
July 8, 2020 1

Java Collections

Object Oriented Concept

July 8, 2020 2

Collections Framework Diagram

•Interfaces, Implementations, and Algorithms

•From Thinking in Java, page 462

July 8, 2020 3

Collection Interface

• Defines fundamental methods
» int size();

» boolean isEmpty();

» boolean contains(Object element);

» boolean add(Object element); // Optional

» boolean remove(Object element); // Optional

» Iterator iterator();

• These methods are enough to define the basic

behavior of a collection

• Provides an Iterator to step through the elements in

the Collection

July 8, 2020 4

Iterator Interface

• Defines three fundamental methods
» Object next()

» boolean hasNext()

» void remove()

• These three methods provide access to the

contents of the collection

• An Iterator knows position within collection

• Each call to next() “reads” an element from the

collection

» Then you can use it or remove it

July 8, 2020 5

Iterator Position

July 8, 2020 6

Example - SimpleCollection

public class SimpleCollection {

public static void main(String[] args) {

Collection c;

c = new ArrayList();

System.out.println(c.getClass().getName());

for (int i=1; i <= 10; i++) {

c.add(i + " * " + i + " = "+i*i);

}

Iterator iter = c.iterator();

while (iter.hasNext())

System.out.println(iter.next());

}

}

July 8, 2020 7

List Interface Context

Collection

List

July 8, 2020 8

List Interface

• The List interface adds the notion of order to a

collection

• The user of a list has control over where an element is

added in the collection

• Lists typically allow duplicate elements

• Provides a ListIterator to step through the elements in

the list.

July 8, 2020 9

ListIterator Interface

• Extends the Iterator interface

• Defines three fundamental methods

» void add(Object o) - before current position

» boolean hasPrevious()

» Object previous()

• The addition of these three methods defines the basic

behavior of an ordered list

• A ListIterator knows position within list

July 8, 2020 10

Iterator Position - next(), previous()

July 8, 2020 11

ArrayList and LinkedList Context

ArrayList LinkedList

Collection

List

July 8, 2020 12

List Implementations

• ArrayList

» low cost random access

» high cost insert and delete

» array that resizes if need be

• LinkedList

» sequential access

» low cost insert and delete

» high cost random access

July 8, 2020 13

ArrayList overview

• Constant time positional access (it’s an array)

• One tuning parameter, the initial capacity

public ArrayList(int initialCapacity) {

super();

if (initialCapacity < 0)

throw new IllegalArgumentException(

"Illegal Capacity: "+initialCapacity);

this.elementData = new Object[initialCapacity];

}

July 8, 2020 14

ArrayList methods

• The indexed get and set methods of the List interface are

appropriate to use since ArrayLists are backed by an array

» Object get(int index)

» Object set(int index, Object element)

• Indexed add and remove are provided, but can be costly if

used frequently

» void add(int index, Object element)

» Object remove(int index)

• May want to resize in one shot if adding many elements

» void ensureCapacity(int minCapacity)

July 8, 2020 15

Set Interface Context

Collection

Set

July 8, 2020 16

Set Interface

• Same methods as Collection

» different contract - no duplicate entries

• Defines two fundamental methods

» boolean add(Object o) - reject duplicates

» Iterator iterator()

• Provides an Iterator to step through the elements

in the Set

» No guaranteed order in the basic Set interface

» There is a SortedSet interface that extends Set

July 8, 2020 17

HashSet and TreeSet Context

HashSet TreeSet

Collection

Set

July 8, 2020 18

HashSet

• Find and add elements very quickly

» uses hashing implementation in HashMap

• Hashing uses an array of linked lists

» The hashCode() is used to index into the array

» Then equals() is used to determine if element is in the

(short) list of elements at that index

• No order imposed on elements

• The hashCode() method and the equals() method

must be compatible

» if two objects are equal, they must have the same

hashCode() value

July 8, 2020 19

TreeSet

• Elements can be inserted in any order

• The TreeSet stores them in order

» Red-Black Trees out of Cormen-Leiserson-Rivest

• An iterator always presents them in order

• Default order is defined by natural order

» objects implement the Comparable interface

» TreeSet uses compareTo(Object o) to sort

• Can use a different Comparator

» provide Comparator to the TreeSet constructor

July 8, 2020 20

Map Interface Context

Map

July 8, 2020 21

Map Interface

• Stores key/value pairs

• Maps from the key to the value

• Keys are unique

» a single key only appears once in the Map

» a key can map to only one value

• Values do not have to be unique

July 8, 2020 22

Map methods

Object put(Object key, Object value)

Object get(Object key)

Object remove(Object key)

boolean containsKey(Object key)

boolean containsValue(Object value)

int size()

boolean isEmpty()

July 8, 2020 23

Map views

• A means of iterating over the keys and values in a Map

• Set keySet()

» returns the Set of keys contained in the Map

• Collection values()

» returns the Collection of values contained in the Map.

This Collection is not a Set, as multiple keys can map

to the same value.

• Set entrySet()

» returns the Set of key-value pairs contained in the Map.

The Map interface provides a small nested interface

called Map.Entry that is the type of the elements in this

Set.

July 8, 2020 24

HashMap and TreeMap Context

HashMap TreeMap

Map

July 8, 2020 25

HashMap and TreeMap

• HashMap

» The keys are a set - unique, unordered

» Fast

• TreeMap

» The keys are a set - unique, ordered

» Same options for ordering as a TreeSet

• Natural order (Comparable, compareTo(Object))

• Special order (Comparator, compare(Object, Object))

HashMap and TreeMap

HashMap

HashMap can contain one null key.

HashMap maintains no order.

TreeMap

TreeMap can not contain any null key.

TreeMap maintains ascending order.

July 8, 2020 26

HashMap
{

HashMap<Integer,String> hm=new HashMap<Integer,String>();

hm.put(100,“Tahil");

hm.put(102,“Rifad");

hm.put(101,“Jubayer");

for(Map.Entry m:hm.entrySet()){

System.out.println(m.getKey()+" "+m.getValue());

}

If (hm.containsKey (102))

System.out.println(hm.get(102));

hm.remove(102);

}

July 8, 2020 27

July 8, 2020 28

Bulk Operations

• In addition to the basic operations, a Collection may

provide “bulk” operations

boolean containsAll(Collection c);

boolean addAll(Collection c); // Optional

boolean removeAll(Collection c); // Optional

boolean retainAll(Collection c); // Optional

void clear(); // Optional

Object[] toArray();

Object[] toArray(Object a[]);

HashMap and Hashtable

• HashMap is non
synchronized. It is not-
thread safe

• HashMap allows one null
key and multiple null
values.

• HashMap is fast.

• HashMap is traversed by
Iterator.

• HashMap inherits
AbstractMap class.

• Hashtable is
synchronized. It is
thread-safe

• Hashtable doesn't allow
any null key or value.

• Hashtable is sl

• Hashtable is traversed by
Enumerator and
Iterator.ow.

• Hashtable inherits
Dictionary class.

July 8, 2020 29

