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Normal Forms for CFG’s

Eliminating Useless Variables

Removing Epsilon

Removing Unit Productions

Chomsky Normal Form



2

Variables That Derive Nothing

Consider: S -> AB, A -> aA | a, B -> AB

Although A derives all strings of a’s, B 
derives no terminal strings

Thus, S derives nothing, and the 
language is empty.
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Algorithm to Eliminate 
Variables That Derive Nothing

1. Discover all variables that derive 
terminal strings.

2. For all other variables, remove all 
productions in which they appear 
either on the left or the right.
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Example: Eliminate Variables

S -> AB | C, A -> aA | a, B -> bB, C -> c

 Basis: A and C are identified because 
of A -> a and C -> c.

 Induction: S is identified because of   
S -> C.

 Nothing else can be identified.

 Result: S -> C, A -> aA | a, C -> c
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Unreachable Symbols

Another way a terminal or variable 
deserves to be eliminated is if it cannot 
appear in any derivation from the start 
symbol.

Basis: We can reach S (the start symbol).

Induction: if we can reach A, and there is 
a production A -> , then we can reach all 
symbols of .
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Unreachable Symbols – (2)

Easy inductions in both directions show 
that when we can discover no more 
symbols, then we have all and only the 
symbols that appear in derivations from S.

Algorithm: Remove from the grammar all 
symbols not discovered reachable from S 
and all productions that involve these 
symbols. 
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Eliminating Useless Symbols

 A symbol is useful if it appears in 
some derivation of some terminal 
string from the start symbol.

 Otherwise, it is useless.
Eliminate all useless symbols by:

1. Eliminate symbols that derive no terminal 
string.

2. Eliminate unreachable symbols.
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Example: Useless Symbols – (2)

S -> AB, A -> C, C -> c, B -> bB

If we eliminated unreachable symbols 
first, we would find everything is 
reachable.

A, C, and c would never get eliminated.
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Why It Works

After step (1), every symbol remaining 
derives some terminal string.

After step (2) the only symbols 
remaining are all derivable from S.

In addition, they still derive a terminal 
string, because such a derivation can 
only involve symbols reachable from S.
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Epsilon Productions

We can almost avoid using productions of 
the form A -> ε (called ε-productions ).

 The problem is that ε cannot be in the 
language of any grammar that has no ε–

productions.

Theorem: If L is a CFL, then L-{ε} has a 
CFG with no ε-productions.
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Nullable Symbols

To eliminate ε-productions, we first 

need to discover the nullable variables
= variables A such that A =>* ε.

Basis: If there is a production A -> ε, 

then A is nullable.

Induction: If there is a production       
A -> , and all symbols of  are 
nullable, then A is nullable.
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Example: Nullable Symbols

S -> AB, A -> aA | ε, B -> bB | A

Basis: A is nullable because of A -> ε.

Induction: B is nullable because of      
B -> A.

Then, S is nullable because of S -> AB.
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Eliminating ε-Productions

Key idea: turn each production            
A -> X1…Xn into a family of productions.

For each subset of nullable X’s, there is 
one production with those eliminated 
from the right side “in advance.”

 Except, if all X’s are nullable, do not make 
a production with ε as the right side.
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Example: Eliminating ε-

Productions
S -> ABC, A -> aA | ε, B -> bB | ε, C -> ε

A, B, C, and S are all nullable.

New grammar:

S -> ABC | AB | AC | BC | A | B | C

A -> aA | a

B -> bB | b
Note: C is now useless.
Eliminate its productions.
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Unit Productions

A unit production is one whose right 
side consists of exactly one variable.

These productions can be eliminated.

Key idea: If A =>* B by a series of unit 
productions, and B ->  is a non-unit-
production, then add production A -> .

Then, drop all unit productions.



16

Unit Productions – (2)

Find all pairs (A, B) such that A =>* B 
by a sequence of unit productions only.

Basis: Surely (A, A).

Induction: If we have found (A, B), and 
B -> C is a unit production, then add 
(A, C).



17

Cleaning Up a Grammar

 Theorem: if L is a CFL, then there is a 
CFG for L – {ε} that has:

1. No useless symbols.

2. No ε-productions.

3. No unit productions.

 I.e., every right side is either a single 
terminal or has length > 2.



18

Chomsky Normal Form

 A CFG is said to be in Chomsky 
Normal Form if every production is of 
one of these two forms:

1. A -> BC (right side is two variables).

2. A -> a (right side is a single terminal).

 Theorem: If L is a CFL, then L – {ε} 

has a CFG in CNF.
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Proof of CNF Theorem

Step 1: “Clean” the grammar, so every 
production right side is either a single 
terminal or of length at least 2.

Step 2: For each right side  a single 
terminal, make the right side all variables.

 For each terminal a create new variable Aa

and production Aa -> a.

 Replace a by Aa in right sides of length > 2.
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Example: Step 2

Consider production A -> BcDe.

We need variables Ac and Ae. with 
productions Ac -> c and Ae -> e.

 Note: you create at most one variable for 
each terminal, and use it everywhere it is 
needed.

Replace A -> BcDe by A -> BAcDAe.
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CNF Proof – Continued

Step 3: Break right sides longer than 2 
into a chain of productions with right 
sides of two variables.

Example: A -> BCDE is replaced by     
A -> BF, F -> CG, and G -> DE.

 F and G must be used nowhere else.



22

Example of Step 3 – Continued

Recall A -> BCDE is replaced by          
A -> BF, F -> CG, and G -> DE.

In the new grammar, A => BF => BCG 
=> BCDE.

More importantly: Once we choose to 
replace A by BF, we must continue to 
BCG and BCDE.

 Because F and G have only one production.


