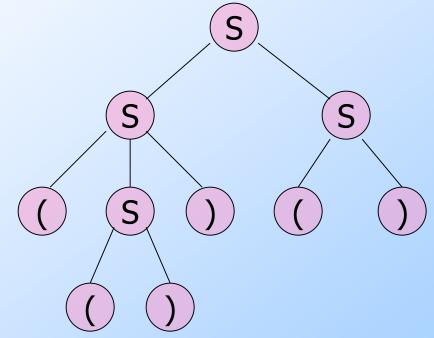
Parse Trees

Definitions Relationship to Left- and Rightmost Derivations Ambiguity in Grammars

Parse Trees

Parse trees are trees labeled by symbols of a particular CFG. • Leaves: labeled by a terminal or ϵ . Interior nodes: labeled by a variable. Children are labeled by the right side of a production for the parent. Root: must be labeled by the start symbol.

Example: Parse Tree S -> SS | (S) | ()



Yield of a Parse Tree

- The concatenation of the labels of the leaves in left-to-right order
 - That is, in the order of a preorder traversal.
 - is called the *yield* of the parse tree.
- Example: yield of sis (())()

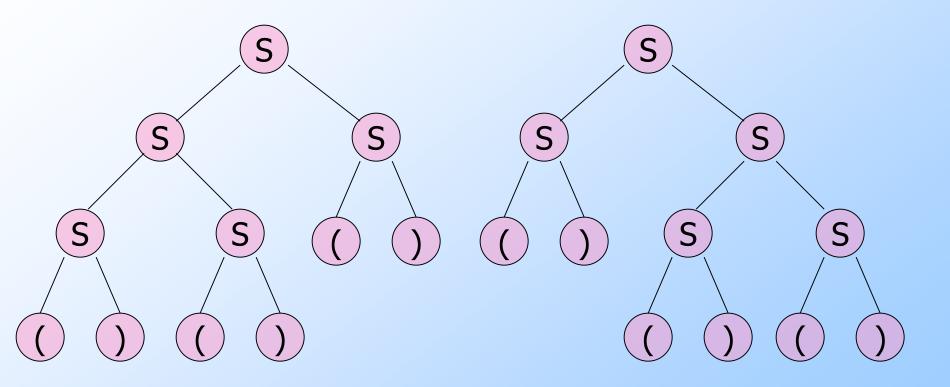
Parse Trees, Left- and Rightmost Derivations

- For every parse tree, there is a unique leftmost, and a unique rightmost derivation.
 - 1. If there is a parse tree with root labeled A and yield w, then $A = >*_{Im} w$.
 - 2. If $A = {>}^*_{Im} w$, then there is a parse tree with root A and yield w.

Ambiguous Grammars

A CFG is *ambiguous* if there is a string in the language that is the yield of two or more parse trees.
 Example: S -> SS | (S) | ()
 Two parse trees for ()()() on next slide.

Example – Continued



Ambiguity, Left- and Rightmost Derivations

 If there are two different parse trees, they must produce two different leftmost derivations

 Conversely, two different leftmost derivations produce different parse trees

Likewise for rightmost derivations.

Ambiguity, etc. – (2)

- Thus, equivalent definitions of "ambiguous grammar" are:
 - 1. There is a string in the language that has two different leftmost derivations.
 - 2. There is a string in the language that has two different rightmost derivations.

Ambiguity is a Property of Grammars, not Languages

For the balanced-parentheses language, here is another CFG, which is unambiguous. B, the start symbol, $B \rightarrow (RB | \epsilon$

R ->) | (RR

derives balanced strings.

R generates strings that have one more right paren than left.

Example: Unambiguous Grammar

$B \rightarrow (RB | \epsilon R \rightarrow) | (RR)$

Construct a unique leftmost derivation for a given balanced string of parentheses by scanning the string from left to right.

- If we need to expand B, then use B -> (RB if the next symbol is "(" and ε if at the end.
- If we need to expand R, use R ->) if the next symbol is ")" and (RR if it is "(".

Remaining Input: (())() Next symbol

Steps of leftmost derivation:

B

 $B \rightarrow (RB | \epsilon \qquad R \rightarrow) | (RR)$

Remaining Input: ())() Next symbol

Steps of leftmost derivation: B (RB

$B \rightarrow (RB | \epsilon \qquad R \rightarrow) | (RR)$

Remaining Input:))() Next symbol

Steps of leftmost derivation: B (RB ((RRB

 $B \rightarrow (RB | \epsilon R \rightarrow) | (RR)$

Remaining Input:)() Next symbol

Steps of leftmost derivation: B (RB ((RRB (()RB

 $B \rightarrow (RB | \epsilon \qquad R \rightarrow) | (RR)$

Remaining Input: () Next symbol

B -> (RB | ε

Steps of leftmost derivation: В (RB ((RRB (()RB (())B R ->) | (RR

Remaining Input: Next symbol

B -> (RB | ε

Steps of leftmost derivation: B (())(RB (RB ((RRB (()RB (())B R ->) | (RR

Remaining Input: Next symbol

B -> (RB | ε

Steps of leftmost derivation: B (())(RB (RB (())()B ((RRB (()RB (())B R ->) | (RR

Remaining Input: Next symbol

B -> (RB | ε

Steps of leftmost derivation: B (())(RB (RB (())()B ((RRB (())()(()RB (())B R ->) | (RR

Inherent Ambiguity

It would be nice if for every ambiguous grammar, there were some way to "fix" the ambiguity, as we did for the balanced-parentheses grammar.

Unfortunately, certain CFL's are inherently ambiguous, meaning that every grammar for the language is ambiguous.

Example: Inherent Ambiguity

The language {0ⁱ1^j2^k | i = j or j = k} is inherently ambiguous.

Intuitively, at least some of the strings of the form 0ⁿ1ⁿ2ⁿ must be generated by two different parse trees, one based on checking the 0's and 1's, the other based on checking the 1's and 2's.

One Possible Ambiguous Grammar

- S -> AB | CD
- A -> 0A1 | 01
- B -> 2B | 2

D -> 1D2 | 12

C -> 0C | 0

- A generates equal 0's and 1's
- B generates any number of 2's
- C generates any number of 0's
- D generates equal 1's and 2's

And there are two derivations of every string with equal numbers of 0's, 1's, and 2's. E.g.: S => AB => 01B => 012S => CD => 0D => 012