Introduction

CSE 211

Outline
* Welcome to CSE 211

* High-Level, Assembly-, and Machine-Languages
* Components of a Computer System

e Chip Manufacturing Process

* Technology Improvements

* Programmer's View of a Computer System

Which Textbooks will be Used?

* Computer Organization & Design:
The Hardware/Software Interface

* Third Edition
* David Patterson and John Hennessy

* Morgan Kaufmann Publishers, 2005

* MIPS Assembly Language Programming
* Robert Britton
* Pearson Prentice Hall, 2004

e Supplement for Lab

* Read the textbooks in addition to slides

COMPUTER
ORGANIZATION
AND DESIGN

Assembly .
Language

-+ Programmiin

Robert I&%ntton
(e i 4

Course Objectives

* Towards the end of this course, you should be able to ...

* Describe the instruction set architecture of a MIPS processor

Analyze, write, and test MIPS assembly language programs

Describe organization/operation of integer & floating-point units

Design the datapath and control of a single-cycle CPU

Design the datapath/control of a pipelined CPU & handle hazards

Describe the organization/operation of memory and caches

Analyze the performance of processors and caches

Course Learning Outcomes

* Ability to analyze, write, and test MIPS assembly language
programs.

* Ability to describe the organization and operation of integer and
floating-point arithmetic units.

* Ability to apply knowledge of mathematics in CPU performance
analysis and in speedup computation.

* Ability to design the datapath and control unit of a processor.

e Ability to use simulator tools in the analysis of assembly language
programs and in CPU design.

Required Background

* The student should already be able to program confidently in at least
one high-level programming language, such as Java or C.

* Prerequisite
* Fundamentals of computer engineering
* Introduction to computing

* Only students with computer science or software engineering major
should be registered in this course.

Software Tools
* MIPS Simulators

* MARS: MIPS Assembly and Runtime Simulator

* Runs MIPS-32 assembly language programs

e Website: http://courses.missouristate.edu/KenVollmar/MARS/

* PCSPIM
e Also Runs MIPS-32 assembly language programs

* Website: http://www.cs.wisc.edu/~larus/spim.html

* CPU Design and Simulation Tool
* Logisim
* Educational tool for designing and simulating CPUs

* Website: http://ozark.hendrix.edu/~burch/logisim/

http://courses.missouristate.edu/KenVollmar/MARS/
http://www.cs.wisc.edu/~larus/spim.html
http://ozark.hendrix.edu/~burch/logisim/

What is “Computer Architecture” ?

e Computer Architecture =

Instruction Set Architecture +
Computer Organization

* |nstruction Set Architecture (ISA)

 WHAT the computer does (logical view)

* Computer Organization

* HOW the ISA is implemented (physical view)

 We will study both in this course

Next . ..
 Welcome to CSE 211

* High-Level, Assembly-, and Machine-Languages
* Components of a Computer System

e Chip Manufacturing Process

* Technology Improvements

* Programmer's View of a Computer System

Some Important Questions to Ask

* What is Assembly Language?

* What is Machine Language?

* How is Assembly related to a high-level language?
* Why Learn Assembly Language?

* What is an Assembler, Linker, and Debugger?

A Hierarchy of Languages

Application Programs

High-Level Languages

Machine independent High-Level Language

Machine specific Low-Level Language

Assembly Language

Machine Language

Hardware

Assembly and Machine Language

* Machine language

* Native to a processor: executed directly by hardware
* Instructions consist of binary code: 1s and Os

* Assembly language
* Slightly higher-level language
» Readability of instructions is better than machine language
* One-to-one correspondence with machine language instructions

* Assemblers translate assembly to machine code

* Compilers translate high-level programs to machine code
* Either directly, or
* Indirectly via an assembler

Compiler and Assembler

High-level languages

Assembly language

Machine language

Instructions and Machine Language

* Each command of a program is called an instruction (it instructs the
computer what to do).

* Computers only deal with binary data, hence the instructions must
be in binary format (Os and 15s) .

* The set of all instructions (in binary form) makes up the computer's
machine language. This is also referred to as the instruction set.

Instruction Fields

* Machine language instructions usually are made up of several fields.
Each field specifies different information for the computer. The major

two fields are:

* Opcode field which stands for operation code and it specifies the
particular operation that is to be performed.
* Each operation has its unique opcode.

* Operands fields which specify where to get the source and
destination operands for the operation specified by the opcode.

* The source/destination of operands can be a constant, the memory or one of
the general-purpose registers.

Translating Languages

Program (C Language):

swap (int v[], int k) {
int temp;
temp = v[k];
vik] = v[k+1l];
v[k+1l] = temp;

‘ Compiler

MIPS Assembly Language:

sll $2,$5, 2
add $2,%4,%2
1w $15,0($2)
1w $16,4(52)
sw $16,0($2)
sw $15,4(52)
jr $31

Assembler

>

A statement in a high-level
language is translated
typically into several

machine-level instructions

MIPS Machine Language:

00051080
00821020
8C620000
8CF20004
ACF20000
AC620004
O3E00008

Advantages of High-Level Languages

* Program development is faster

* High-level statements: fewer instructions to code

* Program maintenance is easier

* For the same above reasons

* Programs are portable

* Contain few machine-dependent details

* Can be used with little or no modifications on different machines
* Compiler translates to the target machine language

* However, Assembly language programs are not portable

Why Learn Assembly Language?

* Many reasons:
 Accessibility to system hardware
» Space and time efficiency

* Writing a compiler for a high-level language
e Accessibility to system hardware
* Assembly Language is useful for implementing system software
* Also useful for small embedded system applications
» Space and Time efficiency
* Understanding sources of program inefficiency
* Tuning program performance

e Writing compact code

Assembly vs. High-Level Languages

*S

Type of Application

High-Level Languages

Assembly Language

Business application soft-
ware, written for single
platform. medium to large

si7e.

Formal structures make it easy Lo
organize and maintain large sec-

tions of code.

Minimal formal structure, so one
must be imposed by program-
mers who have varying levels of
experience. This leads to difficul-
ties maintaining existing code.

Hardware device driver.

Language may not provide for
direct hardware access. Even if it
does, awkward coding techniques
must often be used. resulting in
maintenance difficulties.

Hardware access is straightfor-
ward and simple. Easy to main-
tain when programs are short and

well documented.

Business application written
for multiple platforms (dif-

ferent operating systems).

Usually very portable. The source
code can be recompiled on each
target operating system with mini-
mal changes.

Must be recoded separately for
each platform. often using an
assembler with a different syn-
tax. Difficult to maintain.

Embedded systems and
computer games requiring

direct hardware access.

Produces too much executable
code, and may not run efficiently.

[deal, because the executable

code 1s small and runs quickly.

Assembly Language Programming Tools

* Editor
* Allows you to create and edit assembly language source files

* Assembler
* Converts assembly language programs into object files
* Object files contain the machine instructions

* Linker
* Combines object files created by the assembler with link libraries
* Produces a single executable program

* Debugger
 Allows you to trace the execution of a program
* Allows you to view machine instructions, memory, and registers

Assemble and Link Process

Assembler

Executable

Assembler

Link
Assembler Libraries

A project may consist of multiple source files

File

Assembler translates each source file separately into an object file

Linker links all object files together with link libraries

~ MARS Assembler and Simulator Tool

B3 C:\Documents and Settings\Muhame d Mudawar\My Documents\ICS 233\ Tools\MARS\Fibonacci.asm - MARS 3.2.1 u@m
File Edit Bun Settings Tools Help

N23& e %50 L)

Edit |/Exe-::ute | ::l/ﬂagisters |/Cuprut:1 rCuprucI]
1 # Compute firat twelwe Fibonacci nuwmbers and put in array, then print = Mame | Mumber Walue
.data g@ fzern 1] Ox00000000)
fikhs: .word o 1z # Tarray” of 12 words to contain £ib walues $at 1 Dx00000000
4 size: .word 12 # size of "array” 3 Bl Z Ox00000000
L tewh Bl 3 Q00000000
la 0, fibh=s # load addre=zs of array [| $all 4 Ox00000000
la SLL, =2ise # load address_uf 2izge wariahle i:; g Eigggggggg
1 cth, Dist5) # load array size a3 7 Tk000oonon
1i 2, 1 # 1 is first and second Fib. numher 0 a 0x0oooooool=
10 add.d s£0, 5£2, §£4 Ft1 q 0%x00000000
11 swo §tZ, 0(5t0] # F[0] =1 5tz 10 000000000
12 1) FtZ, 4(§td) # F[1] = F[O0] = 1 53 11 00000000
13 addi §tl, §t5, -2 # Counter for loop, will exXecute [Size-2) times gt 12 Dx00000ao0
14 loop: 1w L3, Dzt # Get wvalue from array F[n] 5ta 13 Cec000oooon
15 1w std, 45t # Get value from array F[n+l] | hith 14 Qx00000000
1‘F.| add__ &tF7. &T3. std # 517 = FInl 4+ Flnt+l] |"|: 5ty 14 Q00000000
k=0 16 D=00000000
Line: 1 Column: 1 [v] Show Line Humbers 551 17 Qx0000ooo0
e W T Hhs2 14 D=00000000
Mars Messages rHunIID] |LEE: 19 Ox00000000
Hhsd 20 D=00000000
|l5s5 21 0x00000000
Clear |56 27 0x00000000
|l3s7 23 Ox00000000|

Next . ..
 Welcome to CSE 211

* High-Level, Assembly-, and Machine-Languages
* Components of a Computer System

* Chip Manufacturing Process

* Technology Improvements

* Programmer's View of a Computer System

Components of a Computer System

Computer
* Processor P
e Datapath Memory
* Control ! I/O Devices
* Memory & Storage i)
y 5 [Control } < Input
* Main Memory B —
» Output
* Disk Storage Processor lSJ Btk skl
. | =
* Input devices [Datapathj “— Disk
* Output devices 1

v

* Bus: Interconnects processor to memory and I/O Network

* Network: newly added component for communication

Input Devices

Mechanical switch

i
\o\o<\ \o\é\ ‘o\é\ \o\é\

8 9 b
\o\é\ \o\o(\ \o\o(\ \o\é\

4 5 7
\o\é\ \o\é\ \o\é\ \o\o<\

0 1 3

Logical arrangement of keys

Conductor-coated membrane

D e T I

Contacts

Membrane switch

N

http://images.google.com/imgres?imgurl=http://tomburka.com/graphics/microphone.gif&imgrefurl=http://tomburka.com/&h=337&w=202&sz=15&tbnid=WSsKixXvBscJ:&tbnh=113&tbnw=68&start=9&prev=/images%3Fq%3Dmicrophone%26hl%3Den%26lr%3D%26ie%3DUTF-8%26sa%3DG
http://images.google.com/imgres?imgurl=http://tomburka.com/graphics/microphone.gif&imgrefurl=http://tomburka.com/&h=337&w=202&sz=15&tbnid=WSsKixXvBscJ:&tbnh=113&tbnw=68&start=9&prev=/images%3Fq%3Dmicrophone%26hl%3Den%26lr%3D%26ie%3DUTF-8%26sa%3DG
http://images.google.com/imgres?imgurl=http://www.partspc.com/images/MOUSE/MOSLOG-LG395075-WheelMouseOptiocalRed.jpg&imgrefurl=http://www.partspc.com/store/MiceandTrackballs.htm&h=198&w=208&sz=5&tbnid=AX0N2JuXT-gJ:&tbnh=95&tbnw=99&start=12&prev=/images%3Fq%3Dmouse%252Binput%252Bdesign%26hl%3Den%26lr%3D%26ie%3DUTF-8%26sa%3DG
http://images.google.com/imgres?imgurl=http://www.partspc.com/images/MOUSE/MOSLOG-LG395075-WheelMouseOptiocalRed.jpg&imgrefurl=http://www.partspc.com/store/MiceandTrackballs.htm&h=198&w=208&sz=5&tbnid=AX0N2JuXT-gJ:&tbnh=95&tbnw=99&start=12&prev=/images%3Fq%3Dmouse%252Binput%252Bdesign%26hl%3Den%26lr%3D%26ie%3DUTF-8%26sa%3DG

Output Devices

Cleaning of
excess toner

Charging

/

Fusing of toner

Rotating
drum

.

Heater

Light from
optical
system

Rollers

O

Sheet of paper

Toner

Laser printing

Memory

* Ordered sequence of bytes

* The sequence number is called the memory address

* Byte addressable memory
* Each byte has a unique address

* Supported by almost all processors

* Physical address space
* Determined by the address bus width

e Pentium has a 32-bit address bus

* Physical address space = 4GB = 232 bytes

* |tanium with a 64-bit address bus can support

* Up to 2% bytes of physical address space

Address Space

Address Address
(in decimal) (in hex)
2721 FFFFFFFF
FFFFFFFE
FFFFFFFD

Address Space is the
set of memory

. locations (bytes) that
° can be addressed

2 00000002

1 00000001

0 00000000

Address, Data, and Control Bus

e Address Bus

* Memory address is put on address bus
* If memory address = a bits then 2° locations are addressed

e Data Bus: bi-directional bus
e Data can be transferred in both directions on the data bus

e Control Bus

« Signals control Processor Memory
transfer of data addressbus .
Address Register a bits %
* Read request 1
. data bus 2
* Write request
a Data Register < d bits > 3
* Done transfer
read >
it e o @
Bus Control e >
< done g
2°-1

Memory Devices

 Volatile Memory Devices

* Data is lost when device is powered off

« RAM = Random Access Memory

* DRAM = Dynamic RAM
* 1-Transistor cell + trench capacitor
* Dense but slow, must be refreshed
* Typical choice for main memory

* SRAM: Static RAM
* 6-Transistor cell, faster but less dense than DRAM
* Typical choice for cache memory

* Non-Volatile Memory Devices

 Stores information permanently
* ROM = Read Only Memory

* Used to store the information required to startup the computer
* Many types: ROM, EPROM, EEPROM, and FLASH

* FLASH memory can be erased electrically in blocks W

Magnetic Disk Storage

Arm provides read/write
heads for all surfaces

The disk heads are
connected together and
move Iin conjunction

A Magnetic disk consists of
a collection of platters

Provides a number of
recording surfaces

Read/write head

Recording =

Track 2

Track 1
Track 0

Arm

\

Direction of
rotation

-

Platter

Spindle

Magnetic Disk Storage

: h \ Disk Access Time =
- 1 Seek Time +

= Rotation Latency +
Transfer Time

Lo

o Read/write head

Sector

Recording =

Track 2 A
o Track 1
‘ C Track 0 A

'

4 '\C}
o

Seek Time: head movement to the desir
track (milliseconds)

.]]] Arm
Rotation Latency: disk rotation until <
desired sector arrives under the head Direction of Platter
rotation

Transfer Time: to transfer data Spindle

—

Example on Disk Access Time

*» Given a magnetic disk with the following properties
< Rotation speed = 7200 RPM (rotations per minute)
< Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors

¢ Calculate
<> Time of one rotation (in milliseconds)
< Average time to access a block of 32 consecutive sectors

s Answer
< Rotations per second =7200/60 =120 RPS
< Rotation time in milliseconds = 1000/120 = 8.33 ms
< Average rotational latency = time of half rotation = 4.17 ms
< Time to transfer 32 sectors = (32/200) * 8.33=1.33 ms
< Average accesstime=8+4.17+1.33=13.5ms

Processor-Memory Performance Gap

CPU: 55% per year

1000 o V4 124
Moore’s Law
S 100
% Processor-Memory
& Performance Gap:
o (grows 50% per year)
g) e e
Q
ol
DRAM: 7% per year
1 T T T T T T T T T T T T T T T : : :
O ANMTLUO OMNMNODOO T NN ONNOWO O
00 00O QOO0 0O 0 WV W W W OO O OO O) O OO OO O) OO O
OO OO OO OO OO OO OO OOOOO OO Oy O O
S T e A e B e R R e IR o I o I o I IO o IR o R o O o R e O o O o IO o B o B QN

* 1980 — No cache in microprocessor

*» 1995 — Two-level cache on microprocessor

The Need for a Memory Hierarchy

*» Widening speed gap between CPU and main memory
<> Processor operation takes less than 1 ns

<> Main memory requires more than 50 ns to access

¢ Each instruction involves at least one memory access
< One memory access to fetch the instruction

<> A second memory access for load and store instructions
“ Memory bandwidth limits the instruction execution rate
% Cache memory can help bridge the CPU-memory gap

s Cache memory is small in size but fast

Typical Memory Hierarchy

* Registers are at the top of the hierarchy
* Typical size <1 KB
* Access time < 0.5 ns

Microprocessor
 Level 1 Cache (8 — 64 KB)

e Access time: 0.5—-1ns
e 2 Cache (512KB — 8MB)

* Access time: 2 —-10ns

* Main Memory (1 — 2 GB)
* Access time: 50 - 70 ns

* Disk Storage (> 200 GB) Memory
* Access time: milliseconds

L2 Cache

Memory Bus

Faster

1/0O Bus

Bigger

Disk, Tape, etc

Processor

* Datapath: part of a processor that executes instructions

* Control: generates control signals for each instruction

Next Program
Counter \

g #\
: . 5 |— A
S Instruction Q) S > L Data
g Cache 3 R U Cache
3 =0
a

A\ 4

-

/Control)
A

Datapath Components

Program Counter (PC)
e Contains address of instruction to be fetched
* Next Program Counter: computes address of next instruction

Instruction Register (IR)
e Stores the fetched instruction

Instruction and Data Caches
* Small and fast memory containing most recent instructions/data

Register File
* General-purpose registers used for intermediate computations

* ALU = Arithmetic and Logic Unit
» Executes arithmetic and logic instructions

* Buses
* Used to wire and interconnect the various components

Fetch - Execute Cycle

Fetch instruction

Instruction Fetch . .
Compute address of next instruction

A 4

Generate control signals for instruction
Read operands from registers

Instruction Decode

A\ 4

Execute Compute result value

\ 4

Memory Access Read or write memory (load/store)

\ 4

Infinite Cycle implemented in Hardware

Writeback Result Writeback result in a register

Next . ..
 Welcome to CSE 211

* Assembly-, Machine-, and High-Level Languages
* Components of a Computer System

* Chip Manufacturing Process

* Technology Improvements

* Programmer's View of a Computer System

Chip Manufacturing Process

Blank wafers

Silicon ingot

—

Slicer

8-12 in diameter

<0.1in thick
12-24 in long
Tested dies Individual dies
IZIZIZEIZEE IZEIZEIZEIZ
Die .
XOXOOD <= Tester <4 DOUEE <= | Dicer
HEXE NEOE
XXM DEE
‘ Packaged dies Tested Packaged dies
— H [= : i lE L
on le to art
Jackage = BEE - | . |- HEE
] L] 3] [

-~

20 to 30 processing steps

\

->

Patterned wafer

&

Ship to
Customers

Wafer of Pentium 4 Processors

* 8 inches (20 cm) in diameter

* Die area is 250 mm?
e About 16 mm per side

* 55 million transistors per die
* 0.18 um technology

* Size of smallest transistor o

* Improved technology uses ’ o L8 L L LS

I 14 i I 't '
LR Bt Bt Bt gt Bt

* 0.13 um and 0.09 pm B 08 00 58 4 08 58 B8 58 4w b o e s
J ¢) y ‘."\‘.'v-\-'_-‘."u T et e e b

* Dies per wafer = 169 (9,44, 09,84, 89 09,09 00 20 b

YRR RIS 18 18 18 29
* When yield = 100% 0 5 58 55 e B At A B
1 . S "." '-.‘.,‘-".".-"'.".\',"A. APt h Jhn B4

* Number is reduced after testing

) s fafwlfal
TRETETETETETET

* Rounded dies at boundary are useless : T

' 4 2

Effect of Die Size on Yield

Good Die

[Defective Die

120 dies, 109 good 26 dies, 15 good

Dramatic decrease in yield with larger dies

Yield = (Number of Good Dies) / (Total Number of Dies)
1

(1 + (Defect per area x Die area / 2))?

Yield =

Die Cost = (Wafer Cost) / (Dies per Wafer x Yield)

Inside the Pentium 4 Processor C

SRR

T o R TR T RR—— T— e
5 i v i =) — :
3 I &= :
i |
il T ‘
&
el A SalE= =
{ ik | .:gn
o S b
Y "*_]
- =|
ol T
: ; ==/

g ma rucm:

alle

Control
Control 110
interface
Instruction cache
Data
cache
Enhanced
floating point
and multimedia Integer
datapath Secondary
cache
and
memory
Control interface
Advanced pipelining Control

hyperthreading support

Next . ..
* Welcome to ICS 233

* Assembly-, Machine-, and High-Level Languages
* Components of a Computer System

e Chip Manufacturing Process

* Technology Improvements

* Programmer's View of a Computer System

Technology Improvements

e Vacuum tube = transistor - IC = VLSI

* Processor

* Transistor count: about 30% to 40% per year
* Memory
* DRAM capacity: about 60% per year (4x every 3 yrs)
* Cost per bit: decreases about 25% per year
* Disk
* Capacity: about 60% per year

* Opportunities for new applications

* Better organizations and designs

Growth of Capacity per DRAM Chip

* DRAM capacity quadrupled almost every 3 years
* 60% increase per year, for 20 years

1,000,000 -
912M

256 M

100,000
128M

1M 64M

10,000 - 4M
1M

1000 - 256K
64K

Kbit capacity

100 -
16K

10 | | | | | | | | | | | | l
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

Year of introduction

Workstation Performance

10,000 -
| Intel Pentium 4/3000
Intel Xeon/200\0
a DEC Alpha 21264A/667
1,000 - DEC Alpha 21264/600
® |
£ Improvement is between
0 DEC Alpha 5/500
= 7 50% and 60% per year
- DEC Alpha 5/300
17 |
IBM POWER 100
100 - DEC Alpha 4/266
DEC AXP/500 .

i More than 1000 times

SUN/ HP 9000/750 improvement between

L)

260 IBM RS6000 1987 and 2003
y MIPS M2000
| MIPS M/120
0 I \ I I I I I I I I I I I I I I |

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Microprocessor Sales (1998 — 2002)

 ARM processor sales 1400 Other
processors, which 1200 -| | M Hitachi SH
came second 1100 -| | M PowerPC
1000 Motorola 68K
* ARM processors are g o | = :\/TF::
. 7] -
used mostly in cellular & 00| | ARM -
phones 8
8700 -
o
(2] |
* Most processors today 5 °%
are embedded incell § 3007 —
phones, video games, 400 -
digital TVs, PDAs, and 300 |
a variety of consumer 200
devices 100 -

0 —
1998 1999 2000 2001 2002

Microprocessor Sales — cont'd

1200

Embedded computer 1122
1100 Desktops
1000 — Servers

900 - 892 862

800
700

600 —

Millions of computers

400

300 290

200 -
114 135 129 131

100 93

1998 1999 2000 2001 2002

Next . ..
* Welcome to ICS 233

* Assembly-, Machine-, and High-Level Languages
* Components of a Computer System

e Chip Manufacturing Process

* Technology Improvements

* Programmer's View of a Computer System

Programmer’s View of a Computer System

Software <

Interface
SW & HW

Hardware <

f

AY 4

AY 4

Application Programs
High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Physical Design

Increased level
of abstraction

A

v

Each level hides
the details of the
level below it

Programmer's View — 2

* Application Programs (Level 5)
* Written in high-level programming languages
* Such as Java, C++, Pascal, Visual Basic . . .

* Programs compile into assembly language level (Level 4)

* Assembly Language (Level 4)
* Instruction mnemonics are used
* Have one-to-one correspondence to machine language
 Calls functions written at the operating system level (Level 3)

* Programs are translated into machine language (Level 2)
* Operating System (Level 3)
* Provides services to level 4 and 5 programs

* Translated to run at the machine instruction level (Level 2)

Programmer's View — 3

* Instruction Set Architecture (Level 2)
* Interface between software and hardware
» Specifies how a processor functions
* Machine instructions, registers, and memory are exposed

* Machine language is executed by Level 1 (microarchitecture)
e Microarchitecture (Level 1)

» Controls the execution of machine instructions (Level 2)

* Implemented by digital logic
 Physical Design (Level 0)

* Implements the microarchitecture

* Physical layout of circuits on a chip

Course Roadmap

* Instruction set architecture (Chapter 2)

* MIPS Assembly Language Programming (Chapter 2)
e Computer arithmetic (Chapter 3)

* Performance issues (Chapter 4)

e Constructing a processor (Chapter 5)

* Pipelining to improve performance (Chapter 6)

* Memory and caches (Chapter 7)

Key to obtain a good grade: read the textbook!

