
1

Pushdown Automata

Definition

Moves of the PDA

Languages of the PDA

Deterministic PDA’s

2

Pushdown Automata

The PDA is an automaton equivalent to
the CFG in language-defining power.

Only the nondeterministic PDA defines all
the CFL’s.

But the deterministic version models
parsers.

Most programming languages have
deterministic PDA’s.

3

Intuition: PDA

Think of an ε-NFA with the additional

power that it can manipulate a stack.

Its moves are determined by:

1. The current state (of its “NFA”),

2. The current input symbol (or ε), and

3. The current symbol on top of its stack.

4

Intuition: PDA – (2)

Being nondeterministic, the PDA can
have a choice of next moves.

In each choice, the PDA can:

1. Change state, and also

2. Replace the top symbol on the stack by a
sequence of zero or more symbols.

Zero symbols = “pop.”

Many symbols = sequence of “pushes.”

5

PDA Formalism

A PDA is described by:

1. A finite set of states (Q, typically).

2. An input alphabet (Σ, typically).

3. A stack alphabet (Γ, typically).

4. A transition function (δ, typically).

5. A start state (q0, in Q, typically).

6. A start symbol (Z0, in Γ, typically).

7. A set of final states (F ⊆ Q, typically).

6

Conventions

a, b, … are input symbols.
But sometimes we allow ε as a possible

value.

…, X, Y, Z are stack symbols.

…, w, x, y, z are strings of input
symbols.

, ,… are strings of stack symbols.

7

The Transition Function

Takes three arguments:

1. A state, in Q.

2. An input, which is either a symbol in Σ or
ε.

3. A stack symbol in Γ.

δ(q, a, Z) is a set of zero or more

actions of the form (p,).

p is a state; is a string of stack symbols.

8

Actions of the PDA

If δ(q, a, Z) contains (p,) among its

actions, then one thing the PDA can
do in state q, with a at the front of
the input, and Z on top of the stack is:

1. Change the state to p.

2. Remove a from the front of the input
(but a may be ε).

3. Replace Z on the top of the stack by .

9

Example: PDA

Design a PDA to accept {0n1n | n > 1}.

The states:

q = start state. We are in state q if we
have seen only 0’s so far.

p = we’ve seen at least one 1 and may
now proceed only if the inputs are 1’s.

f = final state; accept.

10

Example: PDA – (2)

The stack symbols:

Z0 = start symbol. Also marks the bottom
of the stack, so we know when we have
counted the same number of 1’s as 0’s.

X = marker, used to count the number of
0’s seen on the input.

11

Example: PDA – (3)

The transitions:
δ(q, 0, Z0) = {(q, XZ0)}.

δ(q, 0, X) = {(q, XX)}. These two rules

cause one X to be pushed onto the stack
for each 0 read from the input.

δ(q, 1, X) = {(p, ε)}. When we see a 1,

go to state p and pop one X.

δ(p, 1, X) = {(p, ε)}. Pop one X per 1.

δ(p, ε, Z0) = {(f, Z0)}. Accept at bottom.

12

Actions of the Example PDA

q

0 0 0 1 1 1

Z0

13

Actions of the Example PDA

q

0 0 1 1 1

X
Z0

14

Actions of the Example PDA

q

0 1 1 1

X
X
Z0

15

Actions of the Example PDA

q

1 1 1

X
X
X
Z0

16

Actions of the Example PDA

p

1 1

X
X
Z0

17

Actions of the Example PDA

p

1

X
Z0

18

Actions of the Example PDA

p

Z0

19

Actions of the Example PDA

f

Z0

20

Instantaneous Descriptions

We can formalize the pictures just
seen with an instantaneous
description (ID).

A ID is a triple (q, w,), where:

1. q is the current state.

2. w is the remaining input.

3. is the stack contents, top at the left.

21

The “Goes-To” Relation

To say that ID I can become ID J in one
move of the PDA, we write I⊦J.

Formally, (q, aw, X)⊦(p, w,) for any
w and , if δ(q, a, X) contains (p,).

Extend ⊦ to ⊦*, meaning “zero or more

moves,” by:
Basis: I⊦*I.

Induction: If I⊦*J and J⊦K, then I⊦*K.

22

Example: Goes-To

Using the previous example PDA, we
can describe the sequence of moves by:
(q, 000111, Z0)⊦(q, 00111, XZ0)⊦
(q, 0111, XXZ0)⊦(q, 111, XXXZ0)⊦
(p, 11, XXZ0)⊦(p, 1, XZ0)⊦(p, ε, Z0)⊦
(f, ε, Z0)

Thus, (q, 000111, Z0)⊦*(f, ε, Z0).

What would happen on input 0001111?

23

Answer

(q, 0001111, Z0)⊦(q, 001111, XZ0)⊦
(q, 01111, XXZ0)⊦(q, 1111, XXXZ0)⊦
(p, 111, XXZ0)⊦(p, 11, XZ0)⊦(p, 1, Z0)⊦

(f, 1, Z0)

Note the last ID has no move.

0001111 is not accepted, because the
input is not completely consumed.

Legal because a PDA can use
ε input even if input remains.

24

Aside: FA and PDA Notations

We represented moves of a FA by an
extended δ, which did not mention the

input yet to be read.

We could have chosen a similar notation
for PDA’s, where the FA state is
replaced by a state-stack combination,
like the pictures just shown.

25

FA and PDA Notations – (2)

Similarly, we could have chosen a FA
notation with ID’s.

Just drop the stack component.

Why the difference? My theory:

FA tend to model things like protocols,
with indefinitely long inputs.

PDA model parsers, which are given a
fixed program to process.

26

Language of a PDA

The common way to define the
language of a PDA is by final state.

If P is a PDA, then L(P) is the set of
strings w such that (q0, w, Z0) ⊦* (f,
ε,) for final state f and any .

27

Language of a PDA – (2)

Another language defined by the same
PDA is by empty stack.

If P is a PDA, then N(P) is the set of
strings w such that (q0, w, Z0) ⊦*
(q, ε, ε) for any state q.

28

Equivalence of Language
Definitions

1. If L = L(P), then there is another PDA
P’ such that L = N(P’).

2. If L = N(P), then there is another PDA
P’’ such that L = L(P’’).

29

Proof: L(P) -> N(P’) Intuition

P’ will simulate P.

If P accepts, P’ will empty its stack.

P’ has to avoid accidentally emptying
its stack, so it uses a special bottom-
marker to catch the case where P
empties its stack without accepting.

30

Proof: L(P) -> N(P’)

P’ has all the states, symbols, and
moves of P, plus:

1. Stack symbol X0, used to guard the stack
bottom against accidental emptying.

2. New start state s and “erase” state e.

3. δ(s, ε, X0) = {(q0, Z0X0)}. Get P started.

4. δ(f, ε, X) = δ(e, ε, X) = {(e, ε)} for any

final state f of P and any stack symbol X.

31

Proof: N(P) -> L(P’’) Intuition

P” simulates P.

P” has a special bottom-marker to
catch the situation where P empties its
stack.

If so, P” accepts.

32

Proof: N(P) -> L(P’’)

P’’ has all the states, symbols, and
moves of P, plus:

1. Stack symbol X0, used to guard the stack
bottom.

2. New start state s and final state f.

3. δ(s, ε, X0) = {(q0, Z0X0)}. Get P started.

4. δ(q, ε, X0) = {(f, ε)} for any state q of P.

33

Deterministic PDA’s

To be deterministic, there must be at
most one choice of move for any state
q, input symbol a, and stack symbol X.

In addition, there must not be a choice
between using input ε or real input.

Formally, δ(q, a, X) and δ(q, ε, X)

cannot both be nonempty.

