

 Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm16(Rs) # Rt = MEMORY[Rs+imm16]

 Store Word Instruction

sw Rt, imm16(Rs) # MEMORY[Rs+imm16] = Rt

 Base or Displacement addressing is used

Memory Address = Rs (base) + Immediate16 (displacement)

 Immediate16 is sign-extended to have a signed displacement

Load and Store Word

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 42

Example on Load & Store

 Translate A[1] = A[2] + 5 (A is an array of words)

 Assume that address of array A is stored in register $s0

lw $s1, 8($s0) # $s1 = A[2]

addiu $s2, $s1, 5 # $s2 = A[2] + 5

sw $s2, 4($s0) # A[1] = $s2

 Index of A[2] and A[1] should be multiplied by 4. Why?

sw

Memory

A[1]

A[0]

A[2]

A[3]

. . .

. . .

A+12

A+8

A+4

A

Registers

address of A$s0 = $16

value of A[2]$s1 = $17

A[2] + 5$s2 = $18

. . .

. . .

lw

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 43

0 0

s s s

s s

0 0

s

bu

b

h

hu

sign – extend

zero – extend

sign – extend

zero – extend

32-bit Register

 The MIPS processor supports the following data formats:

Byte = 8 bits, Halfword = 16 bits, Word = 32 bits

 Load & store instructions for bytes and halfwords

 lb = load byte, lbu = load byte unsigned, sb = store byte

 lh = load half, lhu = load half unsigned, sh = store halfword

 Load expands a memory data to fit into a 32-bit register

 Store reduces a 32-bit register to fit in memory

Load and Store Byte and Halfword

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 44

Load and Store Instructions
Instruction Meaning I-Type Format

lb rt, imm16(rs) rt = MEM[rs+imm16] 0x20 rs5 rt5 imm16

lh rt, imm16(rs) rt = MEM[rs+imm16] 0x21 rs5 rt5 imm16

lw rt, imm16(rs) rt = MEM[rs+imm16] 0x23 rs5 rt5 imm16

lbu rt, imm16(rs) rt = MEM[rs+imm16] 0x24 rs5 rt5 imm16

lhu rt, imm16(rs) rt = MEM[rs+imm16] 0x25 rs5 rt5 imm16

sb rt, imm16(rs) MEM[rs+imm16] = rt 0x28 rs5 rt5 imm16

sh rt, imm16(rs) MEM[rs+imm16] = rt 0x29 rs5 rt5 imm16

sw rt, imm16(rs) MEM[rs+imm16] = rt 0x2b rs5 rt5 imm16

 Base or Displacement Addressing is used

 Memory Address = Rs (base) + Immediate16 (displacement)

 Two variations on base addressing

 If Rs = $zero = 0 then Address = Immediate16 (absolute)

 If Immediate16 = 0 then Address = Rs (register indirect)

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 45

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Addressing Modes

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 46

Translating a WHILE Loop

 Consider the following WHILE statement:

i = 0; while (A[i] != k) i = i+1;

Where A is an array of integers (4 bytes per element)

Assume address A, i, k in $s0, $s1, $s2, respectively

 How to translate above WHILE statement?

xor $s1, $s1, $s1 # i = 0

move $t0, $s0 # $t0 = address A

loop: lw $t1, 0($t0) # $t1 = A[i]

beq $t1, $s2, exit # exit if (A[i]== k)

addiu $s1, $s1, 1 # i = i+1

sll $t0, $s1, 2 # $t0 = 4*i

addu $t0, $s0, $t0 # $t0 = address A[i]

j loop

exit: . . .

Memory

A[2]

A[i]

A[1]

A[0]

. . .

. . .

A

A+4

A+8

A+4×i

. . .

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 47

Using Pointers to Traverse Arrays

 Consider the same WHILE loop:

i = 0; while (A[i] != k) i = i+1;

Where address of A, i, k are in $s0, $s1, $s2, respectively

 We can use a pointer to traverse array A

Pointer is incremented by 4 (faster than indexing)

move $t0, $s0 # $t0 = $s0 = addr A

j cond # test condition

loop: addiu $s1, $s1, 1 # i = i+1

addiu $t0, $t0, 4 # point to next

cond: lw $t1, 0($t0) # $t1 = A[i]

bne $t1, $s2, loop # loop if A[i]!= k

 Only 4 instructions (rather than 6) in loop body

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 48

Copying a String

move $t0, $s0 # $t0 = pointer to source

move $t1, $s1 # $t1 = pointer to target

L1: lb $t2, 0($t0) # load byte into $t2

sb $t2, 0($t1) # store byte into target

addiu $t0, $t0, 1 # increment source pointer

addiu $t1, $t1, 1 # increment target pointer

bne $t2, $zero, L1 # loop until NULL char

The following code copies source string to target string

Address of source in $s0 and address of target in $s1

Strings are terminated with a null character (C strings)

i = 0;

do {target[i]=source[i]; i++;} while (source[i]!=0);

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 49

Summing an Integer Array

move $t0, $s0 # $t0 = address A[i]

xor $t1, $t1, $t1 # $t1 = i = 0

xor $s2, $s2, $s2 # $s2 = sum = 0

L1: lw $t2, 0($t0) # $t2 = A[i]

addu $s2, $s2, $t2 # sum = sum + A[i]

addiu $t0, $t0, 4 # point to next A[i]

addiu $t1, $t1, 1 # i++

bne $t1, $s1, L1 # loop if (i != n)

Assume $s0 = array address, $s1 = array length = n

sum = 0;

for (i=0; i<n; i++) sum = sum + A[i];

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 50

Next . . .

 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Addressing Modes

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 51

Addressing Modes

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Word

Operand is in memory (load/store)

Register = Base address

+ HalfwordByte

Op6 Rs5 Rt5 immediate16

Immediate Addressing

Operand is a constant

Op6 Rs5 Rt5 Rd5 funct6sa5

Register Addressing

Register

Operand is in a register

Where are the operands?

 How memory addresses are computed?

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 52

Branch / Jump Addressing Modes

Used for branching (beq, bne, …)

Word = Target Instruction

Op6 Rs5 Rt5 immediate16

PC-Relative Addressing

PC30 00

+1

Target Instruction Address

PC = PC + 4 × (1 + immediate16)
PC30 + immediate16 + 1 00

immediate26PC4 00Target Instruction Address

Word = Target Instruction

immediate26Op6

Pseudo-direct Addressing

PC26

:

00

Used by jump instruction

PC4

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 53

Jump and Branch Limits

 Jump Address Boundary = 226 instructions = 256 MB

 Text segment cannot exceed 226 instructions or 256 MB

 Upper 4 bits of PC are unchanged

 Branch Address Boundary

 Branch instructions use I-Type format (16-bit immediate constant)

 PC-relative addressing:

 Target instruction address = PC + 4×(1 + immediate16)

 During assembly: immediate=(Target address – PC)/4, where PC

contains address of next instruction

immediate26PC4 00Target Instruction Address

PC30 + immediate16 + 1 00

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 54

Jump and Branch Limits
 During execution, PC contains the address of current instruction

(thus we add 1 to immediate16).

 Maximum branch limit is -215 to +215-1 instructions.

 If immediate is positive => Forward Jump

 If immediate is negative => Backward Jump

 Example

0

Again:4

8 beq $s1,$s2 Next

12

16 bne $s1,$zero Again

Next: 20

Forward Jump

During assembly:

Immediate=(Next-PC)/4=(20-12)/4=2

During execution:

PC=PC+4*(immediate+1)=8+4*(3)=20

Backward Jump

During assembly:

Immediate=(Again-PC)/4=(4-20)/4=-4

During execution:

PC=PC+4*(immediate+1)=16+4*(-3)=4

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 55

Summary of RISC Design

 All instructions are typically of one size

 Few instruction formats

 All operations on data are register to register

 Operands are read from registers

 Result is stored in a register

 General purpose integer and floating point registers

 Typically, 32 integer and 32 floating-point registers

Memory access only via load and store instructions

 Load and store: bytes, half words, words, and double words

 Few simple addressing modes

Instruction Set Architecture CSE 302 – Computer Architecture and Assembly Language slide 56

Four Design Principles

1. Simplicity favors regularity

 Fix the size of instructions (simplifies fetching & decoding)

 Fix the number of operands per instruction

 Three operands is the natural number for a typical instruction

2. Smaller is faster

 Limit the number of registers for faster access (typically 32)

3. Make the common case fast

 Include constants inside instructions (faster than loading them)

 Design most instructions to be register-to-register

4. Good design demands good compromises

 Fixed-size instructions compromise the size of constants

