
Theory of Computing
SE-312

Lecture-3

Dr. Naushin Nower

Finite automata are machine-like descriptions of languages

Alternative: declarative description

Regular expressions are an algebraic way to describe
languages.

They describe exactly the regular languages.

Notation to specify a language
Capable of describing the same thing as a NFA

The two are actually equivalent, so RE = NFA = DFA
We can define an algebra for regular expressions

 Specifying a language using expressions and operations

 Example: 01* + 10* defines the language containing strings such as
01111, 100, 0, 1000000; * and + are operators in this “algebra”

Regular expressions

2

Regular expressions denote language.

Given that R1 and R2 are regular expressions, regular expressions
are built from the following operations
 Union: R1+R2

 Concatenation: R1R2

 Kleene Star Closure: R1*

 Parentheses (to enforce precedence): (R1)

Nothing else is a regular expression unless it is built from the
above rules

Regular expressions..

3

 1 +

 (ab)* + (ba)*

 (0+1+2+3+4+5+6+7+8+9)*(0+5)

 (x+y)*x(x+y)*

 (01)*

 0(1*)

 01* equivalent to 0(1*)

Examples

4

5

RE’s: Definition
Basis 1: If a is any symbol, then a is a RE, and L(a) = {a}.
Note: {a} is the language containing one string, and that string

is of length 1.

Basis 2: ε is a RE, and L(ε) = {ε}.

Basis 3: ∅ is a RE, and L(∅) = ∅.

6

RE’s: Definition – (2)
Induction 1: If E1 and E2 are regular expressions, then
E1+E2 is a regular expression, and L(E1+E2) = L(E1)L(E2).

Induction 2: If E1 and E2 are regular expressions, then
E1E2 is a regular expression, and L(E1E2) = L(E1)L(E2).

Concatenation : the set of strings wx such that w
Is in L(E1) and x is in L(E2).

7

RE’s: Definition – (3)
Induction 3: If E is a RE, then E* is a RE, and L(E*) =
(L(E))*.

Closure, or “Kleene closure” = set of strings
w1w2…wn, for some n > 0, where each wi is
in L(E).

Note: when n=0, the string is ε.

8

Precedence of Operators
Parentheses may be used wherever needed to influence the
grouping of operators.

Order of precedence is * (highest), then concatenation, then +
(lowest).

From DFA to RE

9

Ԑ-NFA

RE

NFA

DFA

Finite Automata and Regular Expressions are equivalent.
To show this:
Show we can express a DFA as an equivalent RE

Show we can express a RE as an ε-NFA. Since the ε-
NFA can be converted to a DFA and the DFA to an NFA,
then RE will be equivalent to all the automata we
have described.

Equivalence of FA and RE

10

DFA to Regular Expression
Theorem: If L=L(A) for some DFA A, then there is a
regular expression R such that L=L(R).

Build the regular expression “bottom up” starting with
simpler strings that are acceptable using a subset of
states in the DFA

Define Rk
i,j as the expression for strings that have an

admissible state sequence from state i to state j with no
intermediate states greater than k
Assume no states are numbered 0, but k can be 0

11

R0
i,j

Observe that R0
i,j describes strings of length 1 or 0,

particularly:
 {a1, a2, a3, … }, where, for each ax, (i,ax) = j

Add to the set if i = j

The 0 in R0
i,j means no intermediate states are allowed,

so either no transition is made (just stay in state i to
accept if i = j) or make a single transition from state i
to state j

These are the base cases in our construction

12

Rk
i,j

Recursive step: for each k, we can build Rk
i,j as follows:

Rk
i,j = Rk-1

i,j + Rk-1
i,k (R

k-1
k,k)* Rk-1

k,j

Intuition: since the accepting sequence contains one or
more visits to state k, break the path into pieces that
 first goes from i to its first k-visit (Rk-1

i,k)

 followed by zero or more revisits to k (Rk-1
k,k)

 followed by a path from k to j (Rk-1
k,j)

13

And finally…
We get the regular expression(s) that represent all
strings with admissible sequences that start with the
initial state (state 1) and end with a final state

Resulting regular expression built from the DFA: the
union of all Rn

1,f where f is a final state
Note: n is the number of states in the DFA meaning there are

no more restrictions for intermediate states in the accepting
sequence

14

DFA to RE: State Elimination
Eliminates states of the automaton and replaces the edges with
regular expressions that includes the behavior of the eliminated
states.

Eventually we get down to the situation with just a start and final
node, and this is easy to express as a RE

15

State Elimination
Consider the figure below, which shows a generic state S about to be eliminated. The
labels on all edges are regular expressions.

To remove S we must make labels from each qi to p1 up to pm that include the paths we
could have made through S.

q1

qk

s

p1

pm

.

.

.

.

.

.

R1m

R11

S
Q1

QK

Rkm

Rk1

P1

Pm

q1

qk

p1

pm

.

.

.

R11+Q1S*P1

Rkm+QkS*Pm

.

.

.

Rk1+QkS*P1

R1m+Q1S*Pm

Note: q and p may be the same state! 16

DFA to RE via State Elimination (1)
1. Starting with intermediate states and then moving to

accepting states, apply the state elimination process to
produce an equivalent automaton with regular expression
labels on the edges.

• The result will be a one or two state automaton with a
start state and accepting state.

17

DFA to RE State Elimination (2)

2. If the two states are different, we will
have an automaton that looks like the
following:

Start
S

R

T

U

We can describe this automaton as: (R+SU*T)*SU*

18

DFA to RE State Elimination (3)

3. If the start state is also an accepting state, then we
must also perform a state elimination from the
original automaton that gets rid of every state but
the start state. This leaves the following:

Start

R

We can describe this automaton as simply R*.

19

DFA to RE State Elimination (4)
4. If there are n accepting states, we must repeat the above

steps for each accepting states to get n different regular
expressions, R1, R2, … Rn. For each repeat we turn any other
accepting state to non-accepting. The desired regular
expression for the automaton is then the union of each of the
n regular expressions: R1 R2… RN

20

DFARE Example

Convert the following to
a RE

First convert the edges to
RE’s:

3Start 1 2
1 1

0

0

0,1

3Start 1 2
1 1

0

0

0+1

21

DFA RE Example (2)
Eliminate State 1:

To: 3Start 1 2
1 1

0

0

0+1

3Start 2
11

0+10 0+1

Note edge from 33

Answer: (0+10)*11(0+1)*

22

Second Example
Automata that accepts even number of 1’s

Eliminate state 2:
1Start 2 3

1 1

0

1

00

1Start 3

0 0+10*1

10*1

23

Second Example (2)

Two accepting states, turn off state 3 first

1Start 3

0 0+10*1

10*1

1Start

0

This is just 0*; can ignore going to state 3 since we would “die”

3

0+10*1

10*1

24

Second Example (3)

Turn off state 1 second:

1Start 3

0 0+10*1

10*1

This is just 0*10*1(0+10*1)*

Combine from previous slide to get

0* + 0*10*1(0+10*1)*

1Start 3

0 0+10*1

10*1

25

Converting a RE to an Automata
We have shown we can convert an automata to a RE. To
show equivalence we must also go the other direction,
convert a RE to an automaton.

We can do this easiest by converting a RE to an ε-NFA
 Inductive construction

 Start with a simple basis, use that to build more complex parts
of the NFA

26

RE to ε-NFA
Basis:

R=a

R=ε

a

ε

R=Ø

Next slide: More complex RE’s

27

R=S+T

S

T

ε

ε

ε

ε

R=ST S T
ε

R=S*
S

ε

ε

ε

ε

28

RE to ε-NFA Example
Convert R= (ab+a)* to an NFA
We proceed in stages, starting from simple elements and

working our way up

a
a

b
b

ab
a bε

29

RE to ε-NFA Example (2)
ab+a

a bε

a

ε

ε

ε

ε

(ab+a)* a bε

a

ε

ε

ε

ε

εε

ε

ε

30

What have we shown?
Regular expressions and finite state automata are really two
different ways of expressing the same thing.

In some cases you may find it easier to start with one and move
to the other

E.g., the language of an even number of one’s is typically easier
to design as a NFA or DFA and then convert it to a RE

31

Algebraic Laws for RE’s
Just like we have an algebra for arithmetic, we also have an
algebra for regular expressions.
While there are some similarities to arithmetic algebra, it is a

bit different with regular expressions.

32

Algebra for RE’s
Commutative law for union:
 L + M = M + L

Associative law for union:
 (L + M) + N = L + (M + N)

Associative law for concatenation:

 (LM)N = L(MN)

Note that there is no commutative law for concatenation, i.e. LM
 ML

33

Algebra for RE’s (2)
The identity for union is:
 L + Ø = Ø + L = L

The identity for concatenation is:
 Lε = εL = L

The annihilator for concatenation is:
 ØL = LØ = Ø

Left distributive law:
 L(M + N) = LM + LN

Right distributive law:
 (M + N)L = LM + LN

Idempotent law:
 L + L = L

34

Laws Involving Closure
(L*)* = L*
 i.e. closing an already closed expression does not change the

language

Ø* = ε

ε* = ε

L+ = LL* = L*L
more of a definition than a law

L* = L+ + ε

L? = ε + L
more of a definition than a law

35

Checking a Law

Suppose we are told that the law
(R + S)* = (R*S*)*

holds for regular expressions. How would we check that this
claim is true?

1. Convert the RE’s to DFA’s and minimize the DFA’s to see if
they are equivalent (we’ll cover minimization later)

2. We can use the “concretization” test:
 Think of R and S as if they were single symbols, rather than placeholders

for languages, i.e., R = {0} and S = {1}.

 Test whether the law holds under the concrete symbols. If so, then this is
a true law, and if not then the law is false.

36

Concretization Test
For our example
(R + S)* = (R*S*)*

We can substitute 0 for R and 1 for S.

The left side is clearly any sequence of 0's and 1's. The right side
also denotes any string of 0's and 1's, since 0 and 1 are each in
L(0*1*).

37

Concretization Test
NOTE: extensions of the test beyond regular expressions may fail.

Consider the “law” L M N = L M.

This is clearly false
 Let L=M={a} and N=Ø. {a} Ø.

 But if L={a} and M = {b} and N={c} then

 LM does equal L M N which is empty.

 The test would say this law is true, but it is not because we are applying the
test beyond regular expressions.

We’ll see soon various languages that do not have corresponding
regular expressions.

38

Give a DFA that accepts any string ending with 1.

Problem-1

39

Problem-2

40

Consider the following NFA:

Convert this NFA into an equivalent DFA using the procedure we studied in class.

Your answer should be the state diagram of a DFA. Your diagram should

include only the states that are reachable from the start state.

Problem-3

41

Find a regular expression for the language recognized by this machine, using the

procedure we have studied in class: Show all your work, in particular, the state

diagrams after the removal

Ans-2

42

Ans-3

43

Thank you

44

