
Introduction

CSE 211

Outline
• Welcome to CSE 211

• High-Level, Assembly-, and Machine-Languages

• Components of a Computer System

• Chip Manufacturing Process

• Technology Improvements

• Programmer's View of a Computer System

Which Textbooks will be Used?

• Computer Organization & Design:

The Hardware/Software Interface

• Third Edition

• David Patterson and John Hennessy

• Morgan Kaufmann Publishers, 2005

• MIPS Assembly Language Programming

• Robert Britton

• Pearson Prentice Hall, 2004

• Supplement for Lab

• Read the textbooks in addition to slides

Course Objectives

• Towards the end of this course, you should be able to …

• Describe the instruction set architecture of a MIPS processor

• Analyze, write, and test MIPS assembly language programs

• Describe organization/operation of integer & floating-point units

• Design the datapath and control of a single-cycle CPU

• Design the datapath/control of a pipelined CPU & handle hazards

• Describe the organization/operation of memory and caches

• Analyze the performance of processors and caches

Course Learning Outcomes

• Ability to analyze, write, and test MIPS assembly language
programs.

• Ability to describe the organization and operation of integer and
floating-point arithmetic units.

• Ability to apply knowledge of mathematics in CPU performance
analysis and in speedup computation.

• Ability to design the datapath and control unit of a processor.

• Ability to use simulator tools in the analysis of assembly language
programs and in CPU design.

Required Background

• The student should already be able to program confidently in at least
one high-level programming language, such as Java or C.

• Prerequisite
• Fundamentals of computer engineering

• Introduction to computing

• Only students with computer science or software engineering major
should be registered in this course.

Software Tools
• MIPS Simulators

• MARS: MIPS Assembly and Runtime Simulator

• Runs MIPS-32 assembly language programs

• Website: http://courses.missouristate.edu/KenVollmar/MARS/

• PCSPIM

• Also Runs MIPS-32 assembly language programs

• Website: http://www.cs.wisc.edu/~larus/spim.html

• CPU Design and Simulation Tool

• Logisim

• Educational tool for designing and simulating CPUs

• Website: http://ozark.hendrix.edu/~burch/logisim/

http://courses.missouristate.edu/KenVollmar/MARS/
http://www.cs.wisc.edu/~larus/spim.html
http://ozark.hendrix.edu/~burch/logisim/

What is “Computer Architecture” ?

• Computer Architecture =

Instruction Set Architecture +

Computer Organization

• Instruction Set Architecture (ISA)

• WHAT the computer does (logical view)

• Computer Organization

• HOW the ISA is implemented (physical view)

• We will study both in this course

Next . . .
• Welcome to CSE 211

• High-Level, Assembly-, and Machine-Languages

• Components of a Computer System

• Chip Manufacturing Process

• Technology Improvements

• Programmer's View of a Computer System

Some Important Questions to Ask

• What is Assembly Language?

• What is Machine Language?

• How is Assembly related to a high-level language?

• Why Learn Assembly Language?

• What is an Assembler, Linker, and Debugger?

A Hierarchy of Languages
Application Programs

High-Level Languages

Assembly Language

Machine Language

Hardware

High-Level Language

Low-Level Language

Machine independent

Machine specific

Assembly and Machine Language

• Machine language
• Native to a processor: executed directly by hardware

• Instructions consist of binary code: 1s and 0s

• Assembly language
• Slightly higher-level language

• Readability of instructions is better than machine language

• One-to-one correspondence with machine language instructions

• Assemblers translate assembly to machine code

• Compilers translate high-level programs to machine code
• Either directly, or

• Indirectly via an assembler

Compiler and Assembler

Instructions and Machine Language

• Each command of a program is called an instruction (it instructs the
computer what to do).

• Computers only deal with binary data, hence the instructions must
be in binary format (0s and 1s) .

• The set of all instructions (in binary form) makes up the computer's
machine language. This is also referred to as the instruction set.

Instruction Fields

• Machine language instructions usually are made up of several fields.
Each field specifies different information for the computer. The major
two fields are:

• Opcode field which stands for operation code and it specifies the
particular operation that is to be performed.
• Each operation has its unique opcode.

• Operands fields which specify where to get the source and
destination operands for the operation specified by the opcode.
• The source/destination of operands can be a constant, the memory or one of

the general-purpose registers.

MIPS Assembly Language:

sll $2,$5, 2

add $2,$4,$2

lw $15,0($2)

lw $16,4($2)

sw $16,0($2)

sw $15,4($2)

jr $31

Compiler

Translating Languages
Program (C Language):

swap(int v[], int k) {

int temp;

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

}

A statement in a high-level
language is translated
typically into several

machine-level instructions

MIPS Machine Language:

00051080

00821020

8C620000

8CF20004

ACF20000

AC620004

03E00008

Assembler

Advantages of High-Level Languages
• Program development is faster

• High-level statements: fewer instructions to code

• Program maintenance is easier

• For the same above reasons

• Programs are portable

• Contain few machine-dependent details

• Can be used with little or no modifications on different machines

• Compiler translates to the target machine language

• However, Assembly language programs are not portable

Why Learn Assembly Language?

• Many reasons:

• Accessibility to system hardware

• Space and time efficiency

• Writing a compiler for a high-level language

• Accessibility to system hardware

• Assembly Language is useful for implementing system software

• Also useful for small embedded system applications

• Space and Time efficiency

• Understanding sources of program inefficiency

• Tuning program performance

• Writing compact code

Assembly vs. High-Level Languages

• Some representative types of applications:

Assembly Language Programming Tools

• Editor
• Allows you to create and edit assembly language source files

• Assembler
• Converts assembly language programs into object files

• Object files contain the machine instructions

• Linker
• Combines object files created by the assembler with link libraries

• Produces a single executable program

• Debugger
• Allows you to trace the execution of a program

• Allows you to view machine instructions, memory, and registers

Assemble and Link Process
Source

File

Source
File

Source
File

Assembler
Object

File

Assembler
Object

File

Assembler
Object

File

Linker
Executable

File

Link
Libraries

A project may consist of multiple source files

Assembler translates each source file separately into an object file

Linker links all object files together with link libraries

MARS Assembler and Simulator Tool

Next . . .
• Welcome to CSE 211

• High-Level, Assembly-, and Machine-Languages

• Components of a Computer System

• Chip Manufacturing Process

• Technology Improvements

• Programmer's View of a Computer System

Components of a Computer System

• Processor

• Datapath

• Control

• Memory & Storage

• Main Memory

• Disk Storage

• Input devices

• Output devices

• Bus: Interconnects processor to memory and I/O

• Network: newly added component for communication

Computer

Memory

I/O Devices

Input

Output
B
U
S

Control

Datapath

Processor

Disk

Network

Input Devices

Logical arrangement of keys

0 1 2 3

c d e f

8 9 a b

4 5 6 7

Mechanical switch

Spring

Key Cap

Contacts

Membrane switch

Conductor-coated membrane

http://images.google.com/imgres?imgurl=http://tomburka.com/graphics/microphone.gif&imgrefurl=http://tomburka.com/&h=337&w=202&sz=15&tbnid=WSsKixXvBscJ:&tbnh=113&tbnw=68&start=9&prev=/images%3Fq%3Dmicrophone%26hl%3Den%26lr%3D%26ie%3DUTF-8%26sa%3DG
http://images.google.com/imgres?imgurl=http://tomburka.com/graphics/microphone.gif&imgrefurl=http://tomburka.com/&h=337&w=202&sz=15&tbnid=WSsKixXvBscJ:&tbnh=113&tbnw=68&start=9&prev=/images%3Fq%3Dmicrophone%26hl%3Den%26lr%3D%26ie%3DUTF-8%26sa%3DG
http://images.google.com/imgres?imgurl=http://www.partspc.com/images/MOUSE/MOSLOG-LG395075-WheelMouseOptiocalRed.jpg&imgrefurl=http://www.partspc.com/store/MiceandTrackballs.htm&h=198&w=208&sz=5&tbnid=AX0N2JuXT-gJ:&tbnh=95&tbnw=99&start=12&prev=/images%3Fq%3Dmouse%252Binput%252Bdesign%26hl%3Den%26lr%3D%26ie%3DUTF-8%26sa%3DG
http://images.google.com/imgres?imgurl=http://www.partspc.com/images/MOUSE/MOSLOG-LG395075-WheelMouseOptiocalRed.jpg&imgrefurl=http://www.partspc.com/store/MiceandTrackballs.htm&h=198&w=208&sz=5&tbnid=AX0N2JuXT-gJ:&tbnh=95&tbnw=99&start=12&prev=/images%3Fq%3Dmouse%252Binput%252Bdesign%26hl%3Den%26lr%3D%26ie%3DUTF-8%26sa%3DG

Output Devices

Laser printing

Rollers

Sheet of paper

Light from
optical
system

Toner

Rotating
drum

Cleaning of
excess toner

Charging

Heater

Fusing of toner

Memory
• Ordered sequence of bytes

• The sequence number is called the memory address

• Byte addressable memory

• Each byte has a unique address

• Supported by almost all processors

• Physical address space

• Determined by the address bus width

• Pentium has a 32-bit address bus

• Physical address space = 4GB = 232 bytes

• Itanium with a 64-bit address bus can support

• Up to 264 bytes of physical address space

Address Space

Address Space is the
set of memory
locations (bytes) that
can be addressed

Address, Data, and Control Bus

• Address Bus
• Memory address is put on address bus

• If memory address = a bits then 2a locations are addressed

• Data Bus: bi-directional bus
• Data can be transferred in both directions on the data bus

• Control Bus
• Signals control

transfer of data

• Read request

• Write request

• Done transfer

Memory

0

1

2

3

2a – 1

. . .
read

write

done

data bus

address bus

Processor

d bits

a bitsAddress Register

Data Register

Bus Control

Memory Devices

• Volatile Memory Devices
• Data is lost when device is powered off
• RAM = Random Access Memory
• DRAM = Dynamic RAM

• 1-Transistor cell + trench capacitor
• Dense but slow, must be refreshed
• Typical choice for main memory

• SRAM: Static RAM
• 6-Transistor cell, faster but less dense than DRAM
• Typical choice for cache memory

• Non-Volatile Memory Devices
• Stores information permanently
• ROM = Read Only Memory
• Used to store the information required to startup the computer
• Many types: ROM, EPROM, EEPROM, and FLASH
• FLASH memory can be erased electrically in blocks

Arm provides read/write

heads for all surfaces

The disk heads are

connected together and

move in conjunction

Track 0
Track 1

Recording area

Spindle

Direction of
rotation

Platter

Read/write head

Actuator

Arm

Track 2

A Magnetic disk consists of

a collection of platters

Provides a number of

recording surfaces

Magnetic Disk Storage

Magnetic Disk Storage

Track 0
Track 1

Sector

Recording area

Spindle

Direction of
rotation

Platter

Read/write head

Actuator

Arm

Track 2

Disk Access Time =

Seek Time +

Rotation Latency +

Transfer Time

Seek Time: head movement to the desired
track (milliseconds)

Rotation Latency: disk rotation until
desired sector arrives under the head

Transfer Time: to transfer data

Example on Disk Access Time

 Given a magnetic disk with the following properties

 Rotation speed = 7200 RPM (rotations per minute)

 Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors

 Calculate

 Time of one rotation (in milliseconds)

 Average time to access a block of 32 consecutive sectors

 Answer

 Rotations per second

 Rotation time in milliseconds

 Average rotational latency

 Time to transfer 32 sectors

 Average access time

= 7200/60 = 120 RPS

= 1000/120 = 8.33 ms

= time of half rotation = 4.17 ms

= (32/200) * 8.33 = 1.33 ms

= 8 + 4.17 + 1.33 = 13.5 ms

Processor-Memory Performance Gap

 1980 – No cache in microprocessor

 1995 – Two-level cache on microprocessor

CPU: 55% per year

DRAM: 7% per year
1

10

100

1000
1

9
8

0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9
8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9
9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

1
9

8
2

Processor-Memory
Performance Gap:
(grows 50% per year)

Pe
rf

o
rm

an
ce

“Moore’s Law”

The Need for a Memory Hierarchy

Widening speed gap between CPU and main memory

 Processor operation takes less than 1 ns

 Main memory requires more than 50 ns to access

 Each instruction involves at least one memory access

 One memory access to fetch the instruction

 A second memory access for load and store instructions

Memory bandwidth limits the instruction execution rate

 Cache memory can help bridge the CPU-memory gap

 Cache memory is small in size but fast

Typical Memory Hierarchy

• Registers are at the top of the hierarchy
• Typical size < 1 KB

• Access time < 0.5 ns

• Level 1 Cache (8 – 64 KB)
• Access time: 0.5 – 1 ns

• L2 Cache (512KB – 8MB)
• Access time: 2 – 10 ns

• Main Memory (1 – 2 GB)
• Access time: 50 – 70 ns

• Disk Storage (> 200 GB)
• Access time: milliseconds

Microprocessor

Registers

L1 Cache

L2 Cache

Memory

Disk, Tape, etc

Memory Bus

I/O Bus

Fa
st

e
r

B
ig

ge
r

Processor
• Datapath: part of a processor that executes instructions

• Control: generates control signals for each instruction

A
L
U

Registers

In
st

ru
ct

io
n

P
ro

gr
am

 C
o

u
n

te
r

Instruction
Cache

Next Program
Counter

Data
Cache

Control

Datapath Components

• Program Counter (PC)
• Contains address of instruction to be fetched

• Next Program Counter: computes address of next instruction

• Instruction Register (IR)
• Stores the fetched instruction

• Instruction and Data Caches
• Small and fast memory containing most recent instructions/data

• Register File
• General-purpose registers used for intermediate computations

• ALU = Arithmetic and Logic Unit
• Executes arithmetic and logic instructions

• Buses
• Used to wire and interconnect the various components

Fetch instruction

Compute address of next instruction

Generate control signals for instruction

Read operands from registers

Compute result value

Writeback result in a register

Fetch - Execute Cycle

Instruction Decode

Instruction Fetch

Execute

Writeback Result

In
fi

n
it

e
 C

y
c
le

 i
m

p
le

m
e
n

te
d

 i
n

 H
a
rd

w
a
re

Memory Access Read or write memory (load/store)

Next . . .
• Welcome to CSE 211

• Assembly-, Machine-, and High-Level Languages

• Components of a Computer System

• Chip Manufacturing Process

• Technology Improvements

• Programmer's View of a Computer System

Chip Manufacturing Process

Silicon ingot

Slicer

Blank wafers

20 to 30 processing steps

8-12 in diameter
12-24 in long

< 0.1 in thick

Patterned wafer

Dicer

Individual dies

Die
Tester

Tested dies

Bond die to
package

Packaged dies

Part
Tester

Tested Packaged dies

Ship to
Customers

Wafer of Pentium 4 Processors
• 8 inches (20 cm) in diameter

• Die area is 250 mm2

• About 16 mm per side

• 55 million transistors per die

• 0.18 μm technology

• Size of smallest transistor

• Improved technology uses

• 0.13 μm and 0.09 μm

• Dies per wafer = 169

• When yield = 100%

• Number is reduced after testing

• Rounded dies at boundary are useless

Dramatic decrease in yield with larger dies

Yield = (Number of Good Dies) / (Total Number of Dies)

Effect of Die Size on Yield

Defective Die

Good Die

120 dies, 109 good 26 dies, 15 good

(1 + (Defect per area  Die area / 2))2

1
Yield =

Die Cost = (Wafer Cost) / (Dies per Wafer  Yield)

Inside the Pentium 4 Processor Chip

Next . . .
• Welcome to ICS 233

• Assembly-, Machine-, and High-Level Languages

• Components of a Computer System

• Chip Manufacturing Process

• Technology Improvements

• Programmer's View of a Computer System

Technology Improvements

• Vacuum tube → transistor → IC → VLSI

• Processor

• Transistor count: about 30% to 40% per year

• Memory

• DRAM capacity: about 60% per year (4x every 3 yrs)

• Cost per bit: decreases about 25% per year

• Disk

• Capacity: about 60% per year

• Opportunities for new applications

• Better organizations and designs

Growth of Capacity per DRAM Chip
• DRAM capacity quadrupled almost every 3 years

• 60% increase per year, for 20 years

Workstation Performance

More than 1000 times
improvement between
1987 and 2003

Improvement is between
50% and 60% per year

Microprocessor Sales (1998 – 2002)
• ARM processor sales

exceeded Intel IA-32
processors, which
came second

• ARM processors are
used mostly in cellular
phones

• Most processors today
are embedded in cell
phones, video games,
digital TVs, PDAs, and
a variety of consumer
devices

Microprocessor Sales – cont'd

Next . . .
• Welcome to ICS 233

• Assembly-, Machine-, and High-Level Languages

• Components of a Computer System

• Chip Manufacturing Process

• Technology Improvements

• Programmer's View of a Computer System

Programmer’s View of a Computer System

Application Programs
High-Level Language

Assembly Language

Operating System

Instruction Set

Architecture

Microarchitecture

Physical Design
Level 0

Level 1

Level 2

Level 3

Level 4

Level 5
Increased level
of abstraction

Each level hides
the details of the

level below it

Software

Hardware

Interface
SW & HW

Programmer's View – 2
• Application Programs (Level 5)

• Written in high-level programming languages

• Such as Java, C++, Pascal, Visual Basic . . .

• Programs compile into assembly language level (Level 4)

• Assembly Language (Level 4)

• Instruction mnemonics are used

• Have one-to-one correspondence to machine language

• Calls functions written at the operating system level (Level 3)

• Programs are translated into machine language (Level 2)

• Operating System (Level 3)

• Provides services to level 4 and 5 programs

• Translated to run at the machine instruction level (Level 2)

Programmer's View – 3
• Instruction Set Architecture (Level 2)

• Interface between software and hardware

• Specifies how a processor functions

• Machine instructions, registers, and memory are exposed

• Machine language is executed by Level 1 (microarchitecture)

• Microarchitecture (Level 1)

• Controls the execution of machine instructions (Level 2)

• Implemented by digital logic

• Physical Design (Level 0)

• Implements the microarchitecture

• Physical layout of circuits on a chip

Course Roadmap

• Instruction set architecture (Chapter 2)

• MIPS Assembly Language Programming (Chapter 2)

• Computer arithmetic (Chapter 3)

• Performance issues (Chapter 4)

• Constructing a processor (Chapter 5)

• Pipelining to improve performance (Chapter 6)

• Memory and caches (Chapter 7)

Key to obtain a good grade: read the textbook!

