Context-Free Grammars

Informal Comments

- A context-free grammar is a notation for describing languages.
- It is more powerful than finite automata or RE's, but still cannot define all possible languages.
- Useful for nested structures, e.g., parentheses in programming languages.

Informal Comments – (2)

- Basic idea is to use "variables" to stand for sets of strings (i.e., languages).
- These variables are defined recursively, in terms of one another.
- Recursive rules ("productions") involve only concatenation.
- Alternative rules for a variable allow union.

Example: CFG for $\{0^n1^n \mid n \geq 1\}$

Productions:

```
S -> 01
```

$$S -> 0S1$$

- Basis: 01 is in the language.
- ◆Induction: if w is in the language, then so is 0w1.

Example: CFG for palindromes

Productions:

```
P -> ∈
P -> 0
P -> 1
P -> 0P0
P -> 1P1
```

- \bullet Basis: \in , 0, 1 are palindromes.
- ◆Induction: if w is in the language, then so are 0w0 and 1w1.

Shorthand Forms

- Several productions can be merged into a shorthand form using the "|" sign
- Productions for 0ⁿ1ⁿ:

Productions for palindromes:

$$P -> \in |0|1|0P0|1P1$$

CFG Formalism

- ◆ Terminals = symbols of the alphabet of the language being defined.
- ◆ Variables = nonterminals = a finite set of other symbols, each of which represents a language.
- ◆ Start symbol = the variable whose language is the one being defined.

Productions

- A production has the form variable -> string of variables and terminals.
- Convention:
 - A, B, C,... are variables.
 - a, b, c,... are terminals.
 - …, X, Y, Z are either terminals or variables.
 - …, w, x, y, z are strings of terminals only.
 - α , β , γ ,... are strings of terminals and/or variables.

Example: Formal CFG

- \bullet Here is a formal CFG for $\{0^n1^n \mid n \geq 1\}$.
- \bullet Terminals = $\{0, 1\}$.
- \diamond Variables = {S}.
- ◆Start symbol = S.
- Productions =
 - S -> 01
 - S -> 0S1

Derivations – Intuition

- We derive strings in the language of a CFG by starting with the start symbol, and repeatedly replacing some variable A by the right side of one of its productions.
 - That is, the "productions for A" are those that have A on the left side of the ->.

Derivations – Formalism

- We say $\alpha A\beta => \alpha \gamma \beta$ if $A -> \gamma$ is a production.
- ◆Example: S -> 01; S -> 0S1.
- (S) => (S1) => 0(S1)1 => 0(01)11.

Example: Iterated Derivation

=>* means "zero or more derivation steps."

- ◆S -> 01; S -> 0S1.
- \diamond S => 0S1 => 00S11 => 000111.
- ◆So S =>* S; S =>* 0S1; S =>* 00S11; S =>* 000111.

Sentential Forms

- Any string of variables and/or terminals derived from the start symbol is called a sentential form.
- igoplus Formally, α is a sentential form iff

$$S = > * \alpha$$

Language of a Grammar

- ◆If G is a CFG, then L(G), the language of G, is {w | S =>* w}.
 - Note: w must be a terminal string, S is the start symbol.
- **Example:** G has productions S -> ϵ and S -> 0S1.
- ◆L(G) = {0ⁿ1ⁿ | n ≥ 0}. Note: ε is a legitimate right side.

Context-Free Languages

- A language that is defined by some CFG is called a context-free language.
- There are CFL's that are not regular languages, such as the example just given.
- But not all languages are CFL's.
- Intuitively: CFL's can count two things, not three.

Leftmost and Rightmost Derivations

- Derivations allow us to replace any of the variables in a string.
- Leads to many different derivations of the same string.
- By forcing the leftmost variable (or alternatively, the rightmost variable) to be replaced, we avoid these "distinctions without a difference."

Leftmost Derivations

- •Say wA $\alpha =>_{lm} w\beta\alpha$ if w is a string of terminals only and A -> β is a production.
- •Also, $\alpha = >*_{lm} \beta$ if α becomes β by a sequence of 0 or more $=>_{lm}$ steps.

Example: Leftmost Derivations

Balanced-parentheses grammar:

$$S -> SS | (S) | ()$$

- \bullet S =>_{Im} SS =>_{Im} (S)S =>_{Im} (())S =>_{Im} (())()
- ♦ Thus, $S = >*_{Im} (())()$
- \diamond S => SS => S() => (S)() => (())() is a derivation, but not a leftmost derivation.

Rightmost Derivations

- •Say $\alpha Aw =>_{rm} \alpha \beta w$ if w is a string of terminals only and A -> β is a production.
- •Also, $\alpha = >*_{rm} \beta$ if α becomes β by a sequence of 0 or more $=>_{rm}$ steps.

Example: Rightmost Derivations

Balanced-parentheses grammar:

$$S -> SS | (S) | ()$$

- \bullet S =>_{rm} SS =>_{rm} S() =>_{rm} (S)() =>_{rm} (())()
- ♦ Thus, $S = >*_{rm} (())()$
- ♦S => SS => SSS => S()S => ()()S => ()()() is neither a rightmost nor a leftmost derivation.