Turing Machines

1

Integers, Strings, and Other Things

- Data types have become very important as a programming tool.
- But at another level, there is only one type, which you may think of as integers or strings.
- Key point: Strings that are programs are just another way to think about the same one data type.

Example: Text

Strings of ASCII or Unicode characters can be thought of as binary strings, with 8 or 16 bits/character.

Binary strings can be thought of as integers.

Example: Images

Represent an image in (say) GIF.
The GIF file is an ASCII string.
Convert string to binary.
Convert binary string to integer.

Example: Programs

Programs are just another kind of data.
Represent a program in ASCII.
Convert to a binary string, then to an integer.

Turing Machine

Infinite tape with squares containing tape symbols chosen from a finite alphabet

Why Turing Machines?

- Why not deal with C programs or something like that?
- Answer: You can, but it is easier to prove things about TM's, because they are so simple.
 - And yet they are as powerful as any computer.
 - More so, in fact, since they have infinite memory.

Turing-Machine Formalism

A TM is described by:

- 1. A finite set of *states* (Q, typically).
- 2. An *input alphabet* (Σ , typically).
- 3. A *tape alphabet* (Γ , typically; contains Σ).
- 4. A *transition function* (δ , typically).
- 5. A *start state* (q₀, in Q, typically).
- 6. A *blank symbol* (B, in Γ Σ , typically).
 - All tape except for the input is blank initially.
- 7. A set of *final states* ($F \subseteq Q$, typically).

Conventions

- a, b, ... are input symbols.
 ..., X, Y, Z are tape symbols.
 ..., w, x, y, z are strings of input symbols.
- $\Box \alpha$, β ,... are strings of tape symbols.

The Transition Function

- Takes two arguments:
 - 1. A state, in Q.
 - 2. A tape symbol in Γ.
- $\begin{tabular}{l} \delta(q, Z)$ is either undefined or a triple of the form (p, Y, D). \end{tabular}$
 - p is a state.
 - Y is the new tape symbol.
 - D is a *direction*, L or R.

Actions of the PDA

- If δ(q, Z) = (p, Y, D) then, in state q, scanning Z under its tape head, the TM:
 - 1. Changes the state to p.
 - 2. Replaces Z by Y on the tape.
 - 3. Moves the head one square in direction D.
 D = L: move left; D = R; move right.

Example: Turing Machine

- This TM scans its input right, looking for a 1.
- If it finds one, it changes it to a 0, goes to final state f, and halts.
- If it reaches a blank, it changes it to a 1 and moves left.

Example: Turing Machine – (2)

States = {q (start), f (final)}.
Input symbols = {0, 1}.
Tape symbols = {0, 1, B}.
δ(q, 0) = (q, 0, R).
δ(q, 1) = (f, 0, R).
δ(q, B) = (q, 1, L).

 $\delta(q, 0) = (q, 0, R)$ $\delta(q, 1) = (f, 0, R)$ $\delta(q, B) = (q, 1, L)$

 $\delta(q, 0) = (q, 0, R)$ $\delta(q, 1) = (f, 0, R)$ $\delta(q, B) = (q, 1, L)$

δ(q, 0) = (q, 0, R) δ(q, 1) = (f, 0, R) δ(q, B) = (q, 1, L)

 $\delta(q, 0) = (q, 0, R)$ $\delta(q, 1) = (f, 0, R)$ $\delta(q, B) = (q, 1, L)$

δ(q, 0) = (q, 0, R) δ(q, 1) = (f, 0, R) δ(q, B) = (q, 1, L)

δ(q, 0) = (q, 0, R) δ(q, 1) = (f, 0, R)δ(q, B) = (q, 1, L)

No move is possible. The TM halts and accepts.

Instantaneous Descriptions of a Turing Machine

Initially, a TM has a tape consisting of a string of input symbols surrounded by an infinity of blanks in both directions.
The TM is in the start state, and the head is at the leftmost input symbol.

TM ID's – (2)

- An ID is a string αqβ, where αβ is the tape between the leftmost and rightmost nonblanks (inclusive).
- The state q is immediately to the left of the tape symbol scanned.

□ If q is at the right end, it is scanning B.

If q is scanning a B at the left end, then consecutive B's at and to the right of q are part of α.

TM ID's – (3)

As for PDA's we may use symbols ⊢ and ⊢* to represent "becomes in one move" and "becomes in zero or more moves," respectively, on ID's.

□ Example: The moves of the previous TM are q00+0q0+00q+0q01+00q1+000f

Formal Definition of Moves

- If δ(q, Z) = (p, Y, R), then
 αqZβ⊦αYpβ
 If Z is the blank B, then also αq⊦αYp
 If δ(q, Z) = (p, Y, L), then
 For any X, αXqZβ⊦αpXYβ
 - **In addition, qZ\beta \vdash pBY\beta**

Languages of a TM

- A TM defines a language by final state, as usual.
- □ L(M) = {w | $q_0 w \vdash *I$, where I is an ID with a final state}.
- Or, a TM can accept a language by halting.
- □ H(M) = {w | $q_0 w \vdash *I$, and there is no move possible from ID I}.