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Preface

INTRODUCTION

The objective of numerical analysis is to solve complex numerical problems using only the simple operations
of arithmetic, to develop and eva uate methods for computing numerical results from given data. The methods
of computation are called algorithms. An algorithm is a finite sequence of rules for performing computations
on a computer such that at each instant the rules determine exactly what the computer has to do next.
Numerical methods tend to emphasize the implementation of the algorithms. Thus, numerical methods are
methods for solving problems on computers by numerical calculations, often giving a table of numbers and
/or graphical representations or figures. The purpose of this book is to impart a basic understanding, both
physical and mathematical, of the basic theory of numerical analysismethods and their applications. In this
book, an attempt is made to present in a simple and systematic manner the techniques that can be applied
to the study of numerical methods. Special emphasis is placed on analytical developments, algorithms and
computational solutions.

The objective of this text book is to introduce students from a variety of disciplines and backgrounds
to the vast array of problems that are amenable to numerical solution. The emphasisis placed on application
rather than pure theory, which, although kept to a minimum and presented in a mostly heuristic and intuitive
manner. This is deemed sufficient for the student to fully understand the workings, efficiency and
shortcomings or failings of each technique. Since | intended this book as a first course on the numerical
methods, the concepts have been presented in simple terms and the solution procedures have been explained
in detail.

AUDIENCE

This book is a comprehensive text on numerical methods. It is self-contained and the subject matter is
presented in an organized and systematic manner. No previous knowledge of numerical analysis and numerical
methods is assumed. This book is quite appropriate for several groups of audience including:

— undergraduate and graduate students in mathematics, science and engineering taking the
introductory course on numerical methods.
— the book can be adapted for a short professional course on numerical methods.
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— design and research engineers will be able to draw upon the book in selecting and developing
numerical methods for analytical and design purposes.
— practicing engineers and managers who want to learn about the basic principles and concepts
involved in numerical methods and how they can be applied at their own work place concerns.
Because the book is aimed at a wider audience, the level of mathematics is kept intentionally low. All the
principles presented in the book are illustrated by numerous worked examples. The book draws a balance
between theory and practice.

CONTENTS

Books differ in content and organization. | have striven hard in the organization and presentation of the
materia in order to introduce the student gradually the concepts and in their use to solve problems in numerical
methods. The subject of humerical methods deals with the methods and means of formulation of mathematical
models of physical systems and discusses the methods of solution. In this book, | have concentrated on
both of these aspects: the tools for formulating the mathematical equations and also the methods of solving
them.

The study of numerical methods is a formidable task. Each chapter in this book consists of a concise
but thorough fundamental statement of the theory; principles and methods, followed by a selected number
of illustrative worked examples. There are ample unsolved exercise problems for student’s practice, to amplify
and extend the theory, and methods are also included. The bibliography provided at the end of the book
serves as helpful source for further study and research by interested readers.

In chapter 1, Taylor’s theorem, a few basic ideas and concepts regarding numerical computations, number
representation, including binary, decimal, and hexadecimal numbers, errors considerations, absolute and relative
errors, inherent errors, round-off errors and truncation errors, machine epsilon, error propagation, error
estimation, genera error formulae including approximation of a function, stability and condition, uncertainty
in data or noise, sequences: linear convergence, quadratic convergence, and Aitken’s acceleration formulae
are described.

Chapter 2 deals with the solution of linear system of equations. The topics covered are the methods of
solution, the inverse of a matrix, matrix inverson method, augmented matrix, Gauss elimination method, Gauss
Jordan method, Cholesky’s triangularization method, Crout’s method, Thomas agorithm for triangular system,
Jacobi’s iteration method, and Gauss-Seidal iteration method.

Chapter 3 deals with the solution of algebraic and transcendental equations. Here, we cover the topics
such as the bisection method, method of false position, Newtonian-Raphson method, successive
approximation method, secant method, Muller’s method, Chebyshev method, Aitken’s method, and comparison
of iterative methods.

In Chapter 4, we cover the topics on numericd differentiation. The topics covered include the derivatives
based on Newton's forward interpolation formula, the derivatives based on Newton’s backward interpolation
formula, the derivatives based on Stirling's interpolation formula, maxima and minima of a tabulated function,
and cubic spline method.

Chapter 5 deals with finite differences and interpolation. It includes topics on finite differences, forward
differences, backward differences, central differences, error propagation in a difference table, properties of
operator delta, difference operators, relations among the operators, representation of a polynomial using
factorial notation, interpolation with equal intervals, missing values, Newton’s binomial expansion formula,
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Newton’s forward interpolation formula, Newton's backward interpolation formula, error in interpolation
formula, interpolation with unequal intervals, Lagrange's formula for unequal intervals, inverse interpolation,
Lagrange's formula for inverse interpolation, central difference interpolation formulae, Gauss's forward
interpolation formula, Gauss's backward interpolation formula, Bessel’s formula, Stirling’s formula, Laplace-
Everett’s formula, divided differences. Newton’s divided differences, interpolation formula, selection of an
interpolation formula, and cubic spline interpolation.

In Chapter 6, we present the curve fitting, regression, and correlation. we discuss here the topics on
linear equation, curve fitting with a linear equation, criteria for a “best” fit, linear |east-squares regression,
linear regression analysis, interpretation of a and b, standard deviation of random errors, coefficient of
determination, linearization of nonlinear relationship, polynomial regression, quantification of error of linear
regression, multiple linear regression, weighted least squares method, orthogonal polynomials and least
squares approximation, least squares method for continuous data, approximation using orthogonal
polynomials, and Gram-Schmidt orthogonalization process.

Chapter 7 presents numerical integration. Here, we cover the topics on Newton-Cotes closed quadrature
formula, trapezoida rule, error estimate in trapezoidal rule, Simpson’s /3 rule, error estimate in Simpson’s 1/
3 rule, Simpson’s 3/8 rule, Boole's and Weddl€'s rules, Romberg's integration, Richardson’s extrapolation,
and Romberg's integration formula.

In Chapter 8, we discuss the numerical solution of ordinary differential equations. The methods covered
include one-step methods or single-step methods, Picard’s method of successive approximations, Taylor's
series method, step-by-step methods or marching methods, Euler’s method, modified Euler’'s method, Runge-
Kutta methods, Runge-Kutta method of order two and four, predictor-corrector methods, Adam-Moulton
predictor-corrector method, and Miln€e's predictor-corrector method.

An important requirement for effective use and application of numerica methods is ease and proficiency
in partia fraction expansion, engineering mathematics, and Cramer’s rule. A basic review of partial fraction
expansions, basic engineering mathematics, and Cramer’s rule are outlined in Appendices A, B, and C
respectively.

Bibliography provided at the end of the book serves as helpful sources for further study and research
by interested readers. Answers to all end-of-chapter problems are given in the book. Most of the end-of
chapter problems are being fully solved in the companion book titled: Numerical Methods through Solved
Problems, New Age International Publishers (P) Ltd., New Delhi, India. 2009.

| sincerely hope that the final outcome of this book will help the students in devel oping an appreciation
for the topic of numerical methods.

Rao V. Dukkipati
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CHAPTER

Numerical Computations

Numerical methods are methods for solving problems on computers by numerical calculations, often giving
a table of numbers and/or graphical representations or figures. Numerical methods tend to emphasize the
implementation of algorithms. The aim of numerical methods is therefore to provide systematic methods for
solving problems in a numerical form. The process of solving problems generally involves starting from an
initial data, using high precision digital computers, following the steps in the agorithms, and finally obtaining
the results. Often the numerical data and the methods used are approximate ones. Hence, the error in a
computed result may be caused by the errors in the data, or the errors in the method or both.

In this chapter, we will describe Taylor’s theorem, a few basic ideas and concepts regarding numerical
computations, number representation, including binary, decimal, and hexadecimal numbers, errors
considerations, absolute and relative errors, inherent errors, round-off errors and truncation errors, error
estimation, general error formulae including approximation of a function, stability and condition, uncertainty
in data, linear convergence, quadratic convergence, and Aitken's acceleration formulae.

1.1 TAYLOR’S THEOREM

Taylor’s theorem allows us to represent, exactly, and fairly general functions in terms of polynomials with a
known, specified, and boundable error. Taylor’s theorem is stated as follows:

Let f(X) have n + 1 continuous derivatives on [a, b] for some n > 0, and let x, Xy €[a, b]. Then

fO) = Pa(®) + Ry(¥) (Y
fo P09 = 3 L8 1) 12
17 .
and R()== [ox=pm () dt (13)
"X
Also, there exists a point &,, between x and X, such that
R (=YX g ) (19

(n+1)!
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where R,(X) is the remainder. Taylor’'s series is an associated formula of Taylor’s theorem.

Taylor’s series gives us a means to predict a function value at one point in terms of the function value
and its derivatives at another point.

Taylor’'s series expansion is defined by

£(x)
|

F(X0) = T+ F(6) (%= %)+ (%1 = %)

" (x)
3

(% N
+ B (%) +R 15)
We note that Eq. (1.5) represents an infinite series. The remainder term R, is included to account for all terms
from (n + 1) to infinity:

(Ga=X) 4+

£ )
(n+1!

n+1

R, = (%1 = %) (16)

where the subscript n connotes that this is the remainder for the nt order approximation and & is a value
of x that lies somewhere between x; and X + 1.

We can rewrite the Taylor's series in Eq. (1.6) by defining a step sizeh = x,,; — X as

” 0
F(%,0) = F(X)+ F/(x)h+ (“hz f 3('>s)h3 . nfm“"”% wn
where the remainder term R, is given by
(n+1)(é) n+1
R= (n+1)! (19

The estimation of function at a point b which is fairly close to a is desired, then the Taylor’s series is written
as an infinite series:
b-a)® b-a)"
f(hy=f@+(b-a)f' (a + %f"(a) + 4t %f ™ (@) + - (19
If bisvery close to a, then only a few terms can give good estimation. The Taylor’s series expansion for €,
sin x and cos x are given below:

1 1 1 1 - 1
=1t x+ =X+ =X+t = X"+ ———x"e¥ = Y =x“+ R (X
TR R T =2 R.(X) (1.10)
_q\n _1\n+1
Snxe xm s 2y g D e () X*"* cosEx
3! 5! (2n+1! (2n+3)!
N (_1)k X2+l
= +R (X
Zg(zk+1)| R ¢t
_q\n _q\n+l
cosx=1- = x4 Ly g ED o, D) x*"? cosgx

27 T (2n)! (2n+2)!
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= ;J ((;i))l X* + R, (%) (112)

The error in Taylor's series when the series is terminated after the term containing (x — a)" will not
exceed

n-1) [lx_ al]ml
(n-1)
100 el (113)

where max corresponds to the maximum magnitude of the derivative in the interval a to x. When the Taylor’s
series is truncated after n terms, then f (x) will be accurate to O(x — a)".

ExampleEL1

Use Taylor series expansion to approximate f (X) = cos x at x;4+1 = m/3 with n = 0 to 6 on the basis of the
value of f (x) and its derivatives at x, = /4 which implies that h = %—% = /12,

Solution:

The zero approximation is given by
f (%) F00)+ £ () (%2 —x%)
f(n/3)2 cos% = 0.70710678, cos(gj =05

The % relative error is

. _ 05-0.70710678

t 05 (100) = — 41.4%

f’(x)=-sinx

f (E) = COS(E) - gn(ﬁj(lj = 0.52198666
3 4 4)\12

€= —-4.4%

f”(x) = —cosx

f (gj = cos(%) —sin(%j(l—nz) —M(%}z = 0.49775449

with €, = 0.449%.
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Table E1.1 shows the Taylor series approximation for n = 0 to 6.

Table E1.1
Order n | f7(x) F(r/3) €
0 cosx | 0.70710678 | —41.4
1 —sinx | 0.52198666 | 4.4
2 —cos X | 0.49775449 | 0.449
3 snx | 049986915 | 2.62 x 10
4 cosx | 0.50000755 | —1.51 x 107
5 —sinx | 0.50000030 | —6.08 x 10°°
6 —cosx | 0.49999999 | 2.40 x 10°°

1.2 NUMBER REPRESENTATION

A base-b number is made up of individual digits. In positional numbering system, the position of a digit in
the number determine that digit’s contribution to the total value of the number.

For decimal numbers, the base (radix) is 10. Hence (a, 8,1 ... &2 33 ag), = a, b"+ a,; b" 1+ ... +
ab? + asb + a;. a, contributes to the number’s magnitude and is called the most significant digit (MSD).
Similarly, the right most digit, ag, contributes the least and is known as the least significant digit (LSD).
Conversion of base-b fractions to base-10 is done by (0.3; @ ... ay)p = atb™1 + ab=2 + --- + a,b~™. This

is known as the expansion method.

There are two binary digits (bits) in the binary number system: zero and one. The left most bit is called
the most significant bit (MSB) and the right most bit is the least significant bit (LSB). The rules of bit
additionsae 0+0=0;0+1=1;1+0=1;1+1=0cary 1. Thefirs ten digits 1, 2, 3, ..., 10in base 10 and

their representation in base-2 are shown in Fig.1.1.

Base 10 [ 52399221 20
1 (o001
2 lolo|1]o
3 |olol1 |1
4 |ol1lolo
5 (o101
6 |o|l1|1]0
7 lol1l1 1
8 |[1loo]o
9 |1lolo |1

10 |1]0]1]o0

Fig. 1.1: Representation of numbers in decimal and binary forms

Most computer languages use floating-point arithmetic. Every number is represented using a (fixed, finite)
number of binary digits, called bits. Each binary digit is referred to as a bit. In this method, the computer

representation a number in the following form:
Number = o mb'-P

where o= sign of the number (£), denoted by a single hit.
m= mantissa or a fraction (a value which lies between 0.1 and 1).
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b = thebase of the interna number system (b = 2 for binary, b = 10 for decimal or b = 16 for
hexadecimal computers).
= shifted exponent (the value that is actually stored).
p = shift required to recover the actual exponent. Shifting in the exponent is normally done to

avoid the need for a sign bit in the exponent itself.

The number is then stored by storing only the values of 6, m and t. The normal way to represent and store
numbers is to use a binary or base 2 number system which contains the following two digits.

binary digits= {0 1} (115
For positive integers the binary form is

dy2" + dg2" 1 + -+ dg 28 + dg20 (L16)
while for positive numbers less than oneit is

di21+dy22+d3238+ - 117

with al binary digits d; either O or 1. Such representations are unique.

Conversion between base 10 and base 2 is performed automatically by programming languages. Thus,
conversion of an n-hit binary integer b = b,,_;...bg to its decimal equivalent x is done as a sum of n powers
of 2:

x= "Zq 2 (118

A positive decimal integer x, in the range 0 to 2" — 1 is converted to its n-bit binary equivalent b = b, 4 ... by
by conducting a sequence of n divisions by decreasing powers of 2. In other words, the digits of the binary
numbers are computed starting with the most significant bit, b,_;, and ending with the least significant, by.

Noting that the hexadecimal numbers have a larger base or radix than decima numbers, the first six
letters of the aphabet are used to augment the decimal digits as follows:

Hexadecimal digits={0, 1, 2,3,4,5,6,7,8,9,A,B,C,D, E, F} (119
The conversion between binary, decimal and hexadecimal numbers can be accomplished using Table 1.1.

Table 1.1: Binary, Decimal and Hexadecimal Numbers

Binary | Decimal | Hexadecimal | Binary | Decimal | Hexadecimal
0000 00 0 1000 08 8
0001 01 1 1001 09 9
0010 02 2 1010 10 A
0011 03 3 1011 11 B
0100 04 4 1100 12 C
0101 05 5 1101 13 D
0110 06 6 1110 14 E
0111 07 7 1111 15 F

Example E1.2

Determine the decimal values of the following numbers:
(@ x=(10010110),
(b) x=(777)s



6 /I Numerical Methods //

Solution:
7
(@ x= b 2"using equation (1.18)
k=0
=2+ 22+ 20427
=2+4+16+128=150
(b) x=(777)g
2
x= D08 =7(8)0+ 7(8)L + 7(8)? = 7+ 56 + 448 = 511
k=0
Example E1.3

Convert (1011), to base-10.

Solution:
M@*+OE+@ @ +1=11

The remainder method is used to convert base-10 numbers to base-b numbers. Converting a base-10
fraction to base-b requires multiplication of the base-10 fraction and subsequent fractiona parts by the base.

The base-b fraction is formed from the integer parts of the products taken into same order in which they
were determined.

The octal (base-8) numbering system is one of the aternatives to working with long binary numbers.
Only the digits 0 to 7 are employed. For instance,

7+1=6+2=5+3=(10)
7+2=6+3=5+4=(ll)
7+3=6+4=5+5=(12)

Example E1.4

Perform the following operations:
@ (Ms+(6)s
(b) Convert (0.14)4, to base-8
() Convert (27.52)g to base-10.

Solution:

(@) Thesum of 7 and 6 in base-10 is 13. This is greater than 8. Using the remainder method, we have
13/8=1 remainder 5
1/8=0 remainder 1

The answer is (15)g.

(b) 014x8=112
012x8=0.96
096 x8=17.68
068x8=544
0.44 x 8 = etc.
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The answer is (0.1075....)g which is obtained from the integer parts of the products above.
5 2

© @@+ E° +O) @+ @?=16+7+ g+, =(23656)0
The hexadecimal (base-16) system is a shorthand way of representing the value of four binary digits at a
time.
Example E1.5

(8 Convert (1475),, to base-16.

(b) Convert (0.8)9 to base-16.

Solution:
(8 Using the remainder method
1475

16

% = 5remainder 12
16

=92 remainder 3

3 = Qremainder 5
16

Now, (12)1g is (C)46 Or (hex C).
Hence, the answer is (5Cs)4.
(b) 08x16=128
08x16=128
0.8 x 16 = etc.
Since (12)19 = (C)16, We have the answer as (0.CCCCC...)4s.

Example E1.6
(@ Convert (5431)g to base-2.
(b) Convert (1011111101111001), to base-16.

Solution:
(@) First convert each octal digit to binary digits.
(5)s = (102),
(4)s = (100),
(3)s = (011),
(D = (002),
Hence, the answer is (101100011001),.

(b) Grouping the bits into fours starting at right-hand-bit, we have 1011 1111 0111 and 1001. Converting
these groups into their hexadecimal equivalents, we get

(1011), = (B)1s
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(1111); = (F)1s
(0111); = (7)16
(1001)2 = (9)16
Therefore, the answer is (BF79)16.

Example E1.7
(@ Convert the following base-2 numbers to base-10: 1011001 and 110.00101
(b) Convert the following base-8 numbers to base 10: 71563 and 3.14.

Solution:
(8 (1011001),

(Ix2O)+O0x2D)+(1x2)+(1x23)+(0x29)+(0x2) +(1x29
1(64) + 0(32) + 1(16) + 1(8) + 0(4) + 0(2) + 1(1) = 89

(11000101), = (1x 2 +(Ax2H+O0x2O)+(0x2H)+(0x2)+(A1x23)+(0x 2% +(1x 29
= 1(4) + 1(2) + 0(1) + 0(0.5) + 0(0.25) + 1(0.125) + 0(0.0625) + .03125) = 6.15625
(b) (71563)g = (7x8%) +(1x8%)+(5x8)+(6x8)+(3x29)

7(4096) + 1(512) + 5(64) + 6(8) + 3(1) = 29,555
(314)3 = (3x 8%+ (3% 8Y) + (4 x 89 = 3(1) + 1(0.125) + 4(0.015625) = 3.1875

1.3 ERROR CONSIDERATIONS

Sour ces of Errors: When a computational procedure isinvolved in solving a scientific-mathematical problem,
errors often will be involved in the process. A rough classification of the kinds of origina errors that might
occur is as follows:

Modelling Errors. Mathematical modelling is a process when mathematical equations are used to
represent a physical system. This modeling introduces errors and are called modelling errors.

Blunders and Mistakes: Blunders occur at any stage of the mathematical modeling process and consist
to all other components of error. Blunders can be avoided by sound knowledge of fundamental principles
and with taking proper care in approach and design to a solution. Mistakes are due to the programming
errors.

Machine Representation and Arithmetic Errors: These errors are inevitable when using floating-point
arithmetic when using computers or calculators. Examples are rounding and chopping errors.

Mathematical Approximation Errors. This error is a'so known as a truncation error or discretisation
error. These errors arise when an approximate formulation is made to a problem that otherwise cannot be
solved exactly.

Accuracy and Precision: Accuracy refers to how closely a computed or measured value agrees with
the true value. Precision refers to how closely individual computed or measured values agree with each
other. Inaccuracy (also known as bias) is the systematic deviation from the truth. Imprecision (uncertainty)
refers to the magnitude of the scatter. These concepts are illustrated graphically using an analogy from target
practice as shown in Fig.1.2.

Figure 1.2 lllustrating the concepts of accuracy and precision from marksmanship example (a) inaccurate
and imprecise, (b) accurate and imprecise, () inaccurate and precise and (d) accurate and precise
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Increasing accuracy

v

Increasing precision

v (© (d)

Fig. 1.2: Concepts of accuracy and precisions

Errors are introduced by the computational process itself. Computers perform mathematical operations with
only afinite number of digits. If the number x, is an approximation to the exact result x,, then the difference
Xe — X5 IS called error. Hence
Exact value = approximate value + error
In numerical computations, we come across the following types of errors:
(8 Absolute and relative errors
(b) Inherent errors

(00 Round-off errors
(d) Truncation errors

1.3.1 Absolute and Relative Errors

If Xg isthe exact or true value of a quantity and X, is its approximate value, then [Xg — X,| is caled the
absolute error E,. Therefore absolute error

Ea = [Xeg — Xl (120)
and relative error is defined by

(121)

provided Xg # 0 or Xg is not too close to zero. The percentage relative error is

XE_XA

E

Ep =100E, =100 122)
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Sgnificant digits: The concept of a significant figure, or digit, has been developed to formally define the
reliability of a numerical value. The significant digits of a number are those that can be used with confidence.

If Xg isthe exact or true value and X, is an approximation to Xg, then X, is said to approximate Xg to
t significant digitsiif t is the largest non-negative integer for which

ﬁ < Bx :|_07t (123)

Example E1.8

If Xg = e (base of the natural dgorithm = 2.7182818) is approximated by X, = 2.71828, what is the significant
number of digits to which X, approximates Xg?

Solution:

Xe = Xp _€-271828 \ihis <5x 10
[ Xg | €

Hence X, approximates Xg to 6 significant digits.

Example E1.9

Let the exact or true value = 20/3 and the approximate value = 6.666.
The absolute error is 0.000666... = 2/3000.

The relative error is (2/3000)/ (20/3) = 1/10000.

The number of significant digitsis 4.

1.3.2 Inherent Errors

Inherent errors are the errors that pre exist in the problem statement itself before its solution is obtained.
Inherent errors exist because the data being approximate or due to the limitations of the calculations using
digital computers. Inherent errors cannot be completely eliminated but can be minimised if we select better
data or by employing high precision computer computations.

1.3.3 Round-off Errors

Round-off error is due to the inaccuracies that arise due to a finite number of digits of precision used to
represent numbers. All computers represent numbers, except for integer and some fractions, with imprecision.
Digital computers use floating-point numbers of fixed word length. This type of representation will not express
the exact or true values correctly. Error introduced by the omission of significant figures due to computer
imperfection is called the round-off error.

Round-off errors are avoidable in most of the computations. When n digits are used to represent a real
number, then one method is keep the first n digits and chop off all remaining digits. Another method is to
round to the nth digit by examining the values of the remaining digits. The two steps involved in rounding
to n digits are as follows:

b
1 Addsgn(x) 5 to digit n + 1 of x.

2. Chop x to n digits.
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where X is the nonzero real number, b is the base and sgn(x) = x/|x| denotes the sign of x with sgn (0) = O.
Thus, the effect of the add and chop method of rounding is to round digit n up (away from zero) if the first
digit to be chopped, digit n + 1, is greater than equal to b/2, otherwise digit nisleft asis. Errors which result
from this process of chopping or rounding method are known as round-off errors.

Rounding to k decimal places

To round X, a positive decimal number, to k decimal places, we chop x + 0.5 10 after ki’ decimal digit.
Similarly, to a round a negative number, we round its absolute value and then restore the sign. Table 1.2
illustrates the rounding the numbers 234.0065792 and —234.00654983 to k decimal digits.

Table 1.2: Rounding numbers to k decimal digits

234.0065792 | —234.00654983
234 —234

234.0 —234.0

234.01 —234.01
234.007 —234.007
234.0065 —234.0065

234.00658 —234.00655
234.006579 | —234.006550
234.0065792 | —234.0065498
234.0065792 | —234.00654983

O~NOO U WNELOIX

Accurate to k decimal places

When we state that Y approximates y to k decimal places provided |y — Y| < % x 10* and if both y and Y are

rounded to k decimal places, then the ki decimals in the rounded versions differ by no more than one unit.

Consider for instance, the two numbersy = 57.34 and Y = 57.387 differ by [y — Y] = 0.047 < 0.5 x 101 = 0.05
hence Y approximates y to 1 decimal place. Rounding y to Y to the k = 1 decima place, we find y, = 57.3 and
Y, = 57.4, respectively. Therefore, y, and Y, differ in the first decimal place by no more than one unit. Also,
when Y approximates y to k decimal places, then these two numbers are said to agree to k decimal places. It
should be noted here that these two numbers are not necessarily the same when rounded to k decimal places.

The most significant figure in a decimal number is the leftmost nonzero digit and the least significant
figure is the rightmost digit. Significant figures are all the digits that lie in between the most significant and
least significant figures. However, it should be noted here that zeros on the left of the first significant figure are
not treated as significant digits. For instance, in the number Y = 0.0078560, the first significant digit is 7 and
the rightmost zero is the fifth significant digit. Table 1.3 shows the results of rounding Y to k significant figure.

Table 1.3: Significant figures

k significant digits | Y =0.0078560
0.008

0.0078
0.00786
0.007856
0.0078560

abhwnN P

Accurate to k significant figures

1
If |x—X|<§><10’k | x|
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1 1
or x—leo"‘|x|<X<x+§><10"‘|x|

then we say that the floating-point number X approximates x to k significant figures. Table 1.4 shows k, the
intervals [x —d (K), x + d (K)], where d(K) = 2 x 10 |x|, interval rounded, x rounded for x = 7t = 3.141592654.
The last column in Table 1.3 shows the value of = rounded to k significant digits.

Table 1.4: Approximation of m to k significant figures

Interval

k [X = d(k), x + d(K)] Interval rounded X rounded
1 | [2.984513021, 3.298672287] | [3.0, 3.3] 3.0

2 | [3.125884691, 3.157300617] | [3.1, 3.2] 31

3 | [3.140021858, 3.143163450] | [3.14, 3.14] 3.14

4| [3.141435574, 3.141749734] | [3.141, 3.142] 3.142

5| [3.141576946, 3.141608362] | [3.1416, 3.1416] 3.1416

6 | [3.141591083, 3.141594225] | [3.14159, 3.14459] 3.14159

7 | [3.141592497, 3.141592811] | [3.141592, 3.141593] 3.141593
8 | [3.141592638, 3.141592670] | [3.1415926, 3.1415927] | 3.1415927

Example E1.10
Given the number 7 is approximated using n = 5 decimal digits.
(@) Determine the relative error due to chopping and express it as a per cent.
(b) Determine the relative error due to rounding and express it as a per cent.
Solution:
(@ The relative error due to chopping is given by

. 3.1415-n
E;(chopping) = — - 2.949 x 1075 or 0.002949%
(b) The relative error due to rounding is given by
3.1416-
E; (rounding) = Tn = 2.338 x 107° or 0.0002338%.

Example E1.11
If the number ©t = 4 tan(1) is approximated using 5 decimal digits, find the percentage relative error due to,
(8 chopping (b) rounding.

Solution:
(a) Percentage relative error due to chopping
= (—3'1415_ ”j 100 = (— 2.949x 10*5)100 or —0.002949%.
b

(b) Percentage relative error due to rounding

~ ( 3.1416-7

j 100 = (2.338 %107 )100 = 0.00023389%
T
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Example E1.12

Use Taylor series expansions (zero through fourth order) to predict f (2) for f (X) = In(x) with a base point at
x = 1. Determine the true percentage relative error for each approximation.

Solution:
The true value of In (2) = 0.693147...
Zero order:
fQ=f@=0
_ (069314701, 100r — 100%
0.693147
First order:
1
f'(x)=— ! =
(X) ~ f'()=1
f@Q=0+1(1)=1
E, = 26938471 5006 — a4 2706
0.693147
Second order:
44 1 144
f7)=-=1"1) =1
X
12
f(2)=1-1—=05
2
E, = 2093847031, 504 _ 57 870
0.693147
Third order:

" 2 77
f )(x)=?f Q=2

3
f(2)= 05+ 2'% = 0.833333

E - |0.693147 — 0.833333
7 0693147 |

100% = 20.22%

Fourth order:
f( >(x)=—7:f< (1) =6
4

f(2) = 0.833333- 6% =0.583333

0.603147-0583333) 0 oo
0693147 |
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The above results show that the seriesis converging at a low rate. A smaller step size would be required to
obtain more rapid convergence.
Example E1.13
Given two numbers a = 8.8909 x 103 and b = 8.887 x 10°. Cdlculate the difference between the two numbers
(a—b) using decimal floating point approximation (scientific notation) with three significant digits in the
mantissa by (a) chopping (b) rounding.
Solution:
(@ In chopping, when three significant digits are in the mantissa, then
a=28.890 x 10° and b = 8.887 x 10°
and a—b=28890 x 10° —-8.887 x 10° = 0.003 x 10° = 3.
(b) Inrounding, we have
a=28.890 x 10° and b = 8.887 x 10°
and a—b=28890 x 10° —-8.887 x 10° = 0.004 x 103 = 4.

The exact (true) difference between the numbers is 3.8 which shows that the rounding gives a value much
closer to the real answer.

1.3.4 Truncation Errors

Truncation errors are defined as those errors that result from using an approximation in place of an exact
mathematical procedure. Truncation error results from terminating after a finite number of terms known as
formula truncation error or simply truncation error.

Let afunction f (X) isinfinitely differentiable in an interval which includes the point x = a. Then the
Taylor series expansion of f (X) about x = a is given by

< M (@) (x—a)k

f@:é o (1.24)
where f ¥ (a) denotes the k" derivative of f (X) evaluated at x = a
d“f
or OINE WW|H (125)

If the seriesis truncated after n terms, then it is equivalent to approximating f (X) with a polynomia of degree
n-1.

A n-1 f (k) (a)(X— a)k
O (L26)
k=0
The error in approximating E(X) is equal to the sum of the neglected higher order terms and is often called
the tail of the series. The tail is given by
x—a)"

(x)
£,00 2109~ 1,00=— O

127)

It is possible sometimes to place an upper bound on the x of E,(X) depending on the nature of function f (x).
If the maximum value of | f, (X) | over theinterval [a, X] is known or can be estimated, then
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M09 2 mex |10 129

From Egs. (1.27) and (1.28), the worst bound on the size of the truncation error can be written as

| En(X) [

M,(q)[x-al
e (129)

!
If h =x—a, then the truncation error E,(X) is said to be of order O (h"). In other words, as h— 0, E,(X)—0
at the same rate as h".

Hence O(hM =ch" |h|<<1 (1.30)
where c is a non-zero constant.

The total numerical error is the summation of the truncation and round-off errors. The best way to
minimise round-off errors is to increase the number of significant figures of the computer. It should be noted
here that round-off error increases due to subtractive cancellation or due to an increase in the number of

computations in an analysis. The truncation error can be reduced by decreasing the step size. In generad, the
truncation errors are decreased as the round-off errors are increased in numerical differentiation.

There exists no systematic and general approaches in evaluating numerical errors for all problems. In
most cases, error estimates are based on experience and judgment of the engineer or scientist.

Model errors relate to bias that can be ascribed to incomplete mathematical models. Errors also enter
into the analysis due to uncertainty in the physical data on which a model is based.
Example E1.14
Given the trigonometric function f () = sin x,

(8 expand f (x) about x = 0 using Taylor series

(b) truncate the seriesto n = 6 terms

(¢) find the relative error at x = /4 due to truncation in (b)

(d) determine the upper bound on the magnitude of the relative error at x = m/4 and express it as a per
cent.

Solution:
(@ Using Eq. (1.23), the Taylor series expansion is given by

o ¢ (K) K 3 5 7
fpg= g fo@xat X X
k! 3t 5 7
k=0
(b) Truncation of the Taylor seriesto n = 6 terms.
3 5
X* X
fG(X)—X—a‘FE

(©) Therelative error at X = m/4 due to truncation in (b) is given by

3
Eo_ fﬁ(n/4)—sin(n/4)_z—(2) /3!+(n/4)5/5!—sin(n/4)
T sin(n/4)

sin(n/4)
=5129x 10° or 0.005129%
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(d) Heref§(x) = —sin x. From Eq. (1.28) using a = 0 and x = 7t/4, we obtain
Me(X) < sin (m/4)
Now from Eq. (1.29), we have the upper bound on the truncation error given by

sin(/ 4)(n/ 4)°
6!

| Es < =2305x10* or 0.02305%

1.3.5 Machine Epsilon
Digital computers are fixed-precision devices and the number of digits the device can manipulate depends
on its hardware configuration. Machine epsilon, €, is the smallest positive number that the device can add
to 1 while recognising the sum as different than 1.

€ v is determined computationdly by finding the smallest positive € isfor which 1 + € # 1. For instance,
if a particular computing device computes 1.000000001 for 1 + 10-° but 1 for 1 + 10719, then we conclude that
1010 < €, < 109 and the device in this case would be known as a 10 significant-digit device.

1.3.6 Error Propagation

Table 1.5 summaries the errors attributed to the round-off errors due to the limited number of digits using
fixed-precision devices. In order to illustrate these errors, we consider the following numbers: a = 237.6581,
b = 238.2389, ¢ = 0.014789, d = 137469 and A = 238.0, B = 238.2, C = 0.01480 and D = 1.375 x 10°.

Table 1.5: Possible types of round-off errors on a finite-precision computing device

S.No. Error Comments
1. | Negligible addition When two numbers of notable different magnitudes are added or
subtracted, then the result rounds to the largest number.
2. | Creeping round-off Repeated rounding to k significant digits will result in accumulation
of errors.
3. | Error magnification Occurs when an erroneous number is multiplied/divided by a number

of large/small magnitude.

4. | Subtractive cancellation |Due to the subtraction of two nearly equal numbers where the
difference liesin significant digits well beyond the devices capacity
to record it.

Tables 1.6 and 1.7 show the five exact arithmetic calculations (answers rounded-off to four significant digits)
and the same calculations performed on a device with four significant digits respectively.

Table 1.6: Exact arithmetic rounded to four significant digits

0. Exact arithmetic Rou_ngied s fo_ur
significant digits

a—c = 237.6581 — 0.014897 = 237.643203 237.6

b + d = 237.8389 + 137476 = 1377103.8389 | 1.377 x 10°

bd = (237.8389)(137476) = 32697140.62 3.270 x 10’

alc = 237.6581/0.014897 = 15953.42015 1.595 x 10*

a—b =237.6581 — 237.8389 = —0.1808 —-0.1808

S.

a s NP =
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Table 1.7: Calculations with a device carrying four significant digits

S. No. Cadlculations

A —C =238.0-0.01480 = 238.0

B+ D =238.1+ 1.375 x 10° = 1.377 x 10°
BD = (238.1)(1.375 x 10°) = 3.274 x 10’
A/C = 238.0/0.01480 = 1.608 x 10*
A-B=2380-2381=-01

gpwNPE

1.4 ERROR ESTIMATION

Few computer methods are available to provide error estimates. These methods are briefly mentioned here.

1

Double precision method: In this method, the problem is solved twice, once in single precision
and then in double precision. The estimate on the round-off error is then simply given by the
difference between the two results obtained.

Interval arithmetic method: Each number in this method is represented by two machine numbers
corresponding to the estimated maximum and minimum values. Two solutions are obtained at every
step corresponding to the maximum and minimum values. The true solution is assumed to lie in
about the centre of the range. The range here is the difference between the solutions corresponding
to the maximum and minimum values.

Significant digit arithmetic method: In this method, the digits lost due to the subtraction of two
nearly equal machine numbers are tracked. Only the significant digits in a number are kept and the
rest are rejected or ignored. In this way, al digits retained or kept are assumed to be significant.
The results obtained with this method are considered to be very conservative.

Statistical approach: This method starts with the assumption that the round-off error is independent.
A stochastic model for the propagation of round-off errors is then adapted in which the local errors
are considered as random variables. The local round-off errors are assumed to be either uniformly
or normally distributed between their extreme values. Using standard statistical analysis methods,
the standard deviation, the variance and the accumulated round-off error are estimated.
Backward error analysis: In this method, based on the result of a computation the possible range
of input data that could have produced it is determined. If the results found with this approach is
consistent with the input data, within the range of observational or round-off error, then there is
some confidence is placed on the result. If this does not happen, then a major source of error is
assumed to exist somewhere else, presumably within the algorithm itself.

Forward error analysis: The method can be illustrated by means of an example.

Suppose the value of A (B + C) is to be computed when a, b and ¢ are the approximations to A, B
and C respectively, and the respective error amounts are e;, & and es.

The true value is
AB+C)=(a+e)(b+te+c+e)=ab+ac+error

whereerror = a (e, + e3) + be; + ce; + e, + €163
Now assuming the uniform bound |g| < e and that error products can be ignored, we get
|error| <[2Ja] + |o| + |c]] e

This procedure can be carried out for any algorithm. It is a tedious analysis. The resulting bounds
are generally very conservative.
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1.5 GENERAL ERROR FORMULA

1.5.1 Function Approximation

Consider the function
F =f(Xq, X9, X3, «vy Xn) (13D
where Xy, Xo, X3, ..., X, are variables.
Suppose Ax; represents error in each x;, so that the error in F is
F+ AF = (X; + AXy, %o + AX, ..., Xy + AX,) (132
Taylor’s series expansion of the right hand side of Eq. (1.31) gives

L of
F+AF = f(xl,xz,...,xn)+2&Axi +0O(A%) 133
i=1 0%
If we assume the errors in x; as small, and Eul <1, so that the second and higher powers of Ax can be
ignored, Eq. (1.33) gives A
L, of of of of
AF = ) —AX = —AX +——AXy +- -+ ——AX
;M-xaﬁﬁi% : a2 (134)

The relative error E, is then given by

Aot o g o o
f oy f o | Tox f (139

T

Replacing the function f (h) with its approximation ¢(h) and denoting the known error bound as u (h"), where
n is a positive integer, we have

[f(h) —f(h)|] <" for small h
Thus, o(h) approximates f (h) with order of approximation O(h") and we can write
f (h) = ¢p(h) + O(h") (1.36)
Example E1.15
Determine the maximum relative error for the function
F = 3x2y2 + 5y272 — 7x272 + 38
Forx=y=z=1and Ax=-0.05, Ay = 0.001 and Az = 0.02.

Solution:
F = 3x%y2 + 5y272 — Tx272 + 38

oF

— = 6xV2 — 14 x22

™ Xy’ Xz

oF

— =6 2\ + 10 2

3y X2y yz

9F

= 10y%z — 14 x?
. Oy?z X4z
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oF oF

oF
= |— AX{+|—Ay|+|—A
(AF) max = ‘ax ) ay y 0z i

= |(6xy2 — 14 xz2) Ax| + |(6x2y + 10yz9)Ay| + |(10y2z — 14x2Z)AZ] = 0.496

For x=y=2z=1and Ax =—-0.05, Ay = 0.001 and Az = 0.02, we have the maximum réelative error is given by
Eq. (1.34).

+ +

(AF) 0.496
(B )mex = —Fm"’x =g = 001272

1.5.2 Stability and Condition

A numerical computation is said to be numerically unstable if the uncertainty of the input values is grossly
magnified by numerical method employed.

Consider the first-order Taylor’s series of a function given by
f=f@+f'(@ x—a) (137
The relative error of f (x) then becomes

(- f(@) _ f'(a)(x-a)

(0 f@ 3
The relative error of x becomes
x-a 139
a (L39)
A condition number is often defined as the ratio of the relative errors given by Egs. (1.38) and (1.39) as
af’(a)
Condition number = (140)

f(a)

The condition number given by Eq. (1.40) indicates the extent to which an uncertainty in x is magnified by
f (¥).
Condition number =1 (function’s relative error = relative error in X)
Condition number > 1 (relative error is amplified)
Condition number < 1 (relative error is attenuated) (141
Condition number > very large number (the function is ill-conditioned)

Example E1.16
Compute and interpret the condition number for
(@ f(x)=s¢nxfora=051n
(b) f(x)=tanxfora=17
Solution:
(@ The condition number is given by
af’(a)

f(a)

Condition number =
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for a=051n, f'(a) = cog(0.51 m) = -0.03141, f (a) = Sin(0.51 m) = 0.99951
af’(a) (0.51m)(—0.03141)
iti = = =—0.05035
Condition number f(a) (0.99951)

Since the condition number is < 1, from Eq. (1.41), we conclude that the relative error is attenuated.

(b) f(x)=tanx, f'(@) =—-7.6966fora=17
f'(X) = Yeos?x, f'(a) = /cosX(1.7) = 60.2377

af'(a) 1.7(60.2377)

= = -13.305
f(a) —7.6966

Condition number =

Thus, the function is ill-conditioned.

1.5.3 Uncertainty in Data or Noise

Uncertainty or error in the physical data based on which the computation model is based can introduce
errors in the analysis. This type of error is known as noise. The data can affect the accuracy of the numerical
computations performed. The errors can exhibit both inaccuracy and imprecision. If the input data has d
significant digits of accuracy, then the results obtained from the numerical computation should be reported
in d significant digits of accuracy. For instance if a = 5.358 and b = 0.06437 both have 4 significant digits of
accuracy, then although a — b = 5.29363, we should report the correct answer as a — b = 5.293.

The following observations can be made from the results in Tables 1.6 and 1.7.

(@ Negligible addition: Round-off error has crept into the fourth significant digit when we compare
a— ¢ (rounded) to A—C.
There is a difference in the fourth significant digit when b + d (rounded) are compared to B + D.

(b) Error magnification: Comparing a/c (rounded) to A/C we find a difference in the fourth significant
digit when bd (rounded) and BD are compared, the two answers differ substantially by —40000.

(¢) Creeping round-off: In the calculations of a — ¢, bd, a/c and b + d we find the result of working in
four significant digits as opposed to working “exactly” and then rounding would lead to a loss of
precision in the fourth significant digit. These calculations show the creeping round-off that is the
gradual loss of precision as repeated rounding errors accumulate.

(d) Subtractive calculations: Comparing a—b =—0.1808 to A — B = —0.1, we find significant error
introduced by working in fixed-precision arithmetic.

1.6 SEQUENCES

A sequence may converge to alimit in alinear fashion or in a nonlinear fashion. If the sequence is convergent,
then an iterative operation produces a sequence of better and better approximate solutions.

1.6.1 Linear Convergence

Here, we consider a sequence { X, Xy, ..., Xn} generated by the iteration X1 = g(x). Table 1.8 lists k, X, Ax
(= Xier1 — %) and Ax1/Ax for g(x) = 1 + x/2 where the starting value is taken as 0.85.
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X
Table 1.8: Linear convergence of the iteration process for X, :1+7k

AX k+1

k Xk AXy = Xie1 — Xk AXk
0 | 0.850000000 | 0.575 12
1 | 1.425000000 | 0.2875 12
2 | 1.712500000 | 0.14375 12
3 | 1.856250000 | 0.071875 1/2
4| 1.928125000 | 0.0359375 12
5 | 1.964062500 | 0.01796875 1/2
6 | 1.982031250 | 0.008984375 | 1/2
7 | 1.991015625 | 0.004492188 | 1/2
8 | 1.995507813 | 0.002246094 | 1/2
9 | 1.997753906 | 0.001123047 | 1/2
10 | 1.998876953 | 0.000561523 | 1/2
11 | 1.999438477 | 0.000280762 | 1/2
12 | 1.999719238 | 0.000140381 | 1/2

Notice that the ratios of successive increments in the last column of Table 1.8 are all exactly equal to 1/2
and the convergence of the sequence to x = 2 is linear. We call this sequence exactly linear since AX + 1
=c¢, Ax for all k > 0. Herec, = 1/2.

The sequence {x} is said to converge linearly provided the ratio of increments Ax, ,1/AX, tends to a
constant ¢, where0 <| ¢/ < 1.

Linear Convergence Theorem

(@ X=g(X),sox=Xisafixed point of the iteration X.,1 = g(X)-

(b) g'(x) is continuous in a neighbourhood of the fixed point X. (142
© gX)=0.

Therefore,

(@ {xg convergesto X linearly, with C, = g'(X) if 0 < |g'(X)| < 1.

(b) {xg¢ divergeslinearly, with C, = g'(X) if |g'(X)| > 1. (143

(©) {x¢ convergesor diverges slowly if g'(X) = # 1.

If sy =0ands; =r, the general term in a sequence that converges exactly linearly with convergence
constant C is given by

k=2 k-1

c -1

S=ryCh=r
n=0

Cc-1

(1.44)

The increments are then given by As, = .1 — S = rCK. Appropriate conditions on C and r would then
guarantee convergence.

1.6.2 Quadratic Convergence
Consider a sequence {Xg, X1, ..., Xo} generated by the iteration

X1 = g(xk)!
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_ 2.15x° +2.87

h X) =
where 900 = gexs 12

afunction with fixed points.

Table 1.9 lists k, X, AX [= (Xs1 — %], and Ax.1/ (Ax)? for which the starting value is Xy = 2. We observe
that the sequence converges very rapidly to the point x = 1. The last column of Table 1.9 shows that the
ratios Axy.1/ (Ax) 2 are tending towards the constant C, = —0.4. This confirms the quadratic convergence

of the sequence {x} to the point x = 1.

The sequence {x} is said to converge quadratically provided the ratio of increments Axy,1/(Ax,)?
tends to a constant Cq # 0, # co. If Ax,q = Cq(Ax)? for all k > 0, then the sequence is said to be exactly

guadratically convergent.

Table 1.9: Quadratic convergence of the iteration process for Xx,,, =

_2.15x% +2.87
3.96x +1.2

X

AXy = Xga1 — Xk

AXk+1/ (AXK)Z

2.000000000
1.257675439
1.022019537
1.000190587
1.000000015
1.000000000

apbrwWNEFELOX

—0.7423245614
—0.2356559011
—0.0218289508
—0.0001905722
—0.0000000145

—0.4276521490
—0.3930757235
—0.3999390216
—0.3999999952

Table 1.10: The structure of a sequence which is exactly quadratically convergent

k S AS = St — S | ASel(ASY)°
i) r C
1|r r’Cc C

2| r’C+r r*c? C

3| rC+r’C+r réc’ C

4| 8C"+r*CP+r’C+r riéct C

5 I,16C15 + I,8C7 + r403 + r2C +r I,32C31

6 I,32C31 + r16C15 + r8C7 + r4C3 + I,2C +r

Quadratic Convergence Theorem

(@ X=g(X),sox=Xisafixed point of the iteration X,+1 = g(%)-
(b) g"(x) is continuous in a neighbourhood of the fixed point X.

© gX¥=0.

That is, {x¢ convergesto X quadratically, with C, = —%g”(X).

(149)

Table 1.10 lists As,, A, = Sc+ 1 — S and the ratios As, ., 1/(As)? for a sequence whose convergence is
exactly quadratic, with convergence constant C, and with starting valuessy=0and s; =r.
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1.6.3 Aitken’s Acceleration Formula

Quadratic convergence or any convergence of order higher than 2 is faster than the linear convergence.
Aitken’s acceleration process is used to accelerate a linearly converging sequence to a quadratically
converging sequence. Aitken’s process will give better results in an iterative numerical technique with fewer
number of iterative operations.

Let x bethelimit of the sequence. That is,

lim x, =X
K—o0

If {x}, k=110 o, isalinearly convergent sequence with limit x, and &, = x, — X, then

== g [*

where a, o< is the order of convergence and A is the asymptotic error constant. If o = 1, convergence is
linear and if o = 2, convergence is quadratic.

Aitken's process assumes that the limiting case in Eq. (1.46) occurs for all k> 1. That is,

81 = A&
Therefore, we can write
X2 = G2 T X = B T X (2.47)
or Xero = AMXry —X) + x forall k=1 (148)
Reducing the subscript by 1, we have
Xer1 = AX = X) + X (L49)

Eliminating A between X1 and X, from Egs. (1.48) and (1.49), we obtain
Xee2Xe =Xt _ Yie + XXz = 24 %1 + D4 = X — X

Xz — D + X% Xer2 = Dies1 + X
(Xk+1 B Xk)2
X=X ————
o Xer2 — st + X
The sequence {x} defined by
VY
X = X — (Xk+1 Xk)
Xer2 = 2)(k+1+ Xy

converges more rapidly to x than the original sequence {x} for n =1 to .

Example E1.17

The sequence {x}, n = 1 to o, where x, = 3x* — 2x3 — 2x2 + 2.8 converges linearly to x = 1 with s = 0.75.
Using Aitken's acceleration formula, obtain another sequence, which converges faster to x = 2.

Solution:

The results obtained using both linear convergence algorithm and Aitken’s acceleration formula are shown
in Table E1.17.
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Table E1.17: Results obtained from linear convergence and Aitken's process

Linear convergence Aitken’s process
k AXk+1 (Xk+1 _Xk)2
X = = AX, X Xira = 2Xpepn + X,

0 | 0.750000000 | 1.03046875 1.903320561

1 | 1.780468750 | 0.109765625 1/2 2.000000000
2 | 1.890234375 | 0.054882813 1/2

3 | 1.945117188 | 0.027441406 1/2

4 | 1972558594 | 0.013720703 1/2

5 | 1.986279297 | 0.006860352 1/2

6 | 1.993139648 | 0.003430176 1/2

7 | 1.996569824 | 0.001715088 1/2

8 | 1.998284912 | 0.000857544 1/2

9 | 1.999142456 | 0.000428772 1/2
10 | 1.999571228 | 0.000214386 1/2
11 | 1.999785614 | 0.000107193 1/2

1.7 SUMMARY

In this chapter we described the Taylor’s theorem, number representation including binary, decimal and
hexadecimal numbers. We have defined absolute and relative errors, inherent errors, round-off errors,
truncation errors, machine epsilon and error propagation. Methods for the estimation were briefly outlined.
General error formulae for approximating a function, stability and condition, uncertainty in data, linear
convergence, quadratic convergence and Aitken’'s acceleration formulae were presented.

Problems
1.1 Determine the following hyperbolic trigonometric functions to O (0.9).

(& sinh(0.9)

(b) cosh (0.9)
1.2 Determine when f (x) = 0, given that f (1.7) = -1.7781 and f ' (1.7) = 4.3257.
1.3 Determinef (1.2), given the first order differential equation

i—2x ithf(1) =1
X withf(1) = 1.

1.4 (a) Convert (327),9 to binary.
(b) Convert (0.3125),4 to binary.
1.5 Represent the number 50824.6135 in the decimal system (base-10).
1.6 Find the binary and hexadecimal values of the following numbers,
(@ 3
(b) 203
1.7 Convert (75)1q to base-2.
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18

19
1.10
111

112

1.13

114

1.15

1.16

117

1.18

1.19

1.20

Perform the following operations:
@ (s + (s

(b) convert (75),9 to base-8

(¢) convert (13)g to base-10.
Convert (4D3)46 to base-10.
Convert (1001011), to base-8.

Show that the relative error E;,y, of the product where x = X + Axand y = ye + Ay iSEjyy = Erx +
Ery. Assume |E| << 1 and |E| << 1.

Show that the relative error E,,, of the quotient where x = X + Axand y = ye + Ay is Ey = Eiy — Eyy.
Assume [E,| << 1 and [E| << 1.

Determine the absolute and relative errors involved if x = 2/3 is represented in normalised decimal
form with 6 digits by

(@ round-off
(b) truncation.

Given that 5 digit chopping is used for arithmetic calculations involving x and y where x = 1/3 and
y = 5/7. Determine the absolute and relative errors involved.

If x = 3.536, determine the absolute error and relative error when
(@ xisrounded
(b) xistruncated to two decimal digits.

If the number x = 57.46235 is rounded off to four significant figures, find the absolute error, relative
error and the percentage relative error.

If the approximate value of n(: %j is 3.14, determine the absolute error, relative error and relative

percentage error.

Determine the true error and true percentage relative error for each case.

(a) If the measured length of atrack is approximated by 9999 cm and the true value is 10,000 cm
(b) If the measured length of a track is approximated by 9 cm and the true value is 10 cm.

The exponential function e can be computed using the Maclaurin series expansion as

2 3 Xn

€ =1+ X+ —+—+t—
20 3 n!
Include six terms in the series and compute the percentage relative error and approximate estimate of
the error for each term when estimating e%5.

5x2
Find the relative maximum error in F which F = ?y . Given Ax = Ay = Az = 0.001, where Ax, Ay and

Az denote the errorsin x, y and z respectively such that x =y =z = 1.
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121

1.22

1.23

1.24

1.25

1.26

1.27

Consider the trigonometric function f (X) = cos x
(@) find the Taylor series expansion of f (x) about O.

(b) assuming the Taylor series is truncated to n = 6 terms. Determine the relative error at x = n/4
due to truncation. Express it as a percentage.

(¢) determine an upper bound on the magnitude of the relative error at X = n/4 expressed as a
percentage.

Suppose f (X) = e* is to be expanded about the point x = 1 and truncated to n = 6 terms.

2 3 A5
el =l-X+———+——-—
2 6 24 120
Determine the upper bound on the magnitude of the absolute error due to truncation.
Determine the upper bound on the error for the function
f(¥) = (x+1)¥?
using a polynomial approximation with third-order Taylor series (computed about xg = 0) for all
xe[0, 1].
Consider the power series expansion for e given by
X X xto1 X"

€ =1+ X+—+—+-+ +o-e,0<E <X
21 3 (n-1! n!

Determine the number of terms, n such that their sum gives the value of e correct to 8 decimal
places at x = 1.

Use Taylor’s series expansion with n = 0 to 6 to approximate f (X) = cos X & X; + 1 = m/3 on the premise
that the value of f (x) and its derivatives at x; = n/4. Assume h = n/3 — /4 = ©/12.

Compute and interpret the condition number for

@ f(x)=tanx fora= g+0.1(gj

T T
(b) f(x)=tanx fora= 5+0.01(5j

Evaluate and interpret the condition numbers for
@ f=0(-1Y¥2-x forx=200

X

®) f(x)=e>:rl for x = 0.01
COSX

(©) f(x)_1+sinx for x = 0.001n

(d f(X)=e2 forx=5
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1.28 Verify whether the iteration X, +1 = g () Starting from the given Xy converges linearly for the
following functions g(x).

@ R+ x2—-7x—8,% = —-075
() 3 +52—-4x+ 15X 09
(© 4x*+53—-2x2—-3x—2,%x=-05
(d) 3C+x2-5x+3,% = 05
(® —4x3—8x2-3x+2,% = -125

1.29 Show that the iteration x,+1 = g (%) starting from the given xg will not converges quadratically for the
following functions g(x).

@ gb)= 2% +35x° -6 4
0= T iex—3 07
© g6 = 8°+4.5x° -3 .
0= o rex+15' 0"
6x> +6x% +1.5
= =2
© 9k X(9x+11) X
@ gb)= WK+ +6xX+1 L
9= e e r10x-1 0"
X' +9x3+3x% +5
© 9= =4

T et 14+ Tx—2 07

1
1.30 The sequence {S}, N = 1t0 o, where 5, = nln(1+ ﬁ) , converges linearly to s = 1. Using Aitken's

acceleration formula, obtain another sequence, which converges faster to s = 1.

ONONO)
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CHAPTER

Linear System of Equations

2.1 INTRODUCTION

In this chapter we present the solution of n linear simultaneous algebraic equations in n unknowns. Linear
systems of equations are associated with many problems in engineering and science, as well as with
applications of mathematics to the socia sciences and quantitative study of business and economic problems.
A system of algebraic equations has the form

Xy + apXo + o F Xy = by
AipXy + ApXo + o F AyXn = by

AmXy + @nXp + -+ + AnpXy = by 21

where the coefficients a; and the constants b are known and x; represents the unknowns. In matrix notation,
the equations are written as

Q; Qp v G || X by

81 8p v 8o || X | b,
: : : : (219
L2 1 B = M | b,
or smply Ax=Db (2.1b)

A system of linear equations in n unknowns has a unique solution, provided that the determinant of the
coefficient matrix is non-singular i.e, if |A| # 0. The rows and columns of a non-singular matrix are linearly
independent in the sense that no row (or column) is a linear combination of the other rows (or columns):

If the coefficient matrix is singular, the equations may have infinite number of solutions, or no solutions
at al, depending on the constant vector.

Linear algebraic equations occur in almost al branches of engineering. Their most important application
in engineering is in the analysis of linear systems (any system whose response is proportional to the input
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is deemed to be linear). Linear systems include structures, elastic solids, heat flow, seepage of fluids,
electromagnetic fields and dectric circuitsi.e., most topics taught in an engineering curriculum. If the system
is discrete, such as atruss or an electric circuit, then its analysis leads directly to linear algebraic equations.

Summarising, the modelling of linear systems invariably gives rise to equations of the form Ax = b,
where b is the input and X represents the response of the system. The coefficient matrix A, which reflects the
characterigtics of the system, is independent of the input. In other words, if the input is changed, the equations
have to be solved again with a different b, but the same A. Hence, it is desirable to have an equation solving
algorithm that can handle any number of constant vectors with minimal computational effort.

2.2 METHODS OF SOLUTION

There are two classes of methods for solving system of linear, algebraic equations. direct and iterative methods.
The common characteristics of direct methods are that they transform the original equation into equivalent
equations (equations that have the same solution) that can be solved more easily. The transformation is
carried out by applying certain operations.

The solution does not contain any truncation errors but the round off errors is introduced due to floating
point operations.

Iterative or indirect methods, start with a guess of the solution x, and then repeatedly refine the solution
until a certain convergence criterion is reached. Iterative methods are generaly less efficient than direct
methods due to the large number of operations or iterations required.

Iterative procedures are self-correcting, meaning that round off errors (or even arithmetic mistakes) in
one iteration cycle are corrected in subsequent cycles. The solution contains truncation error. A serious
drawback of iterative methods is that they do not always converge to the solution. The initial guess affects
only the number of iterations that are required for convergence. The indirect solution technique (iterative) is
more useful to solve a set of ill-conditioned equations.

In this chapter, we will present six direct methods and two indirect (iterative) methods.

Direct Methods:

Matrix Inverse Method

Gauss Elimination Method

Gauss-Jordan Method

Cholesky’s Triangularisation Method
Crout’s Method

Thomas Algorithm for Tridiagonal System

Indirect or lterative Methods,

1 Jacobi’s Iteration Method
2 Gauss-Seidal Iteration Method

2.3 THE INVERSE OF A MATRIX

If A and B are m x n matrices such that

AB =BA =| 22
then B is said to be the inverse of A and is denoted by

B=A"1 (229

O wNpE
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In order to find the inverse A1, provided the matrix A is given, let us consider the product,

&1 & - Gy My | — Mz | e (CDM My |
AadiA =8y 8y - @y [X|  —[Myp| Mz | < (DF" M|
8u @2 & | | (=DM My | ()P My | o IM,, |
n . .
= 2(_1)|+]akj I M | 23)
=1

An element of the matrix on the right side of Eq. (2.3) has the value

n o &; & - Gy
2(_1)Iﬂakj IM;; |= L ) =lal ifi =k (24)
=1

31 2 o @nm

If i # k the determinant possesses two identical rows, since the determinant corresponding to i # k is obtained
from the matrix [a] by replacing the it row by the k" row and keeping the k' row intact. Therefore, if i # k
the value of the element is zero.

Equation (2.3) can be written as
AAd A=Al (25)
Premultiplying Eqg. (2.5) throughout by A~ and dividing the result by |A|, we get
4, adj A
A=
det A (26)

so that the inverse of a matrix A is obtained by dividing its adjoint matrix by its determinant |A|.

If det A is equal to zero, then the elements of A~1 approach infinity (or are indeterminant at best), in
which case the inverse A1 is said not to exist, and the matrix A is said to be singular. The inverse of a matrix
exists only if determinant is not zero, that is, the matrix must be non-singular.

There is no direct division of matrices. The operation of division is performed by inversion; if
AB=C
then B=A1C
where A1 is called the inverse of matrix A.
The requirements for obtaining a unique inverse of a matrix are:
1 The matrix is a square matrix
2. The determinant of the matrix is not zero (the matrix is non-singular)
The inverse of amatrix is aso defined by the relationship:
ATA =|
The following are the properties of an inverted matrix:
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1 Theinverse of amatrix is unique.

2. Theinverse of the product of two matrices is equal to the product of the inverse of the two matrices
in reverse order:

(AB)1=B1A!

3. Theinverse of atriangular matrix is itself a triangular matrix of the same type.

4. Theinverse of a symmetrica matrix is itself a symmetrical matrix.

5. The negative powers of a non-singular matrix are obtained by raising the inverse of the matrix to
positive powers.

6. Theinverse of the transpose of A is equal to the transpose of the inverse of A:

(AT)—l = (A—l) T

Example E2.1
. . . 2 3
Find the inverse of the matrix A= 5 1
Solution:
A 2 3
If s 1
' 1 -3
then adj A=
-5 2
and detA=2x1-5x3=-13
1 3
1 -3 13 13
Hence At=—+ - BB
13|-5 2 i _3
13 13

24 MATRIX INVERSION METHOD

Consider a set of three simultaneous linear algebraic equations
anXy + appXe + AzXg = by

QuiX1 + ApXp + AxXz = by

azXy + agXp + AxXg = b3 27)
Equation (2.7) can be expressed in the matrix form
Ax=b (28
Premultiplying by the inverse A1, we obtain the solution of x as
x=A"b 29

If the matrix A isnon-singular, that is, if det (A) is not equa to zero, then Eq. (2.9) has a unique solution.
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|

The solution for x; is

&, A3

93 Aag3

dp &3

Ay Ay

8 x|

lbla12a13 1
+
[A]

>(1=me Ay Axn|=T
by ap, ag

83 g3

1
= m{ blcn + b2C21 + Qcﬂ}
where A is the determinant of the coefficient matrix A, and Cq;, C,; and Cs; are the cofactors of A
corresponding to element 11, 21 and 31. We can aso write similar expressions for X, and x3 by replacing the
second and third columns by the y column respectively. Hence, the complete solution can be written in
matrix form as follows:

X 1 Cu Cu G|
X :m Co Cp Cyulib (2.10)
X3 Ciz Cxi Cas|bs
1 1 )
X = ——[Cy [{b} = ——[ad Al{b
or {x IAI[ jil{b} IAI[ i Al{b}
Hence A= lTlladj Aand Adj A = A abs [A] 211)

Although this method is quite general but it is not quite suitable for large systems because evaluation of
A1 by co-factors becomes very cumbersome.

Example E2.2
Obtain the solution of the following linear simultaneous equations by the matrix inversion method.
1 3x] [5
@ 4 -1 %] |12
1 -1 3[x] [5
1 3 1| x| (5
Solution:
1 3x] [5
@ 4 1| x| |12

Cu=CED)MH] = -1
Cpp = (-1)24) = 4
Cou = (M3 = -3
Co= ()P = 1
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Hence C= -1 4
3 1
or_[1 -3
-4 1
-1 CT _ _1 _1 _3
|A| 13|-4 1
x| -1[-1 -8][5] -1[ -5 -36] -1[-41
Hence %, | 13|-4 1||12| 13|20 +12| 13| -8
—41
X =—==315
Therefore, 1= 3
-8
Xp = —— = 0.62
and 2" 13
1 -1
®) |Al=|4 2 -1=40
1 3

The matrix of cofactorsis given by

5 -5 10
C=(10 -2 -4
-5 13 6

The transpose of C is the adjoint of A or

5 10 -5
AdjA=C'=|-5 -2 13
10 -4 6
5 10 -5
A‘1=Ade/|A|=i -5 -2 13
40
10 -4 6
5 10 -5|[5 0] [o
Therefore X =AY =—|-5 —2 13| 0|=—|40|=|1
10 -2 slls 80| |2

or X1=0,%=1x=2
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Example E2.3
Find the inverse of the matrix
2 20
A=|-2 1 1
301
6
and solve the system of equations[A] {x} ={b} where{b} = <3}.
6
Solution:
2 2 0
The determinant of A=|-2 1 1
3 01

=2[1(1) - 0(1)] + 2[2(1) — O(0)] + 3[2(1) — L(O)] =12

Since det A = 12 # 0, the given matrix is non-singular. The cofactors corresponding to the entries in each row
of det A are

N S e N e
011—0 = Cp = 31" Ci= 3 d”
Cu=-F Y- c=P Y-2 Cr=—° A-6
27 o 1 2708 1 2713 0

129, _|29_, |29,
Ca=] 4= Co=—|, | Cu=|, 1

1 1 1

i I I R T

Hence Al=—"_=-— 2 2|=| & 1 -4
Al 12| o o 2 8 T
- 7 2 2

It is easy to verify that AZA = AA 1 =,

6_3.6 6-6+12
% 5 —¢ <l6] [27%t% 12 1
_raliw_| 5 1 _1 _| 30,3 6 |_|30+46-12 |_
Therefore X =[A7]b=] 3 & —sl3|=l2ts-s =17 |=|2
1 1 1
X - = =16 6,3,6 —6+6+12 3
3 4 2 2 251> a

2.4.1 Augmented Matrix

A system of linear equations in matrix notation takes the form Ax = b, where A is of order m x n, x is of order
n x 1. The augmented matrix [Ay] can be obtained by adjoining column b to matrix A. In terms of partitioned
matrices we have [Ag] = [A: b].
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As an example let us consider a set of linear equations

X+y+z=8
X+y-z=5
X—y+z=2
Then we have,
1 1 1 8
[Al=11 1 -1}; {b}=45
1 -1 1 2
1 1 18
and [AJ=]1 1 -1 5
1 -1 12

2.5 GAUSS ELIMINATION METHOD

Consider the following system of linear simultaneous equations:

Q11X + ApXp + aygXs = Iy (12
QX + AxpXp + AxXs = by (213
AgX1 + agXp + agaXz = b (214

Gauss elimination is a popular technique for solving simultaneous linear algebraic equations. It reduces the
coefficient matrix into an upper triangular matrix through a sequence of operations carried out on the matrix.
The vector b is also modified in the process. The solution vector {x} is obtained from a backward substitution
procedure.

Two linear systems Ax =b and A'x = b' of equations are said to be equivaent if any solution of one
is a solution of the other. Also, let Ax = b is alinear non-homogeneous system of n equations. Suppose we
subject this system to the system of following operations:

1 Multiplication of one equation by a non-zero constant.
2. Addition of a multiple of one equation to another equation.
3. Interchange of two equations.

If the sequence of operations produce the new system A’x = b’, then both the systems Ax = b and
A'x =b' are equivalent. In particular, then A isinvertible if A’ isinvertible. In Gauss elimination method, we
adopt this and the elimination process is based on this theorem.

In Gauss elimination method, the unknowns are eliminated such that the elimination process leads to an
upper triangular system and the unknowns are obtained by back substitution. It is assumed a1 # 0. The
method can be described by the following steps:

Step 1: Eliminate x4 from the second and third equations.
Using the first equation (2.12), the following operations are performed:

(2.13) —(%) (212) and (2.14) —[&J (2.12)

1 1
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gives auXi + apXe + 13Xz = by (215
A'poXp + AXg = by (216)
A'pXp + AzXz = b3 (217)

Equation (2.15) is called the pivotal equation and the coefficient a;4 is the pivot.

Step 2: Eliminate x, from the Eq. (2.17) using Eq. (2.16) by assuming a',, # 0. We perform the following
operation:

(zrn—(a%j(21®
a

22

to obtain A1Xg + Xy + gz = bl (218)
Xy + AXz = bz (219
and a233X3 = b”3 (220)

Here Eq. (2.19) is called the pivotal equation and the coefficient a'», is the pivot.

Step 3: To find %y, X, and x3, we apply back substitution starting from Eq. (2.20) giving s, then x, from
Eq. (2.19) and x, from Eq. (2.18).

Pivoting:

Gauss elimination method fails if any one of the pivots in the above equations (2.12) to (2.20) becomes zero.

To overcome this difficulty, the equations are to be rewritten in a dightly different order such that the pivots
are not zero.

Partial pivoting method:
Step 1: The numerically largest coefficient of x; is selected from all the equations are pivot and the
corresponding equation becomes the first equation (2.12).

Step 2: The numerically largest coefficient of x, is selected from all the remaining equations as pivot and the
corresponding equation becomes the second equation (2.16). This process is repeated till an equation into
asimple variable is obtained.

Complete pivoting method:
In this method, we sdlect a each stage the numericaly largest coefficient of the complete matrix of coefficients.
This procedure leads to an interchange of the equations as well as interchange of the position of variables.
Example E24
Solve the following equations by Gauss elimination method:

2X+4y—6z =—-4

X+5y+3z =10
X+3y+2z= 5
Solution:
X+ 4y—6z =—4 (ED
Xx+5y+3z=10 (E2

Xx+3y+2z= 5 (E3)
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To eliminate x from (E.2) and (E.3) using (E.1):
2X+4y—-6z = -4
X+5y+3z= 10 1x (-2
Xx+3y+2z= 5 1x (-2
2X+4y—-6z= 4
—2X— 10y — 6z =-20
—2x—-6y—4z =-10
2X+4y—-6z= 4
Row 1+ Row 2 —6y—12z =24 (E6)
Row1+Row3: 2y-10z = -14 1x (=9 (E5H

To eliminate y from (E.5) using (E.4):
2X+4y—-6z =4
—6y—12z =24
6y+30z = 42
2X+4y—-6z =4
—By—-12z = 24
Row 2+ Row 3: 18z=18 =|z=1
Evaluation of the unknowns by back substitution:

—by—12z =24

24-12x1
= — =1 = —4 = 2
6y = 24-12z y 5

X+4y—-6z2=-4
X =-4-4y+6z =>x=¥2+6><1 = |x=-3
ExampleE25
Use the method of Gaussian elimination to solve the following system of linear equations:
Xp+ X+ X3—X4 =2
I+ A+ X3+ X, =11
Xy —Xo—X3+ 2%, =0
2X + Xp + 2%3 — 2%y = 2 (ED
Solution:
In the first step, eliminate x; terms from second, third and fourth equations of the set of equations (E.1) to
obtain:

X+ X+ X3 —Xq4 =2

—3X3+5%x, =3
—2Xp —2%3 + 3%y = 2
—X; =2 (E2

Interchanging columns in Eq. (E.2) putting the variables in the order Xy, X4, X3 and X, as
X=X+ X3+ X =2
—5x4—3x3 =3
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In the second step, eliminate X, term in third equation of the set of equations (E.3)
X=X+ X3+ X =2

5%y —3%3 =3
-1/ BXz — 2%y = -19/5
X, = -2

Now, by the process of back substitution, we have
Xo=2,%=-1,%=0,x =1

Example E2.6
Using the Gaussian elimination method, solve the system of equations [A] {x} = {b} where

and {b} =

o

N
N O W Bk
= W O
o P W w

Solution:
The augmented matrix is

1 1 1 1 3]
2 -1 3 0 3
[Ag]J=] 0 2 0 3 1
0 2 0 31
-1 0 2 1 0]
From the augmented matrix, we apply elementary transformations:
(1 1 1 1 3]
0 -3 1 -2
Row 2-2xRow 1
0 2 0 31
Row 4+ Row 1
0 0 3 1
0 1 3 2 3]
which gives
1 1 1 1 3|1 1 1 1 3
0o -3 1 -2 -3,/0 -3 1 -2 -3
2 5
o 0 £ % -1/jo o0 2 % -1
o o ¥ 4 2(lo 0 0 -7 7

Hence, by back substitution the upper triangular matrix, we obtain
X4:—1,X3:1,X2:2,X1:1.

(E3)



40 /I Numerical Methods //

2.6 GAUSS-JORDAN METHOD

Gauss-Jordan method is an extension of the Gauss elimination method. The set of equations Ax = b is reduced
to adiagond set Ix = b', where | isaunit matrix. Thisis equivalent to x = b'. The solution vector is therefore
obtained directly from b'. The Gauss-Jordan method implements the same series of operations as implemented
by Gauss dimination process. The main difference is that it applies these operations below as well as above
the diagonal such that all off-diagonal elements of the matrix are reduced to zero. Gauss-Jordan method also
provides the inverse of the coefficient matrix A along with the solution vector {x}. The Gauss-Jordan method
is highly used due to its stahility and direct procedure. The Gauss-Jordan method requires more computational
effort than Gauss elimination process.

Gauss-Jordan method is a modification of Gauss elimination method. The series of operations performed
are quite similar to the Gauss elimination method. In the Gauss elimination method, an upper triangular matrix
is derived while in the Gauss-Jordan method an identity matrix is derived. Hence, back substitutions are not
required.

Example E2.7

Solve the following equations by Gauss-Jordan method.
X+3y+2z2=17
X+2y+3z=16
2X—-y+4z =13

Solution:

Consider X+3y+2z=17 (ED
X+2y+3z=16 (E2
2X-y+4z =13 (E3
X+3y+2z=17 (E1) (2 + (E3)

X+2y+3z=16 (E2) (1) +(ED
2X—-y+4z =13
X+3y+2z=17
y—-z=1 x(2) + (E)
=2 =[y=3
X+ by =19
y—-z=1 =z=y-1=3-1 =[z=2]
x+5y =19 =Xx=19-5x3 = [x=4|
Example E2.8
Solve the following system of equations using the Gauss-Jordan method.
X=-2y = -4
Sy+z= -9

4x-3z =-10
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Solution:
The augmented matrix is

1 -2 0! -4
0 -5 11 -9
4 0 -3,-10

Multiplying 1%t row by —4 and adding the result to the 39 row, we obtain

1 -2 0l-4
4R +Ry—>[0 -5 1 1-9
0O 8 -3, 6

Now, multiply the 2™ row by —1/5
. 1 -2 0l -4
—sR—[0 1 ~1/5 19/5
0O 8 -3, 6

Multiply the 2" row and add the result to the 1% row. Then multiply the 2 row by —8 and add the result to
the 3 row.

1 0 -2/5! -2/5
2R,+R —|0 1 -1/51 9/5
|0 0 -7/5-42/5
Multiply 3 row by -5/7
c 1 0 -2/51-2/5
-2 R,—|0 1 -1/51 9/5
7 |
10 0 1, 6

Multiply 3" row by 2/5 and add the result to 1% row. Then multiply 3 row by 1/5 and add the result to 2™ row.

2R;+R—>[1 0 012
010i3
lR+R,—>|0 0 16

Hence, the last matrix above represents the system withx =2,y =3 and z= 6.

Example E2.9
Solve the following set of equations by Gauss-Jordan method.
2 + X —-3x3 =11
4xg — 2%+ 3%3 = 8
—2X1 + 2% — X3 = 6
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Solution:
The augmented matrix for the given set of equations is

4 -2 3 8
-2 2 -1 -6
; 1.3 1
2 2 2
Step 1: Divide Row 1by 2 4 -2 3 8
-2 2 -1 -6
EREER
Step 2: Row 2-4x Row 1 2 2 2
"Row3-2xRow1l |0 4 9 14
0 3 -4 5
p1su
2 2 2
o 9 7
Step 3: DivideRow 2by—4 |0 1 "7 3
0 3 -4 5
10 -2 B
8 4
- 9 7
Step 4: Row 1-1/2x Row 2 01 2 7
Row 3—-3x Row 2 4 2
03 = U
L 4 2]
10 -3 DB
8 4
. 9 7
Step 5: Divide Row 3by 11/4|0 1 2 3
10 0 1 -2
100 3

Row 1+ 3/8x Row 3 010 -1

Step 6:
Row 2+9/4x Row 3 00 1 -2

Hence the solution isx; = 3, X, = =1, X3 = —2.
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Example E2.10
Solve 2X; + 6o+ X3 = 7
Xg+ 2% — X3 =—1
5%+ 7% —4%3 = 9
Using (a) Gaussian elimination and (b) Gauss-Jordan elimination.

Solution:
(8 Using row operations on the augmented matrix of the system,
2 6 1| 7 12 1|1 —§R+R2 1 2 -1/
12 -1|-1|]—R5[2 6 1| 7|28 ,l0 2 3| 9
57 4] 9 57 4| 9 0 -3 1|14
1 1 2 -1|-1 12 -1 -1 , 12 -1 -1
—2"5l0 1 3| ¢[-=Rslo 1§ gm0 1 &g E)
0 -3 1|14 00 4 = 00 1 5 '
The last matrix is in row-echelon form and represents the system
X1+2X2—X3:—1 (EZ)
w3y 22 E3
2+ %= €3
X3 = E9

Substituting X; = 5 into Eq. (E.3) gives x, = —=3. Substituting both these values back into Eq. (E.2)
finaly yields x; = 10.

(b) We start with the last matrix in Eq. (E.1) above. Since the first entries in the second and third rows
are 1s, we must, in turn, make the remaining entries in the second and third columns Os:

1 2 -1]-1 10 -4|-10 42%*3% 1 0 0|10

-—Ry+
01 3|8 2R,01 2 2 —2""3/010|-3 E5)
00 1|5 00 1| 5 00 1| 5

The last matrix in Eq. (E.5) is now in reduced row-echelon form. It is evident that the solution of
the systemisx; = 10, X, = =3, X3 = 5.
L U Decomposition: It is possible to show that any square matrix A can be expressed as a product
of alower triangular matrix L and an upper triangular matrix U.
A=LU

For instance

Q1 S G Ly 0 0 |jUy Up Up

Ay a8p ap|=|Llny Lp 0| 0 Uy Uy

83 8p &g Ly L Lu]l 0 0 Ug
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The process of computing L and U for agiven A is known as LU Decomposition or LU Factorisation. LU
decomposition is not unique (the combinations of L and U for a prescribed A are endless), unless certain
constraints are placed on L or U. These constraints distinguish one type of decomposition from ancther.
Two commonly used decompositions are given below:

1  Cholesky's decomposition: Constraints are L = UT
2. Crout’s decomposition: Constrainsare U; =1,i =1, 2, ..., n.
After decomposing the matrix A, it is easier to solve the equations Ax = b.
We can rewrite the equations as
LUx=Db
or denoting Ux =y, the above equation becomes
Ly=b
This equation Ly = b can be solved for y by forward substitution. Then Ux = y will yield x by the
backward substitution process. The advantage of LU decomposition method over the Gauss elimination
method is that once A is decomposed, we can solve Ax = b for as many constant vectors b as we please.

Also, the forward and backward substitutions operations are much less time consuming than the
decomposition process.

2.7 CHOLESKY’S TRIANGULARISATION METHOD

Cholesky’s decomposition method is faster than the LU decomposition. There is no need for pivoting. If the
decomposition fails, the matrix is not positive definite.
Consider the system of linear equations.
Qq1Xy + AXe + AyaXg = by
axXy + apXy + aXs = by

az1X1 + agXp + AwXs = b3 221)
The above system can be written as 222
Ax =b
a; ap A k3 by
where A=lay ay ay|, X=|% |, b=|b
831 83 a3 | X3 by
Let A=LU... (229
1 0 0 (U Uy U
L = |21 1 O md U = O U22 u23

Equation (2.21) can be written as
LUX=b (224
If we write Uux=Vv (2.25)
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Equation (2.24) becomes
LV=b (2.26)
Equation (2.26) is equivalent to the system

vy = by
l22vy + Vo = by
I31vy + I35V, + V3 = b3 (227)
The above system can be solved to find the values of vy, v, and v3 which give us the matrix V.
UxX =V

then becomes
UpaXg + UppXp + UgaXs = Vg
UxpXy + UpgXz =V
U3sXz = V3 (228

which can be solved for X3, X, and x; by the backward substitution process.

In order to compute the matrices L and U, we write Eq. (2.23) as

1 0 Ofjuy Up s Q& dp a3
| 21 1 0| O Uy Upg|=|ay ay ay (229
lap l 1] 0 0 Up] [ay 8p ax

Multiplying the matrices on the left and equating the corresponding elements of both sides, we obtain

Ugp = @y1, Upp = Ago, Uz = 13 (2.30)
a
_ _ 3
Ity = 8y = 1y =—=
A
831 (231
I3ty = 8 = I3y = —
R
sty + Upy = By = Uy = 8y — 2L
21U T Uy = 8p o = A 3
A
[yUss + Usq = 2, Upa = B — 221 (232)
2113+ Upz = Q3 = Upz = A3 Q3
3
1 Ay
3t +I50Upp = 8gp = |3 = —| 83 ——— &y (233
) )
and [31U13 + l3oUps + Usz = ag3 (234)

The value of ugz can be computed from Eq. (2.34).

To obtain the elements of L and U, we first find the first row of U and the first column of L. Then, we
determine the second row of U and the second column of L. Finally, we compute the third row of U.
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Cholesky’s triangularisation method is aso known as Crout’s triangularisation method or method of
factorisation.

Example E2.11
Solve the following equations by Cholesky’s triangularisation method.
X+y+4z =12
8x—-3y+22=20
Ix+1ly—-z =33
Solution:
2 1 4 X 12
We have A=(8 -3 2|, X=|y|, B=|20
4 11 -1 z 33

1 0 Ofluy Uy Uy 2 1 4
l31 1, 1] 0 0 ug 4 11 -1
Multiplying and equating we get:
|XU11: 2=>=2
|XU12: 1ﬁ=1
IXU]_3= 4:>=4

8 8
|21X Uy = 8=>=—=§=4
Uy

|21><U12+U22 =—3=>=—3—|21><U12=—3—4X1:—7
L, XU, + Uy, = 2= [Uy| =21, xu, =2-4x4=-14

|31X Uy = 4 :}:izﬂzz

U, 2
M-Iy xu, 11-2x1 9
|31XU12+|32XU22=]1:>= 31 = Z :—7
u22 -

|31X Uz + |32X Upg + | x Uzz= -1 ﬁ: -1- |31X Uiz — |32X Uz = -1-2x4- (—%(—14)) =27

N !
We get: A=4 10 0 -7 -14
2—210 0 -27

7
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and the given system can be written as:

100 4w T2
4 S;L00—7—14y=2o

2—7100—272 33

Writing: LV = B, we get

=
o
o

v, [12
410l ||
2 -2 qlv,| |33

7

which gives =12 =
AV + Vo = 20 =V, =20-4x12=-28
9 9
V1SV, V3 = B :>:33+7(—28)—2>< 12=-27
The solution to the original system is given by:
ux =V

2 1 4x 12
0 -7 -14|y|=|-28
0 0 -27|lz| |-27

X+y+4z =12
—7y—14z =28
272=-27 =[z=1

14
= — —4 = — = =2
7y=28-14x1=y="

6
2x:12—y—4z:12—2—4><1:>x=E:>

Example E2.12
Solve the system of equations using Cholesky’s factorisations.
X+ X+ X3 —Xg4 =2
X1 —Xo—X3+ 2%, =0
I+ A+ X3+ X = 11
2% + Xo+ 2% —2%4 = 2
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Solution:
The set of equations can be written in the matrix form [A[{x} ={b}
1 1 1 -1||x 2
1 -1 -1 2||% 0
4 4 1 1||x 11
2 1 2 -2||x 2

Let us decompose [A] in the form

[Al =[L] [U]

1 0 00 Uy Uy Uz Uy

| 1 0 O 0 u u u
where [L]= 21 and [U]= 22 Upz Uy

I3 I, 1 0 0 O ugy Uy

lgg 1oz sz 1 0 0 0 wuy
The product of [L][U] gives

Uy Upp U3 Uy

[L][U] = Iy pglhp +Up |1t + Ugg I o1t + Upy
l3Uny gty +lgoUpp  lggUng + I3pUng + Ugg l31Uyg + I3pUps + Ugs

lgtiy  lagbo +1aoUz  Taglhg +1apUps +1aglss  Tagtha +1apUng +1agUgs + Usa

Equating the elements of this matrix to the [A] matrix yields the following equations

=1 l21U11 = 1 l31U1; = 4 [41U11 = 2

Up=1 [21Up2 + Uy = -1 [31U12 + 32Uz = 4 [41U12 + 40U = 1

Uz =1 [21U13 + Uz = -1 [31U13 + IspUpz + Uz = 1 IgqUy3 + lgoUps + I 23Uz = 2

Uy =-1 [21U14 + Upq = 2 [31U14 + I3pUpg + Ugs = 1 lgqUpg + lgoUpg + lggUzg + Ugy = =2

By solving these sixteen equations we get

10 0 0 1 1 1 -1
G|t roo o223
=14 o 1 o/™MMNI=|g o 3 5

21 11 00 0 1

To solve [Al{x} = {b} we have to solve the two systems
(LY} ={b}
UI{ ={Y}
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100 0|[y] [2
_ 110 0|ly,| |o
& 401 0|y [ Jue

2%%1)’4 2

which gives by forward substitution
Vi=2,¥2=-2,¥3=3,¥2=0
and hence [U]{x} = {y} becomes

1 1 1 -1](x 2
0 -2 -2 3||x| |[-2
0 0 -3 5||x| |3
00 0 1fx 0

Then by back substitution we obtain
X=0,%3==-1,%=2% =1

Example E2.13

Solve the system of linear equations using Cholesky’s factorisation method.

2X—6y+8=24

Bx+4y-3z= 2

X+y+22=16
Solution:

1 0 Ofjug
1 Of 0 uy

l, 1|0 0
U3
Ip1thg + Ugg =
l3th3 + l35Up3 + Ugg

U]_3=8

Uiz
|51 Uy | =
|3y Us3
Uz
| 59U + Ugy
l31Un5 + 35U,

Upp = =6,

U1
1y
l31Uhy

Uy = 2,

W o WO

|21=i= 25

Uy

3
l,=—=15
ull

Uy = 4 — |2]_U12 =19
Upz = =3 — Il = =23
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Iy = 1-lg, 10
Uy 19
40
I3 = 2 — l3pUs3 — | 32U = 10
1 0 O (2 -6 8
L=|25 1 0|, u=|0 19 -23
15 L 1 0o 0 %

19 19

1 0 0fy] [24

LV=B= |25 1 O|v,|=|2
15 8 1\l | |16

= V]_=24
V,=2-25x24=58

10 200
V3= 16— 1.5 x 24 —— (-58) = —
19 19
2 6 81x] | %
_ -58
UX=V=|0 19 -23|ly|=
200
0 0 &zl £
19 19
2X—6y + 8z = 24 (E1)
19y — 23z = 58 (E2)
4—0 zZ= @ =|z=5 E3
197 19 - E3

From Egs.(E.2) and (E.3), we have
y=3
From Egs.(E.1), (E.2) and (E.3), we get

2.8 CROUT’S METHOD

This method is based on the fact that every square matrix A can be expressed as the product of a lower
triangular matrix and an upper triangular matrix, provided al the principle minors of A are non-singular. Also,
such a factorisation, if exists, is unique.

This method is also called triangularisation or factorisation method. Here, we factorise the given matrix
as A = LU, where L is alower triangular matrix with unit diagonal elements and U is an upper triangular
matrix. Then,

Al=(LU)T = ULt
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Consider the system
anXy + apXe + azXs = by
axXy + agXy + axpXs = by
az1Xq + agXp + Xz = b3
The above system can be written as

Ax =D
Let A=LU
where L={ly Iy

|31 |32

|33

1 up, ug
andU=[0 1 uy
0O O 1

(239)

(2.3)

(2.37)

Here, L is alower triangular matrix and U is an upper triangular matrix with diagonal elements equal to unity.

A=zLU= At =UL?

a
a

CP)

NCNV A= LU = 3.22

a3

CP)

or 7]

A

Equating the corresponding elements, we obtain

ly = ang
l1aUp = agp
l21Us + 122 = @2
l21U13 + 22Uz = @3
and
from (2.40) we find
U = apoflyy = alag
from (2.41) we obtain

l31U13 + laplps + l33= ag3

l22 = @ — Iyl

I3 = ag — Izl

Equation (2.42) gives

Upz = (az3 — l2aUpa)/l o

from the relation (2.43) we get

l33 = ag3 — la1liz — l3olz
Thus, we have determined all the elements of L and U.
From Egs.(2.36) and (2.37) we have

LUx =b

(2.39)
[y 0 O[1 up g
= |21 I 22 O O 1 u23
1 [ l11Un, l11Uh3
=11y Iy +lpn PR PA LS
l3p lgtip+ 13 lgthg+lgUps + 133
l21 = an l31 = agn (239
l13Us3 = a3 (240)
laUpp + I3 = ag (241)
42)
243
(244
(245
(246)
(247

(248)
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Let Ux =V
Vi
where V= \fz
v

From Eq. (2.48) we have LV = b, which on forward substitution yields V.

From UX =V, we find x (by backward substitution).

Example E2.14
Solve the following set of equations by Crout’s method:
X+y+4z =12
8x—-3y+22=20

Solution:

We have

Let

Ix+1ly—-z =33

2 1 4 X 12
A=|8 -3 2|, X=|y|, B=|20
4 11 -1 z 33
AX = B
A= LU
ly, 0 O 1 uy, ug
L— |21 |22 0 U = 0 1 u23

2 1 4 ly, 0 0|1 up s

8 _3 2 = |21 |22 0 O l U23

4 11 -1 |1y Ip Ih]l0 0 1

2 1 4] [y |11t l11Un3

8 =3 2 |=|ly Inup+ly PUER PA
4

11 1) Iy IgUp+le Tgthg +lgUxg +lgg
1
l12U12 = 1=>=§
4
l11U1p = 43:522
|22 + |21U12 =3= = —3—8(%) =-7

1
I3 + lpjlpp =3 = [l3p [ =11- 4(5) -9
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2-8x2

[21U13 + loUpz = 2= = 2

l3Uss + lgpling + I35 = =1 = [Ig5| = —1-4x2-9x 2= -27
2

2
1

L=|8 -7 O and U =

o o K
O B N

v, =12 =v|=6

8V, — 7V, =20=>=w=4

—33+4><6+9><4_ 1
27 -

4vy + OV, — 27v3 = B = |V =

v, [e
V=V,|=

o
O - Nk
R NN P

x+%y+22:6
y+2z=4
z=1
y=4-2x1
=[y=2|
%x2—2><1 :

Example E2.15

Solve the following set of equations by using the Crout’s method:
2X t X+ X3 =7
X1+ 2%+ X3 =8
X1+ X +2%3 =9

X=6-—
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Solution:
2 11 X 7
A=|1 2 1|, x=|y|, B=|8
11 2 z 9
Let A =LU
l, 0 O 1 uy, ug
L: |21 |22 O U = 0 1 U23
211 1y l11Uho l11th3
1 2 1i=\ln Intp+ly Ip1thg + 1 poUzg
112 l3p  laglip +1gp Ity +135Ups + 133

|11:2, |21:1, |31:1
1 1
U12—E, U13:E
3
|22 =2—|21U12=2—1x§ =5

1
lp =1-lgUp=1-1%x =

272
u s 1
b3 = =
PSP N . S
33 = 2 —lzlz — Ipolpz = 5737373
2 0 0 1 1/2 1/2
L={1 3/2 0|, U=(0 1 1/3
1 1/2 4/3 0 0 1

Ax =B, LUx=B, Ux=V
2 0 0 (v 7
LV=B=|1 3/2 0 || |=|8
1 1/2 4/3||v, 9
2vy=7T=Vv; =35

3 35
V1+§V2=8ﬁV2=3 V=3

1 4
Vi+=Vo+=V3=9=Vv;=3
1T 52T 3
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1 1/2 1/2|% 35
Ux=V=|0 1 1/3|[%|=|3

0O O

x1+%x2+%x3 =35
Xo + % X3 =3

From Egs.(E.2) and (E.3), we have
X =2

From Eq.(E.1), we get

X% =1

Xg 3

ED

(E2)

E3

2.9 THOMAS ALGORITHM FOR TRIDIAGONAL SYSTEM

Consider the system of linear simultaneous algebraic equations given by

Ax=Db

where A is atridiagonal matrix, X = [Xy, X,
tridiagonal system of equations given by

&y &3

ay 8xp
0 ay
0 0

Equation (2.483) can be written as
apX + azXe = by
axXy + agXp + AxpXz = by
Az Xp + AzpXg + AgaXy = b3
auXa + agpXs = by

oo, X T and b = [by, by, ..., by]T. Hence, we consider a4 x 4

0 x| (b
0% b,
ag || % | | by (2489

(2.48b)

The system of equations given by Eq.(2.48b) is solved using Thomas Algorithm which is described in three

steps as shown below:
Sep 1. Sety; = ag», and compute

_ %13

Yi =4
i 2 Vi1

i=2,3, ...,n
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Sep 2 Set z = i and compute

&>
zi:m i=23..,n
Yi
Sep 3: xizzi—% i=n-1,n-2, ..., 1, wherex, = z,
i

Example E2.16
Solve the following equations by Thomas Algorithm.

3)(1 Xy = 5

2 —3X% +2X3 =5
Xo + 2%3 + 5%, = 10

X3—% =1
Solution:

3 10 0lx] [5
y 2 32 0|x| |5
e 0 12 5|x]| |10

0 1 1% | |1

[a2! as, a4] = [2, 1, 1]
[by, by, bs, by] =[3,-3,2, 1]

[Clv C, C3] = [_11 215]
Sep 1. Set y; = by and compute
yi:Q—& i=2,3 ...,n

Vi1
y1 =3

a 2(-1 7
I
Y1 3 3

: _p, 3% _, 1x2_ 20
o [il-b B2 X2

Y2 _r 7
3
_ _p, 2% _ 4 15_ 55
7
d _5 d-az,
Step 2: Setzy = —=—-,z = i=2,3 ..,n
T b3 Y,
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><5
_d-az 3_5
=2 _ Y2 - 7 7
3

Y. 20 "2
7
75
D _dy-ayz 20
20
Step 3: Set X =7 %,lzn—l,n—z 51 X, =2z,
i
] =2 =1
GX, 75 5x1
i=3 |gl=———="—-—F=
° y; 20 20 4
7
CrX3 5 2x2
I=2 |X|=2-——"—= - =
? Y2 77 @
3
X, 5 )x1
|—l, _Zl C.LZ___() _
3 3
Example E2.17
Solve the following set of tridiagonal set of algebraic equations using Thomas's method.
X1+4X2=10

21+ 10%, —4X3 = 7
Xo + 8X3—X4 =6
X3 —6X4 =4
Solution:

bixg + C1Xp = dg
Xy + boXo + CoXg = d
azXp + baXs + Caxg = d3

Xz + baxq = dy
=2, 3=l a=1
b;=1,b,=10,b; =8,b,=-6
c=4c=4c=-1
d,=10,d,=7,d3 =6,d,=4
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Stepl:  Sety,=h,

i=2,3, ...,n

yi = - 352,

Vi1
y1=1

-60+1_ 59
= Ya= 70 T 10

:ﬂ z = d -3z,
by Yi

_10_
1

_7-210 13
27 2 T 2

L, _6-1-13/2) _6+13/2_25
3T 10 T 10 20

Step 2: Set 4 i=2,3 .y n

z 10

_4-1x25/20 55

Z -
4 ~59/10 118

Sep 3 Set xy =z % =z — 9L i=n-1,n=2, .., 1
Yi

55
=~116" —0.466

_25_(-D(-55/118) _ oo
20 10

13 (-41203
_ ST, = 4.094

Can A-4.004)
=10 = 26.376
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2.10 JACOBI'S ITERATION METHOD

This method is aso known as the method of simultaneous displacements. Consider the system of linear
equations

anXy + apXe + AzXz = by

Ax1X1 + agXp + AnXg = by

az1X1 + agXp + AwXs = b3 (249)
Here, we assume that the coefficients a;4, ay, and ag; are the largest coefficients in the respective equations
so that

[a41] > ago] + [aus]
22| > [az1] + [ags]
[ags] > [as1] + [az] (250)

Jacobi’s iteration method is applicable only if the conditions given in Eq.(2.50) are satisfied.
Now, we can write Eq.(2.49)

1
X =— (0 — % —aX%s)
3

1
Xo = — (b — A% — Ax3Xa) (251)
3

1
X3 = — (b3 — @z1X1 — AzpXo)
333

Let the initial approximations be x, x5 and xJ respectively. The following iterations are then carried out.

Iteration 1. The first improvements are found as
1
X1 = _(b1 —aX) — 313X§)
&

1

_ 1 0 0

Xo1 = a (bz -y — a23x3)
02

1
X1 = a_(b3 - asle - a32X(2) ) (252
33
Iteration 2: The second improvements are obtained as

1
Xip = — (b1 — @19%o1 — A13X31)
Tl

1
Xpp = — (D2 — @p1X11 — Ax3Xa1)
)

1
X32 = — (D3 — ag1Xq1 — agoXo1) (253
333
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The above iteration process is continued until the values of x;, X, and X3 are found to a pre-assigned degree
of accuracy. That is, the procedure is continued until the relative error between two consecutive vector norm
is satisfactorily small. In Jacobi’s method, it is a general practice to assume X = X3 = X9 = 0.. The method
can be extended to a system of n linear simultaneous equations in n unknowns.

Example E2.18
Solve the following equations by Jacobi’s method.
15x+3y—-22=8&
2x+10y+z =51
X—2y+8z=5
Solution:
In the above equations:
151> 3] + -2
10> [2] + 1]
18> 1]+ -2
then Jacobi’s method is applicable. We rewrite the given equations as follows:

1 1
=—(d;-by-c¢z) =-—(85-3y+2
X (dy-by-c2) 15( y+22)

y= é(d2 —aX—Cy2) = 1—10(51— 2x-2)

1 1
= = (dy—agx—byy) == (5-x+2
z %( 3~ agX—3Y) 8( X+ 2y)

Let the initial approximations be:
X0 = yo =A=0
Iteration 1:

3

_% _51
M‘q‘m

d, 5
a-2-5

Iteration 2:

1 1 51 5
= — d —_— —_— _— — — —— — —
X a (d—-by, —¢27) 15(85 3x 10 (-2)x 8)

H=M3
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1 1
Yo = _(dz _ale_czzl) = _(51—2X%—1X§)

b, 10
=3.904
1 1 17 51
Z,=—(dz—agx — =—| 5-1Ix——(-2)x—
2 03(3 3% —D3Y1) 8( 3 ( )10)
=1.192
Iteration 3:
= 1—15(85— 3% 3.904+ 2x1.192) = 5.045
= %(51— 2x4.73-1x1.192) = 4.035
= %(5—1>< 4.173+2x3.904) = 1.010
Iteration 4:
= 1—15(85— 3% 4.035+ 2x1.010) = 4.994
= 1—10(51— 2x5.045-1x1.010) = 3.99
= %(5—1>< 5.045+ 2x 4.035) = 1.003
Iteration 5:
= 1—15(85—3><3.99+ 2x1.003) = 5.002
= %(51— 2% 4.994-1x1.003) = 4.001
= %(5—1>< 4.994+ 2% 3.99) = 0.998
Iteration 6:

= 1—15(85— 3x 4,001+ 2x 0.998) = 5.0
= %(51— 2%5.002—1x 0.998) = 4.0

= %(5—1>< 5.002+2x 4.001) =1.0
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Iteration 7:
1
= —(85-3x4+2x1)=5.0
15
=i(51—2><5—1><1) =40
10
=%(5—1><5+ 2x4)=10
Example E2.19

Use the Jacobi iterative scheme to obtain the solutions of the system of equations correct to three decimal
places.

X+2y+z=0
X+y-z=0
X—y+4z =3
Solution:
Rearrange the equations in such a way that all the diagonal terms are dominant.
X+y-z=0
X+2y+z=0
X—y+4z =3
Computing for x, y and z we get
X =(z-y)/3
y = (x-2/2
z=(3+y-x/4
The iterative equation can be written as
xr+l) = (Z(r) _y(r))/3
y(r +1) = (_X(r) — Z(r))/z
ZrtD) = (3—xO + y0)/4

Theinitial vector is not specified in the problem. Hence we choose
X0 =y© =70 =1
Then, the first iteration gives
xO = (20 —y9)/3 = (1-1)/3=0
Yy = (O - 29)/2 = (<1 -1)/2=-1.0
2D = (3-X9 +y9)/4 = (3-1+1)/4=0.750
similarly, second iteration yields
x@ = (2D —y)/3 = (0.75 + 1.0)/3 = 05833
Y@ = (—x® — 2D)/2 = (-0 -0.75)/2 =-0.3750
729 = (3 - X + yD)/4 = (3-0-0)/4=0500
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Subsequent iterations result in the following:

x®=0.29167 y®=-0.47917 29=0.51042
x® =0.32986 y®=-0.40104 Z9=0.57862
x® =0.32595 y®=-0.45334 29=0.56728
x©=0.34021 y©® =-0.44662 29=0.55329
x"=0.3333 Yy =-0.44675 Z1=0.55498
x®=0.33391 y®=-0.44414 29=0.55498
x9=0.33304 y© =-0.44445 29 =0.5555
s0 to three decimal places the approximate solution
x=0.333 y=-0.444 z=0555

Example E2.20
Use Jacobi iterative scheme to obtain the solution of the system of equations correct to two decimal places.

5 2 1] [4
1 4 2|=|3
1 2 4| |17

Solution:
Jacobi’s method is applicable only if the conditions given by Eq.(2.50) are satisfied.
Here B> +1 or 5>3

4> +H] or 4>3
4 >1+]2] or 4>3
Clearly, the iterative approach will converse. Hence, writing the set of equations in the form of (2.51), we
have

X 0.8 0 -04 02|(x
y =40.75;-1025 0 -05y (E)
z),.. 425 025 05 O z),
X 0
Assuming the initia approximation < y: =10: and substituting into Eq.(E.1) gives our first approximation
zj, (0
to the solution. Hence
X 0.8 0 -04 0.2((08
yr =41075;—-1025 0 -05<0.75 (E2)
z 425) |025 05 0 (425,

2

The process is continued until successive values of each vector are very close in magnitude. Here, the
eleven iterations obtained accurate to two decimal places are shown below in Table E2.20.
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Table E2.20
Variable 1 2 3 4 5 6 7 8 9 10 | 11
X 08 | 025|114 |124|102{092|098|102|101|099 |1
y 075|268 |253|189|179|199|207|202| 198 | 1.99 |2
z 425|368 |285(270|299|310|3.02|297|298|3.01]|3

Hence, the solutionisgivenby x=1,y=2and z= 3.

211 GAUSS-SEIDAL ITERATION METHOD

The Gauss-Seidal method is applicable to predominantly diagonal systems. A predominantly diagonal system
has large diagonal elements. The absolute value of the diagonal element in each case is larger than the sum
of the absolute values of the other elements in that row of the matrix A. For such predominantly diagonal
systems, the Gauss-Seidal method always converges to the correct solution, irrespective of the choice of the
initial estimates. Since the most recent approximations of the variables are used while proceeding to the next
step, the convergence of the Gauss-Seidal method is twice as fast as in Jacobi’s method. The Gauss-Seidal
and Jacobi’s methods converge for any choice of the initial approximations, if in each equation of the system,
the absolute value of the largest coefficient is greater than the sum of the absolute values of the remaining
coefficients. In other words,

n

2M31 i=1,23,..,n

= la |

j#1
where the inequality holds in case of at least one equation. Convergence is assured in the Gauss-Seidal
method if the matrix A is diagonally dominant and positive definite. If it is not in a diagonaly dominant form,
it should be connected to a diagonally dominant form by row exchanger, before starting the Gauss-Seidal
iterative scheme.

Gauss-Seidal method is also an iterative solution procedure which is an improved version of Jacobi's
method. The method is also known as the method of successive approximations.
Consider the system of linear simultaneous equations
A% + apXo + AyaXs = by
axX1 + apXy + aXs = by
Az1Xy + AgXp + AgaXs = b3 (254)
If the absolute value of the largest coefficient in each equation is greater than the sum of the absolute values
of al the remaining coefficients, then the Gauss-Seidal iteration method will converge. If this condition is not

satisfied, then Gauss-Seidal method is not applicable. Here, in Eq.(2.54), we assume the coefficient a;4, ay
and ag3 are the largest coefficients.

We can rewrite Eq.(2.54) as

1
% =— (by — apX — aaXs)
1

1
Xo = — (b — axX — asXs)
3
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1
X3 = P (b3 — agx1 — agXo) (255)
33

Let the initial approximations be xl0 , xg and xé’ respectively. The following iterations are then carried out.

Iteration 1. Thefirstimprovements of x , x, and x, are obtained as

X = i(bl —apXy - ai3xi(3))
1

_ 0
Xo1 = a (bz — 81 X1 ~ 833 )
)

1
X3 = %(t& —ag1 %1 ~ a32X21) (2.56)

Iteration 2: The second improvements of Xy, X, and X3 are obtained as

1
X = — (b1 — a1oX11 — a13Xz1)
1

1
Xop = — (b — axX12 — Ax3Xa1)
)

Xgp = = (b3 — azX12 — agXz0) (257)
83
The above iteration process is continued until the values of x;, X, and X3 are obtained to a pre-assigned or
desired degree of accuracy. In general, the initial approximations are assumed as xf = xg = xg =0. Gauss-
Seidal method generally converges for any initial values of x1°, X, xg . The convergence rate of Gauss-Seidal
method is found to be twice to that of Jacobi’s method. Like the Jacobi’s method, Gauss-Seidal method can
also be extended to n linear simultaneous algebraic equations in n unknowns.

Example E2.21
Solve the following equations by Gauss-Seidal method.
8 +2y—-2z= 8
X—8+3z=-4
X+y+9z =12
Solution:
In the above equations:
B> 2+ -2
|-8/> 1]+ 3|
191> 2] + 1]

So, the conditions of convergence are satisfied and we can apply Gauss-Seidal method. Then we rewrite the
given equations as follows:
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1
Xﬁa(dl—bly"—clzo)

1
Vi= E(dz —ay% — G, 2°)

1
4 = g(ds — 3% —bsy;)

Let the initial approximations be:

X0 = yO =A=0
[teration 1:
_4_8_.,
a 8
-1, ax%) = L (4-1x1.0)= 0625
b, -8
1 1
- (ds — 3% —by¥y) = o (12-2) = 2x1.0-1x 0.625) = 1.042
Iteration 2:
1 1
= (i -by; - 6z) = £ (8-2x 0625~ (-2 x1.042) = 1.104
&
1 1
= E(o|2 ~ 8% ~C2) = — (-4-1x1.104-3x1.042) = 1.029
1 1
= g(o|3 ~ g% ~bsy,) = £ (12-2x1.104-1x1.029) = 0.974
Iteration 3:
1 1
" (A ~bry, - ©2;) = 5 (8- 2x1.029- (~2) x 0.974) = 0.986
1 1
5 (dz — 8% ~ C2) = — (-4 -1x 0.986-3x 0.974) = 0.989
1 1
s (ds — 35X ~ byys) = 5 (12- 2 0.986-1x 0.989) = 1.004
Iteration 4:

- %(8— 2 0.989— (~2) x 1.004) = 1.004
= is (—4-1x1.004 - 3x1.004) = 1.002

- L 12-2x1.004-1x1.002) = 0.999
9
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Iteration 5:
= %(8— 2x1.002 - (—2) x 0.999) = 0.999
= i8 (-4-1x0.999-3%x0.999) =1.0
= %(12— 2x0.999-1x1.0) =1.0
Iteration 6:
- %(8—2><1+ 2x1) =
= i8(—4—1><1.0—3><1.0) =
= 3(12—2><1.0—1><1.0) =
Example E2.22
Using the Gauss-Seidal method solve the system of equations correct to three decimal places.
X+2y+z=0
X+y-z=0
X—-y+4z=3
Solution:
Rearranging the given equations to give dominant diagonal elements, we obtain
X+y-z=0
X+2y+z=0
X—-y+4z=3 (ED)
Equation (E.1) can be rewritten as
X =(z-y)/3
y =Hx+2/2
z=B+x+Vy)/2 E2)

Writing Eq.(E.2) in the form of Gauss-Seidal iterative scheme, we get
X+ = (z(0 —y())/3
y(r +1) = _ (X(r +1) _ Z(r))/z
z(r+1) = (3 —x(r+D) 4+ y(r +1))/4
We start with the initial value
X0 = y(O) =720 =1
The iteration scheme gives
XD = (Z0 —yO)/3 = (1-1)/3=0
YO = (X - 29)/2 = (0-1)/2=-05
ZD = (3-xD +yM)/4 = (3-0-0)/4=0625
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The second iteration gives
x@ = (21 — yD)/3 = (0.625 + 0.5)/3 = 0.375
y@ = (@ — ZD)/2 = (-0.375-0.625)/2 = -0.50
729 = (3-x?@ +y@)/4 = (3-0.375-05)/4 = 053125
Subsequent iterations result in

x®=0.34375 y® =-0.4375 Z9=0.55469
x4 =0.33075 Y@ =-044271 7% =0.55664
x®=0.33312 y©® =-0.44488 Z9=0.5555
x® =0.33346 y© =—0.44448 79 =0.55552
Hence, the approximate solution is as follows:
x=0.333 y=-0.444 z=0.555
Example E2.23
Solve the following equations by the Gauss-Seidal method.
dx-y+z=12
—X+4y-22=-1
X—2y+4z=5

Solution:
The iteration formulais

n
X . 1lh —ZlAij i=1,2..,n
) i=

: j#i
1
Hence X = 2(12+y—z)

1
y = Z(_1+X+22)

1
z= 2(5—x+2y)

Choosing the starting values x = y = z = 0, we have the first iteration

1
X=-(12+0-0)=3

4

1
y=Z[-1+3+20)]=05

1
z=7[5-3+ 205 =075
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The second iteration gives

1
X = - (12 +05-075) = 29375

1
y = 5 [-L+2.9375 + 20.75)] = 0:85%4

1
z=7 (5—2.9375 + 2(0.8594)] = 0.9453
Thethird iteration yields

1
X = 2 [12 + 0.8594 — 0.9453] = 2.9785
1
y = 2 [-1 +2.9785 + 2(0.9453)] = 0.9673

1
2= 5 (5-2.9785 + 2(09673)] = 0.98%0

After five more iterations, we obtain the final valuesfor x, yandzasx=3,y=1andz=1.

2,12 SUMMARY

A matrix is arectangular array of elements, in rows and columns. The elements of a matrix can be numbers,
coefficients, terms or variables. This chapter provided the relevant and useful elements of matrix analysis for
the solution of linear simultaneous algebraic equations. Topics covered include matrix definitions, matrix
operations, determinants, matrix inversion, trace, transpose, and system of algebraic equations and solution.
The solution of n linear smultaneous algebraic equations in n unknowns is presented. There are two classes
of methods of solving system of linear algebraic equations: direct and iterative methods. Direct methods
transform the original equation into equivalent equations that can be solved more easily. Iterative or indirect
methods start with a guess of the solution x, and then repeatedly refine the solution until a certain convergence
criterion is reached. Six direct methods (matrix inversion method, Gauss elimination method, Gauss-Jordan
method, Cholesky’s triangularisation method, Crout’s method and Thomas algorithm for tridiagonal system)
are presented. Two indirect or iterative methods (Jacobi’s iteration method and Gauss-Seidal iteration method)
are presented.

The LU decomposition method is closely related to Gauss elimination method. LU decomposition is
computationaly very effective if the coefficient matrix remains the same but the right hand side vector changes.
Cholesky's decomposition method can be used when the coefficient matrix A is symmetric and positive definite.
Gauss-Jordan method is a very stable method for solving linear algebraic equations. Gauss-Seidal iterative
substitution technique is very suitable for predominantly diagona systems. It requires a guess of the solution.

Problems
2.1 Determine the inverse of the following matrices:

-1 12
@ A= 3 -1 1
-1 3 4
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1 2 0
(b) A=|3 -1 -2
1 0 -3
(10 3 10
© A=| 8 2 9
|8 1 -10
1 2 3
(d) A=(4 5 6
700
11 1
© A=|1 2 2
103
(1 0o 3
(f) A=|2 1 -1
1 -1 1

2.2 Solve the following set of simultaneous linear equations by the matrix inverse method.

(@ 2X+3y—-z =
X+ 4y + 2z
2X—2y+5z

(b) 10x + 3y + 10z
8Xx—-2y+9z
8x +y-10z

(0 2X+3y—-z
X+2y+z
X—3y—2z

(d) 2X—-y+3z 4
X+9y—-2z = -8
4x—-8y+11z = 15

© X=X+ 3Xg—%X4 = 1

2

0

-5

8

1
R R R

I
s
w

Xo—3%3+ 5% =

Xp—=X3+ X4 =

Xp+ =X =

(f) Xp+ 2+ 33+ 4Axg =
2% — 2% — X3 — X4 = 3
X1 =3 +4X3—4x, = 8
2%+ 2% =33ty = 2
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2.3 Solve the following set of simultaneous linear equations using the method of Gaussian elimination.

@ 2X+y-3z
Ix-2y+3z =

—-2X+2y—z =

(b) 6x+3y+6z =
2X+3y+3z =

X+2y+2z =

© 2+ Xt X3 =
X — 33 =

—Xo + 2X3 =

(d X+ 2%+ 3xg+ 4%y =
2X] — X9 — Xz —Xq4 =

Xy — 3o+ AXg — 44Xy =

2% + 2% —3X3 + 4X4 =

© 2t Xyt Xg—Xg =
Xy + 5% —Bxg + 6%, =

—7X1 + 3% — X3 — 5%, =

X1 — 5% + 23+ 7X4 =

(f) X1+ X+ X3+ X =
2X1 — X + 3X3 =

2%+ 3%y =

—X1+ D+ Xy =

ocrwwlRobBlBloborosbBrl8sok

2.4 Solve the following set of simultaneous linear equations by the Gauss-Jordan method.

@ AXx-3y+5z2 = A
2X—-y—-z = 6

X+y+4z = 15

(b) 2X—-y+z = -1
X+3y+9z = 0

X+3y+5z = 4

(0 X+y—-z = 1
X+2y—-2z = 0

2X+y+z = 1

(d X-y = 2
2X+2y—z = -1

y—-2z = 6

(® X+y+z = 3

2X+3y+z = 6
X—-y—-z = -3
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() AXq — 2% — 3Xg + 6%y
—bX1 + 7%, + 6.5X3 — 6%y

Xq + 7.5% + 6.25%3 + 5.5,

=12%; + 22%, + 15.5%3 — X4

2.5 Solve the following set of simultaneous linear equations by the Cholesky’s factorisation method.
@) xX-y =
X+2y—z =

12
—65
16
17

(b) X+ty+z
3x+3y+4z

2X+y+z

(© X+05y =
05x+y+05z

05y +z

(d) 2X+3y+z
X+2y+3z

AX+y+2z

© X-2y+z
5x+y-3z

AX+4y+z

(f)  12x; —6x —6Xz + 1.5x4 =
—6x1 + 4%, + 3x3 + 0.5x, =

—6X, + 3% + 6X3 + 1.5%4 =
—1.5%; + 0.5% + 15X + X4 =

1
8 B '
A WNE OON 0O O© WNPFP N N WOw

2.6 Solve the following set of simultaneous linear egquations using the Crout’s method.
@ X+y =
X+2y =

(b) X+2y+7z =
2X+3y+z =

X-4y+z =

(© X+y+z =
2X=3y+4z =

3X+y+5z =

(d X+y =
X+4y+z =

2y+5z =

(e 2X+y—z =
X—3y+5z =

—X+5y+4z =

BEREocowbhBd8Bovwosoa~
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R O O

2.7 Solve the following tridiagonal system of equations using the Thomas algorithm.

(f) 22— X =

X1+ 2% — X3

—Xo + 2%3 — X4

X3+ 2%y

@ 24+ X%
X+ 2%+ X3 =

3 + 2X3

(b) 2+ X
33X + Dot X3 =

Xo + Xzt 2%y

X3+ 4%y
© X=X =
2% =3+ 2 =

Xo + 2%3 + 5Xy

X3 — X4
(d 2+ X =
Xg+ 3+ X3 =

Xo + X3+ 2%y

2%z + 3%
© 2+ X =
X+ 2% + X3 =
Xo+ 23+ 2%y =

X3 + 4%y

(f) 2 =X
X1+ 3o+ X3 =
Xo + X3+ 2%4 =

2% + 3xy

ml—‘l\)fo 0 0 b~ K‘me

YT ORI

bk

w -

2.8 Solve the following set of simultaneous linear equations using the Jacobi’s method.

@ 2X—y+5z
2X+y+z

X+3y+z

(b) 20x+y—2z
3X+20y-z

2x—=3y+20z

(© Bx+2y+z

X+4y+2z =

X+ 2y+ 5z

SER NEY Bk



74 /I Numerical Methods //

(d) 10x—-y+2z =
X+1ly+z =
2X—-y+10z =-

(e 8x+2y—-2z =
X—8y+3z =
X+y+9z =

&R o

(f) 10x; + X0 + 2¢3 =
X1+ 11X — X3+ 3%4 =

2% =X + 10X — X4 = =
Ko — X3+ 8% =

Bo BA o

&~

2.9 Solve the following system of simultaneous linear equations using the Gauss-Seidal method.
@ 4X—-3y+5z =
2X—-y—-2z =

z+y+4z =

(b) 2X-y+5z =
2X+y+z =

X+3y+z =

(© 15x+3y—2z =
2xX+10y+z =

X=2y+8z =

(d 10%1 — 2% =Xz — X4 =
2% + 10X — X3 — X4 =
—X1—X2+10X3—2X4 =

X1 —Xo — 2%z + 10x, =

© I+ 2% =
2X1+8X2+2X3 =

2% + 8x3+ 2X3 =

2X3+4X4 =

(f) I +2¢ =
2X1 + 8% + 2X3 =
2X2+8X3+2X3 =

2X3+4X4 =

cor coonsr bNBw o PR BB Ba®

N

ONORO)



CHAPTER

Solution of Algebraic and
Transcendental Equations

3.1 INTRODUCTION

One of the most common problem encountered in engineering analysis is that given a function f (x), find
the values of x for which f (x) = 0. The solution (values of x) are known as the roots of the equation f (x) = 0,
or the zeroes of the function f (x).

The roots of equations may be real or complex. In general, an equation may have any number of (real)
roots, or no roots a al. For example, sin x — x = 0 has a single root, namely, x = 0, whereas tan X — x = 0 has
infinite number of roots (x = 0, £ 4.493, + 7.725, ...). There are two types of methods available to find the
roots of algebraic and transcendental equations of the form f (x) = 0.

1. Direct Methods: Direct methods give the exact value of the roots in a finite number of steps. We
assume here that there are no round off errors. Direct methods determine all the roots at the same time.

2. Indirect or Iterative Methods: Indirect or iterative methods are based on the concept of successive
approximations. The general procedure is to start with one or more initial approximation to the root and
obtain a sequence of iterates (x) which in the limit converges to the actual or true solution to the root.
Indirect or iterative methods determine one or two roots at atime.

The indirect or iterative methods are further divided into two categories. bracketing and open methods.
The bracketing methods require the limits between which the root lies, whereas the open methods require
the initial estimation of the solution. Bisection and False position methods are two known examples of the
bracketing methods. Among the open methods, the Newton-Raphson and the method of successive
approximation are most commonly used. The most popular method for solving a non-linear equation is the
Newton-Raphson method and this method has a high rate of convergence to a solution.

In this chapter, we present the following indirect or iterative methods with illustrative examples:
1 Bisection Method
2. Method of False Position (Regular Falsi Method)
3. Newton-Raphson Method (Newton's method)
4. Successive Approximation Method.
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3.2 BISECTION METHOD

After aroot of f (X) = 0 has been bracketed in the interval (a, b). Bisection method can be used to close in
on it. The Bisection method accomplishes this by successfully halving the interval until it becomes
sufficiently small. Bisection method is also known as the interval halving method. Bisection method is not
the fastest method available for finding roots of a function, but it is the most reliable method. Once a has
been bracketed, Bisection method will always close in on it.

We assume that f (X) is a function that is real-valued and that x is area variable. Suppose that f (X) is
continuous on an interval a < x < b and that f (a) f (b) < 0. When thisiis the case, f (X) will have opposite
signs at the end points of the interval (a, b). As shown in Fig. 3.1 (a) and (b), if f (X) is continuous and has
a solution between the points x = a and x = b, then either f (a) >0 and f (b) <Oor f(a) <O0Oand f (b) > 0. In
other words, if there is a solution between x = a and x = b, then f (a) f (b) < 0.

yu VA

f(b) >0

True solution

[ g R,
\ 4
x

a
t
|
|

True solution f(b) <0

Fig. 3.1: Solution of f(x) = 0 between x = a and x = b

The method of finding a solution with the Bisection method is illustrated in Fig. 3.2. It starts by finding
points a and b that define an interval where a solution exists. The midpoint of the interval X; is then taken
as the first estimate for the numerical solution. The true solution is either in the portion between points a
and Xs, or in the portion between points Xs, and b. If the solution obtained is not accurate enough, a new
interval that contains the true solution is defined. The new interval selected is the half of the original interval
that contains the true solution, and its midpoint is taken as the new (second) estimate of the numerical
solution. The procedure is repeated until the numerical solution is accurate enough according to a certain
criterion that is selected.

The procedure or agorithm for finding a numerical solution with the Bisection method is given below:

Algorithm for the Bisection Method
1 Compute the first estimate of the numerical solution x by

_a+b
Xg = 5
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fx) 1

True sQlution

O f+————

True solution

First estimate

_ First
iteration
|
|
|
|
|
Second A o
iteration o pooo D —>X
a Xs, b
Second interval :
|
. I Third estimate
True solutign I
Third | J /S
= = > X

iteration |
Third interval

Fig. 3.2: Bisection method
2 Determine whether the true solution is between a and X5 or between Xs, and b by checking the sign of
the product

f(a)f(xsl):
If f(a)f (x%) < 0, the true solution is between a and Xs, -

If f(a)f( xsl) > 0, the true solution is between Xs, and b.
If b—c < e, then accept ¢ as the root and stop. € is the error tolerance, € > 0.

3. Choose the subinterval that contains the true solution (a to X, OF Xg 1O b) as the new interval (a, b),
and go back to step 1.

Steps 1 through 3 are repeated until a specified tolerance or error bound is attained.
3.2.1 Error Bounds

Let a,, b, and ¢, denote the nth computed values of a, b and Xs, respectively. Then, we have

1
P+t — ann 2 (bn —a) nz1 (€Y

also b,—a, = (b—a) n>1 (32

2n—1
where (b — a) denotes the length of the original interval with which we started.
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Since the root xg is in either the interval (a,, ¢,) or (¢, by), we know that

1
s —Cnl < Ch =8 =bn—Cy = 5 (bn—an) 33

This is the error bound for ¢, that is used in step 2 of the algorithm described earlier.
From Egs. (3.2) and ( 3.3), we obtain the further bound

|xs—cn|s2—ﬂ(b—a) 34

Equation (3.4) shows that the iterate ¢, converges to X as n — .
To find out how many iterations will be necessary, suppose we want to have

[Xs—Cql < €
Thiswill be satisfied if

2—%1(b—a) <e (35)

Taking logarithms of both sides of Eq.(3.5), and simplifying the resulting expression, we obtain

)
log
n>—+ </ (36)

log 2

There are several advantages to the Bisection method. The method is guaranteed to converge. The method
always converges to an answer, provided a root was bracketed in the interval (a, b) to start with. In addition,
the error bound, given in Eq. (3.4), is guaranteed to decrease by one-half with each iteration. The method
may fail when the function is tangent to the axis and does not cross the x-axis at f (X) = 0. The disadvantage
of the Bisection method is that it generally converges more slowly than most other methods. For functions
f (X) that have a continuous derivative, other methods are usualy faster. These methods may not always
converge. When these methods do converge, they are ailmost always much faster than the Bisection method.

Example E3.1

Use the Bisection method to find aroot of the equation x3 — 4x — 8.95 = 0 accurate to three decimal places
using the Bisection method.
Solution:
Here, f() =x3-4x—-8.95=0
f(Q =22-4(2-895=-895<0
f(3 =32-4(3)-895=6.05>0
Hence, aroot lies between 2 and 3.

f'(x) =3x2—4 > 0for xintheinterva (2, 3). Hence, we have a= 2 and b = 3. The results of the agorithm
for Bisection method are shown in Table E3.1.
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Table E3.1: Bisection Method Results

n a b X, b— x f(x,)
112 3 25 0.5 -3.25
2125 3 2.75 0.25 0.84688
3|25 2.75 2.625 0.125 -1.36211
4| 275 2.625 2.6875 -0.0625 -0.28911
51| 275 2.6875 | 2.71875 | -0.03125 0.27092
6 | 2.6875 | 2.71875 | 2.70313 0.01563 | —0.01108
7 | 2.71875 | 2.70313 | 2.71094 | -0.00781 0.12942
8| 2.71875 | 2.71094 | 2.71484 | —0.00391 0.20005
9| 271094 | 2.71484 | 2.71289 0.00195 0.16470

10 | 2.71094 | 2.71289 | 2.71191 0.00098 0.14706
11 | 2.71094 | 2.71191 | 2.71143 0.00049 0.13824

Hence the root is 2.711 accurate to three decimal places.

Example E3.2

Find one root of e — 3x = 0 correct to two decimal places using the method of Bisection.
Solution:

Here, f(x) = e—3x

f(15) =el®-3(15 =-0.01831

f(16) = €6 —3(1.6) =0.15303
f'(x) =eX—3>0for xintheinterva (1.5, 1.6). Hence, aroot liesin the interval (1.5, 1.6). Therefore, here we
have a = 1.5 and b = 1.6. The results of the algorithm for Bisection method are shown in Table E3.2.

Table E3.2: Bisection Method Results

n a b Xq, b—x f(x,)

115 1.6 1.55 0.05 0.06147
2115 1.55 1.525 0.025 0.02014
3115 1.525 15125 | 0.0125 0.00056
4115 1.5125 | 1.50625 | 0.00625 | —0.00896
51 1.50625 | 1.5125 | 1.50938 | 0.00313 | —0.00422
6 | 1.50938 | 1.5125 | 1.51094 | 0.00156 | —0.00184

Hence the root of f (xX) = 0isx = 1.51 accurate up to two decimal places.

Example E3.3

Determine the largest root of f (x) = X6 —x — 1 = 0 accurate to within € = 0.001. Use the Bisection method.
Solution:

Here f(x) =x6-x-1=0

f() =16-1-1=-1
f@Q =2-2-1=61
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Sincef (1) f(2) <0, f(X) = 0 has at least one root on the interval. The results of the agorithm for Bisection
method are shown in Table E3.3.

Table E3.3: Bisection Method Results

n a b X, b—x f(x,)
1)1 2 15 0.5 8.89063
211 15 1.25 0.25 1.56470
3|1 1.25 1.25 0.125 -0.09771
4| 1.125 1.25 1.1875 | 0.0625 0.61665
511125 1.1875 | 1.15625 | 0.03125 0.23327
6| 1.125 1.15625 | 1.14063 | 0.01563 0.06158
711125 1.14063 | 1.13281 | 0.00781 | —0.01958
8 | 1.13281 | 1.14063 | 1.13672 | 0.00391 0.02062
9| 1.13281 | 1.13672 | 1.13477 | 0.00195 0.00043

10 | 1.13281 | 1.13477 | 1.13379 | 0.00098 | —0.00960

3.3 METHOD OF FALSE POSITION

The method of False Position (also called the Regular Falsi method, and the linear interpolation method)
is another well-known bracketing method. It is very similar to Bisection method with the exception that it
uses a different strategy to end up with its new root estimate. Rather than bisecting the interval (a, b), it
locates the root by joining f (a;) and f (b;) with a straight line. The intersection of this line with the x-axis
represents an improved estimate of the root.

f(X) 4

Actual
solution

f(ay)

Fig. 3.3: Method of false position

Here again, we assume that within a given interval (a, b), f (X) is continuous and the equation has a
solution. As shown in Fig. 3.3, the method starts by finding an initia interval (a;, b;) that brackets the solution.
f (a7) and f (by) are the values of the function at the end points a; and b,. These end points are connected
by a straight line, and the first estimate of the numerical solution, X, is the point where the straight line
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crosses the axis. For the second iteration, a new interval (ay, b,) is defined. The new interval is either (ay, Xs)
where a, is assigned to a, and X5 to b, or (X5, by) where Xs is assigned to a, and b, to b,. The end points
of the second interval are connected with a straight line, and the point where this new line crosses the x-axis
is the second estimate of the solution, Xs. A new subinterval (as, bs) is selected for the third iteration and
the iterations will be continued until the numerical solution is accurate enough.

The equation of a straight line that connects points (b, f (b)) to point (a, f (a)) is given by

_fb-f@ .,
= (XD 37

The points X where the line intersects the x-axis is determined by substituting y = 0 in Eq.(3.7) and solving
the equation for x.
_af(b)-bf(a)
f(b)- f(a)
The procedure (or algorithm) for finding a solution with the method of False Position is given below:

Hence (38

Algorithm for the method of False Position
1 Definethefirst interval (a, b) such that solution exists between them. Check f (a) f (b) < 0.
2. Compute the first estimate of the numerical solution x5 using Eq.(3.8).
3 Find out whether the actual solution is between a and X5 or between X5 and b. This is
accomplished by checking the sign of the product f (a) f (Xs).
If f(a) (%) <0, the solution is between a and Xg.
If f(a) f (%) >0, the solution is between Xy and b.
4. Select the subinterval that contains the solution (a to X, or X5 to b) isthe new interval (a, b) and
go back to step 2. Step 2 through 4 are repeated until a specified tolerance or error bound is attained.
The method of False Position always converges to an answer, provided aroot is initialy bracketed
in the interva (a, b).
Example E3.4

Using the False Position method, find a root of the function f (x) = e — 3x2 to an accuracy of 5 digits. The
root is known to lie between 0.5 and 1.0.

Solution:
We apply the method of False Position with a = 0.5 and b = 1.0. Equation (3.8) is

_af(b)-bf(a)
- f(b)-f(a)
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The calculations based on the method of False Position are shown in the Table E3.4.

The relative error after the fifth step is (

digits.
Example E35

Find a real root of cos x —3x + 5 = 0. Correct to four decimal places using the method of False Position

method.
Solution:
Here

0.91001

f(X) =cosx—3x+5=0
f(0) =cos0-30)+5=5>0

COST

f(n/2) =

Table E3.4
n a b[ f(a) f(b) Xg f(xs) ,
Relative error
1|05 1| 0.89872 | -0.28172 | 0.88067 | 0.08577 | —
2] 0.88067 | 1 | 0.08577 | -0.28172 | 0.90852 | 0.00441 | 0.03065
31 0.90852 | 1 | 0.00441 | -0.28172 | 0.90993 | 0.00022 | 0.00155
4 | 090993 | 1| 0.00022 | —0.28172 | 0.91000 | 0.00001 | 0.00008
51 0.91000 | 1 | 0.00001 | -0.28172 | 0.91001 | O 3.7952 x 10°
0.91001-0.9

1) = 3.7952 x 10-%. The root is 0.91 accurate to five

-3 E)+5=_—3”+5<o
2 2

Therefore, aroot of f (x) = 0 lies between 0 and /2. We apply the method of False Position with a = 0 and
b = /2. Equation (3.8) is

_af(b)-bf(a)
~ f)-f(a)

The calculations based on the method of False Position are shown in Table E3.5.

Table E3.5
n a b f(a) f(b) X, f(x,) &
110 15708 | 6 0.28761 | 1.64988 | —0.02866 | —
2| 1.64988 | 1.5708 | -0.02866 | 0.28761 | 1.64272 | —0.00001 | —0.00436
3| 164272 | 1.5708 | -0.00001 | 0.28761 | 1.64271 | O —-1.97337 x 10°°

The relative error after the third step is

_ 1.64271-1.64272 — 197337 x 106
1.64271

The root is 1.6427 accurate to four decimal places.
Example E3.6

Using the method of False Position, find a real root of the equation x* — 11x + 8 = 0 accurate to four decimal
places.
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Solution:
Here f(x) =x*—11x+8=0
f(1) =14-11(1) +8=-2<0
f@Q =2¢-11(2 +8=4>0
Therefore, aroot of f(x) = 0 lies between 1 and 2. We apply the method of False Position with a = 1 and
b = 2. Equation (3.8) is
_af(b)-bf(a)
- fO)-f@

The calculations based on the method of False Position are summarised in Table E3.6.

Table E3.6
n a bl f@ [fb) | x, f(x,) £
1)1 22 2 |15 34375 | —
2|15 2| =3.4375 2 | 1.81609 | —1.9895 | 0.17405
3181609 | 2 | -1.09895 | 2 | 1.88131 | -0.16758 | 3.4666 x 107
41188131 | 2| 016758 | 2 | 1.89049 | —0.02232 | 4.85383 x 10°
5189049 | 2 | -0.02232 | 2 | 1.89169 | -0.00292 | 6.3902 x 10™*
6| 1.89169 | 2 | -0.00292 | 2 | 1.89185 | —0.00038 | 8.34227 x 10™°
71189185 | 2 | -0.00038 | 2 | 1.89187 | —0.00005 | 1.08786 x 10™°

The relative error after the seventh step is

_1.89187-1.89185
B 1.89187

Hence, the root is 1.8918 accurate to four decimal places.

34 NEWTON-RAPHSON METHOD

The Newton-Raphson method is the best-known method of finding roots of a function f (x). The method is
simple and fast. One drawback of this method is that it uses the derivative f'(x) of the function as well as the
function f (X) itself. Hence, the Newton-Raphson method is usable only in problems where f* (X) can be readily
computed. Newton-Raphson method is also called Newton’s method. Here, again we assume that f(x) is
continuous and differentiable and the equation is known to have a solution near a given point. Figure 3.4
illustrates the procedure used in Newton-Raphson method. The solution process starts by selecting point x;
as the first estimate of the solution. The second estimate x, is found by drawing the tangent line to f(x) at
the point (x4, f (x1)) and determining the intersection point of the tangent line with the x-axis. The next estimate
X3 is the intersection of the tangent line to f(X) at the point (X, f(x2)) with the x-axis, and so on. The slope,
f'(xy), of the tangent at point (xy, f (x,)) is written as

_f(x)-0

X =X

=1.08786 x 10°

(%) 39
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Rewriting Eq. (3.9) for x, gives

f(x)
=% .
2 (%) (310
Equation (3.10) can be generalised for determining the next solution x; . 1 from the current solution x; as
_ (%)
X =% f,(xi) (3]_1)
y h
y=fx) T
f(xq) Slope: f'(Xy)
:
]
|
]
]
|
]
]
]
Solution :
|
e — 4/)'(4 X3 \ /;(2 X=1 "X

Slope: f'(x3) Slope: f'(x5)
Fig. 3.4: Newton-Raphson method

The solution is obtained by repeated application of the iteration formula given by Eq.(3.11) for each successive
valueof ‘i’.

Algorithm for Newton-Raphson Method:
1 Select apoint x; as an initial guess of the solution.
2 Fori=1,2 ..., untl the error is smaller than a specified value, compute x; ., by using Eq.(3.11).
Two error estimates that are generally used in Newton-Raphson method are given below:

The iterations are stopped when the estimated relative error B =X is smaller than a specified value €.
X
The iterations are stopped when the absolute value of f (x;) is smaller than some number §:
IO <3 (313

The Newton-Raphson method, when successful, works well and converges fast. Convergence problems occur
when the value of f'(x) is close to zero in the vicinity of the solution, where f (xX) = 0. Newton-Raphson
method generally converges when f (x), f'(x) and f" (X) are al continuous, if f'(X) is not zero at the solution
and if the starting value x; is near the actual solution.
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3.4.1 Convergence of Newton-Raphson Method
The Newton-Raphson iteration formula is given by

f(x)
1= %0 — = 0(X)
X1 =% (%) Xn
The general form of Eq.(3.13a) is given by
X=9(x

The Newton-Raphson iteration method given by Eq.(3.13b) converges if |¢'(X)| < 1.

Here o(x) = x—M

(%)

Hence  ¢'(X)= 1_{[ (12 = F () (%) } (%)

[f/(x)] R

fO)f"(%)
[f001?

Hence, Newton-Raphson’s method converges if

or [ (X) F ‘

‘f(x)f”(x) -
[
or 1169 " 091 < [F ()

(3139

(3.13b)

(3.130)

If oo denotes the actua root of f (X) = 0, then we can select a small interval in which f (X), f(x) and f ”(X) are
all continuous and the condition given by Eq.(3.13c) is satisfied. Therefore, Newton-Raphson method aways

converges provided the initial approximation X is taken very close to the actual root o.

3.4.2 Rate of Convergence of Newton-Raphson Method

Let o denotes the exact value of the root of f (x) = 0, and let x;, X +1, be two successive approximations to

the actual root a. If €; and €; .1 are the corresponding errors, we have
X=a+e; and X1 =0+ €4
by Newton-Raphson's iterative formula
f(a+g)
o+ S o+ €; Y,
f’(a+g)
f(a+g)
€n-§=——7 ——~
f'(a+¢)

2

f(a) +¢ f’(oc)+(62i] f7(0)+ -

o) +e (o) +--

or

=& —
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S f’(oc)+e—i2f”(0c)+---
=€ - 2 (sincef (o) =0)
f'(o)+¢g T7(c)+-

’ ei ”
ei{f (oc)+5f (a)+---}_l{ €i2 £(0) }

' f/(o) +g f7(c)+- 2| f/(o)+eg f7(c)+-
1 e? (o) I ()
L, = ST S
f’(oc)(1+ei f (a)j+___ 2t"() (3.13d)
f/(ct)

Equation (3.13d) shows that the error at each stage is proportional to the sequence of the error in the previous
stage. Hence, Newton-Raphson method has a quadratic convergence.

Example E3.7

Use Newton-Raphson method to find the real root near 2 of the equation x* — 11x + 8 = 0 accurate to five
decimal places.

Solution:
Here f() =x*-11x+8
f'(x) =4E-11
XO = 2
and fx) =f(Q=24-11(2) +8=2
f'ixg) =f'(Q=4(2°-11=21
Therefore,
f (%) 2
=xg—— 2 =2
X =X (%) o1 1.90476
f 1.90476)* —11(1.90476) + 8
2=x1—&=1.90476—( ) 1(3 )*8_ | soo00
/(%) 4(1.90476)° -11
4 —
"= % - f/(xz) _ 189200 (1:89209) 11(13.)89209)+8 _ 1 go188
f/(x,) 4(1.89209)° -11
4 —
W M _ 1 go1gg. (1:89188) 11(13.89188) +8 _ 1 soreg
f7(X3) 4(1.89188)° —-11

Hence the root of the equation is 1.89188.
Example E3.8

Using Newton-Raphson method, find a root of the function f (X) = e — 3x2 to an accuracy of 5 digits. The
root is known to lie between 0.5 and 1.0. Take the starting value of x as xg = 1.0.
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Solution:

Start at Xy = 1.0 and prepare a table as shown in Table E3.8, where f (X) = & — 3x2 and f'(X) = & — 6x. The
relative error

_ X1~ X
s X +1 ‘
The Newton-Raphson iteration method is given by
_ f(%)
XI+1 - XI f'(X,)
Table E3.8
[ Xi f(xi) (%)) Xi+1 &
0|10 -0.28172 | —3.28172 | 0.91416 | 0.09391
1| 0.91416 | —-0.01237 | —2.99026 | 0.91002 | 0.00455
2 | 0.91002 | —0.00003 | —2.97574 | 0.91001 | 0.00001
3091001 | O —2.97570 | 0.91001 | 6.613 x 107

Example E3.9

Evaluate~/29 to five decimal places by Newton-Raphson iterative method.
Solution:
Let x = /29 then x2 — 29 = 0.

We consider f (X) =x2—29 =0 and f'(x) = 2x

The Newton-Raphson iteration formula gives

2 —
I S ]

(%) 25 2 X
Now f(5)=25-29=-4<0andf(6)=36-29=7>0.

Hence, aroot of f (x = 0) lies between 5 and 6.

Taking xg = 3.3, Equation (E.1) gives

X=X - ED

% = 1(5-3+§) =5.38585

2 5.3
%, = =( 538585+ = 538516
27 o7 5.38585)
1 29
X, = —| 5.38516+ - 5385
3 2( 5.38516) 538516

Sincex, = x, uptofive decimal places, \/29 =5.38516.
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3.4.3 Modified Newton-Raphson Method
Here, the iteration scheme is written as

f(%)
(% +a(x) f (%))

f(x)
f/(x+a(x) f(x))

X1 =%~ = 0(x) (say) (313¢)

or O(X) = X—

where a(X) is a smooth function.

f/(x) N fO)f7(x+a(x) f(x)@A+a’(x)f(x)+a(x)f’(x)

Consider o’'(X)=1- s a0 00) [F(xt 800 f OO (3.13f)
pron f7(x) f/(x) 7 (x+a(x) f (X)[1+a’(x)f(x)+a(x)f’(x)]
e P Pxra o) T [F/(x+ 209 f ()P

) fOQ[ 7 (x+a(x) f ())°[1+a’(X) f (X) +a(x) f"(x)]?
[f(x+a() f (x)]?

N fOYF”7(x+a(x) f()L+a’(x)f(x)+a(x)f ’(x)]2 N [f (x)]2 f7(x+a(x) f(x))a”(x)
[£/(x+a(x) f ()] [£/(x+a(x) f ()]

N f(x) f7(x+a(x) f(x)[2a’(x) f"(x)+a(x) f " (x)]

[F/(x+a() f O (3130
If € isthe root of the equation f (X) = O, then f (§) = 0 and therefore ¢(&) = € and ¢'(€) = 0.
Now, from Eq.(3.13g)
” f7(&) , 2f'€) f"©)L+a@)f'©€)] _ (&) ,
=- = 1+2a(E) f
0”(€) 0 + [HEF ) [1+2a(8) ' (E)] (3.13h)
1 4 p—
If a)=-- R then ¢”(€) = 0.
Therefore, the iteration scheme in modified Newton-Raphson method is given by
o f(x) _
T T Tk rat) + (%) (313)
1
where a(xi)__Zf’(xi)

Equation (3.13i) can aso be written as



/I Solution of Algebraic and Transcendental Equations // 89

_ FOO) F(%)
[f/O01 = f () (%)

X1 = % (313)

In addition, we have
0@ =& ¢ =0and¢'(§) =0 (313K)

3.4.4 Rate of Convergence of Modified Newton-Raphson Method
Let & be the root of the equation f (x) = 0. In addition, let

€i=%-¢
Hence Xi+1 = 0(%) = o(€; + &)
e e
or € tE=0() +¢ ¢'(§)+j¢'(§)+?'l¢'"(§)+"'
e3
or €= 0" ©)+ o) (313)

If we neglect the terms Ei4 and higher powers of ei“, Eq.(3.13) reduces to

_ A3
€= Ag

in which A= %4)’”(&)

Equation (3.13m) shows that the rate of convergence of the modified Newton-Raphson method is cubic.
Example E3.10
Repeat Example E3.7 using modified Newton-Raphson method.

Solution:
f() =x*-11x+8

f'(x) =43 -11

fr(x) = 12x2
The modified Newton-Raphson’s formulais
B fO6) F7(%)

[F/06)17 = F(%) (%)

The calculations are shown in Table E3.10.

X=X

Table E3.10
Xi f(x) f'(x) (i) Xi1
2 2 21 48 1.878261
1.878261 | —0.21505 15.50499 | 42.33437 | 1.891624

1.891624 | —-0.00405 | 16.07476 | 42.93891 | 1.891876
1.891876 | —1.4x 10™° | 16.08557 | 42.95034 | 1.891876

Hence, the root is 1.891876.

WNPF OIS
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3.5 SUCCESSIVE APPROXIMATION METHOD

Suppose we are given an equation f (X) = 0 whose roots are to be determined. The equation can be written
as

x =1 (319
Let x = X9 be an initial approximation to the desired root o.. Then, the first approximation x4 is given by
X1 = ¢(Xo)

The second approximation x> = ¢(x;). The successive approximations are then given by x; = (X)),
X4 = 00%a)s -y Xn = 000 )-

The sequence of approximations of Xq, X, ..., X, always converge to the root of x = ¢(x) and it can be
shown that if [¢"(X)] < 1, when x is sufficiently close to the exact value ¢ of the root and x, — casn — oo,
The convergence of x; .1 = (), for [0"(X)| < 1 is shown in Fig. 3.5. The following theorem presents the
convergence criteria for the iterative sequence of solution for the Successive Approximation method.

Theorem 3.5: Let o be aroot of f(x) = O which is equivalent to x = ¢(x), ¢(X) is continuously
differentiable function in an interval | containing the root x = o, if |¢’(X)| < 1, then the sequence of
approximations Xo, Xq, Xy, ..., X, Will converge to the root o provided the initial approximation X, € 1.

A

y=0(x)

» X

0 g X3 Xo X1 Xo
Fig. 3.5: Converge of x,,; = d(x,), for [¢'(X)] <1

Proof: Let o be the actual root of x = ¢(x), then we can write

o = ¢(a) 315
Let x = X be an initial approximation to the root, then
X1 = 0(X) (316)

From Egs. (3.15) and (3.16), we obtain
o =% = ¢(a) — ¢ ()
By using the Lagrange's mean value theorem, we can write
o =X = (a—X%)9'(€o) for xp <% <
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Smilarly,
o= X = (0 —%1)¢'(E1) forxy <& <o
o= X3 = (0 = X)¢'(E2) forx, <& <o
and so on, or

=Xy = (=X (En-1) fOrx,_1<&pi<a
Multiplying the above equations, we obtain

0L =Xy = (00— X0) ¢'(Eo) ¢'(Ea) (&), -, ¢'(En1)
If |0'(x)| < x < 1, for dl I, then

Xn — 0] < X0 = | Eold (€O (E) - 10" (En-D)| S K, K....K [Xo — 0 S K" X0 — 0
Ask < 1 therefore k" — 0, as h — o, and thus we have x, — o, provided xg € .
Hence, the theorem is proved.

3.5.1 Error Estimate in the Successive Approximation Method

Let €, = x, — &, the error estimate at the n'" iteration, then lim(e,,, / €,) = ¢’(§) is satisfied. We know that
N—oo

Xn 1= €l = [0(%n) — O(E)] = |9 (En)IIXn — €| EnE (%o, €) by the mean value theorem. Hence

Eni1= en| q),(gn) | = rli_)r?c(eml / en) =¢'(€)

Therefore, we obtain the order of convergence as linear. But if ¢'(€) = 0 and ¢”(€) # 0, then the Taylor series

expansion of ¢ in a neighbourhood of § is given by
_£\2

00 =00+ 05, -0 @+ 1=

which shows that

0" (€) + -

2 3
Ena= € 0/ ()~ 20" (E) + -2 0"(©)

ON USING Xy 41 = 0(Xy) and € = [Xn+1 = &J.

2
Hence, €,,1= —%"(1)”(&), on neglecting the terms containing cubes and higher power of €,. Thisis a

guadratic convergence.

Example E3.11

Find areal root of x3 — 2x — 3 = 0, correct to three decimal places using the Successive Approximation
method.

Solution:
Here f() =x3-2x-3=0 (E)
Also f() =18-2(1)-3=-4<0

and f2) =22-22)-3=1>0
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Therefore, root of EQ.(E.1) lies between 1 and 2. Since f (1) < f (2), we can take the initial approximation
%o = 1. Now, Eq. (E.1) can be rewritten as

x3=2x+3
or X = (2x+ 3)13 = ¢(x)
The successive approximations of the root are given by
X1 = (%) = (2% + 3)¥3 =[2(1) + 3)¥3 = 1.25992
Xo = 0(Xq) = (2% + 3)¥3 = [2(1.25992) + 3]¥3 = 1.31229
X3 = 0(Xp) = (2% + 3)¥3 = [2(1.31229) + 3]¥3 = 1.32235
Xa = 0(Xg) = (2%g + 3)¥3 = [2(1.32235) + 3]¥3 = 1.32427
X5 = O(Xq) = (2%4 + )3 = [2(1.32427) + 3]¥3 = 1.32463
Hence, the real roots of f (X) = 0 is 1.324 correct to three decimal places.

Example E3.12

Find areal root of 2x —log;g X — 9 using the Successive Approximation method.

Solution:

Here f(X) =2x—loggXx—9 (ED
f (4) = 2(4) —logyo(4) —9 = 8 — 0.60206 — 9 = —1.60206
f (5) = 2(5) —logyo(5) —9 = 10 — 0.69897 — 9 = 0.30103

Therefore, aroot of Eq.(E.1) lies between 4 and 5. Rewriting Eq.(E.1) as

1
X= §(|091o X+9) = ¢(x)
We start with x, = 4.

X1 = 0(%0) = %(Iogm4 +9) = 4.80103

Xo = O(Xq) = %(Ioglo4.80103 + 9) = 4.84067
X3 = 0(%) = %(Ioglo4.84067 +9) = 4.84245
X4 = 0(Xg) = %(Ioglo4.84245 +9) = 4.84253

1
X5 = O(Xg) = > (l00104.84253 + 9) = 4.84254
Hence, x = 4.8425 is the root of Eq.(E.1) correct to four decimal places.

Example E3.13

Find area root of cos x —3x + 5 = 0. Correct to four decimal places using the Successive Approximation
method.
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Solution:
Here, we have
f(X) =cosx—3x+5=0
f(0) =cos0)—3(0) +5=5>0
f(n/2) = cos(n/2) —3(n/2) +5=-3n/2+5<0
Also fOf@?2) <0

Hence, aroot of f (x) = 0 lies between 0 and /2.
The given Eq. (E.1) can be written as
X = }[5+ cosX]
3
sinx

Here O(x) = %[5+ cosx] and ¢’(x) = —

10 (9 ‘ﬂ; <1in (0, m/2)

Hence, the successive approximation method applies.

Let Xo =0
X1 = 0(%) = %[5 +cosQ] =2
Xo = O(%) = %[5 + cos(2)] = 1.52795
X3 = 0(%) = %[5 + c05(1.52795)] = 1.68094
Xa = 0(Xg) = é[S + c09(1.68094)] = 1.63002
X5 = O(Xg) = é[S + c05(1.63002)] = 1.64694
Xs = 0(Xs) = %[5 + c05(1.64694)] = 1.64131
X7 = O(X) = é[f’ + cos(1.64131)] = 1.64318
Xg = 0(X7) = §[5 + co5(1.64318)] = 1.64256
Xg = O(Xg) = %[5 + c09(1.64256)] = 1.64277

X10 = O(X0) = %[5 + co5(1.64277)] = 1.64270

Hence, the root of the equation is 1.6427 correct to four decimal places.

ED
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3.6 SECANT METHOD

The secant method is very similar to the Newton-Raphson method. The main disadvantage of the Newton-
Raphson method is that the method requires the determination of the derivatives of the function at several
points. Often, the calculation of these derivatives takes too much time. In some cases, a closed-form expression
for f’(x) may difficult to obtain or may not be available.

To remove this drawback of the Newton-Raphson method, the derivatives of the function being
approximated by finite differences instead of being calculated anayticdly. In particular, the derivative f'(X) is
approximated by the backward difference
_ FO) - (%)

X =%

where x; and x;_; are two approximations to the root but does not require the condition f (x;) - f (x,_1) <O.

(%) (317

Now, from the Newton-Raphson method, we have

FOO) _ _ FO06 = %) 218
P 0 f%) (319
It should be noted here from Eq.(3.18) that this method requires two initial guess values X, and x; for the
root. The secant method is illustrated geometricaly as shown in Fig. 3.6, where a secant is drawn connecting

f (%) and f (x). The point where it intersects the x-axis is ;1. Another secant is drawn connecting f (x) and
f (%+1) to obtain x; ;, and the process continues.

f(X) r'y

X1 =%~ X

me Xi-1

Fig. 3.6: The secant method

3.6.1 Convergence of the Secant Method
The formula for the secant method can be written as
(%0 = %o-1)
F ) = (%)
Let & be the exact root of the equation f (X) = 0 and f (§) = 0. The error at the n'" iteration is given by
€n=X—& (3.20)

Xne1 = X — (3.19)
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Now Eq.(3.19) becomes

€r=€, — (en — en—l) f (En + &)
feq +8) - f(€n1 +9)

el T@) e PR+ (/T @)+
(€0 €0 ) )+ 5 (€E ~ ) 1)+

=€

n

A f” -
=€, {en +%§+ ---HH%(en +€h1) f((é)) +
= % €n€n-1 :;/,,((é)) + O(eﬁen—l + €&, Eﬁfl) (321)
Equation (3.21) can be expressed as
En+1 = CERER (322
_117©)
where c= 270 (323

Equation (3.23) is a non-linear difference equation which can be solved by letting e ,,= AP or
€,= A}, and which gives

€n-1= E]r{p AP
Hence AcP=ce,elP AP (324)

or eP=cA ) hilp (3.25)

Now by equating the power of €, both sides of Eq.(3.25), we obtain

p=1+ 1
p
or p= l(1i J5 ) (3.26)
2
Therefore taking the positive sign in Eq.(3.26), we get
p=1618
and €iy= ActO8 (327)

Hence, the rate of convergence of the secant method is 1.618 which is lesser than the Newton-Raphson
method. The second method evaluates the function only once in each iteration whereas the Newton-Raphson
method evauates two functions f and f' in each iteration. Therefore, the second method is more efficient
than the Newton-Raphson method.

Example E3.14
Find aroot of the equation x3 — 8x — 5 = 0 using the secant method.
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Solution:

f() =x3-8x-5=0

f(d =32-8(3)-5=-2

f(4) =43-8(4)-5=-27
Therefore one root lies between 3 and 4. Let the initial approximations be xg = 3, and x; = 3.5. Then, x, is
given by

o %o 00) =% (x)
2T ) - f(%)

The calculations are summarised in Table E3.14.

Table E3.14: Secant method

Xo f(%o) X1 f(xa) X2 f(x2)
3 -2 35 9.875 3.08421 | -0.33558
35 9.875 3.08421 | —0.33558 | 3.09788 | —0.05320
3.08421 | —0.33558 | 3.09788 | —0.05320 | 3.10045 | 0.00039
3.08788 | —0.05320 | 3.10045 | 0.00039 | 3.10043 | O
3.10045 | 0.00039 | 3.10043 | O 310043 | O

Hence, aroot is 3.1004 correct up to five significant figures.

Example E3.15

Determine a root of the equation sin x + 3 cos x — 2 = 0 using the secant method. The initial approximations
Xo and x; are 0 and 1.5.

Solution:
The formula for x, is given by

_%f0a)=xf(o)
2T () - (%)

The calculations are summarised in Table E3.15.

Table E3.15: Secant method

Xo

f(%o)

X1

f(x1)

X2

f(x2)

0

15
1.24488
1.21122
1.20788

—2.33914
—0.79029
—0.09210
—0.00833
—0.00012

15

1.24488
1.21122
1.20788
1.20783

—0.79029

—0.09210

—0.00833

—0.00012
0

1.24488
1.21122
1.20788
1.20783
1.20783

—0.09210
—0.00833
—-0.00012
0
0

Hence, aroot is 1.2078 correct up to five significant figures.

Example E3.16
Repeat Example E3.14 with initial approximations of xg = —2 and x; = -1.5.
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Solution:
X, IS given by

= %f00) =% (%)
2T () - (%)

The calculations are summarised in Table E3.16.

Table E3.16: Secant method

Xo f(xo0) X1 f(xq) X2 f(x2)
2 415774 | -1.5 —2.78528 | —-0.48529 | 0.18715
-15 —2.78528 | —0.48529 | 0.18715 | —-0.54918 | 0.03687

—0.48529 0.18715 | —0.54918 | 0.03687 | —0.56488 | —0.00129
—0.54918 0.03687 | —0.56485 | —0.00129 | —-0.56432 | 0.00001
-0.56485 | -0.00129 | -0.56432 | 0.00001 | -0.56433 | O
—0.56432 0.00001 | 056433 | O —0.56433| O

Hence, aroot is—0.5643 correct up to five significant figures.

3.7 MULLER’S METHOD

Muller’s method is an iterative method and free from the evaluation of derivative as in Newton-Raphson
method. It requires three starting points (X, fn2), (Xn_1, fn—1) and (x,, f,). A parabolais constructed that
passes through these points then the quadratic formula is employed to find a root of the quadratic for the
next approximation. In other words, we assume that x;, is the best approximation to the root and consider the
parabola through the three starting values as shown in Fig. 3.7. We denote f (X,) = fo, T (X,_1) = f,1 and
f (%) = fn.

(Xn-1, fa-1)

(Xn-2, fn-2)

Xn-2 Xn-1 Xn Xn+1

Fig. 3.7: Muller's method
Let the quadratic polynomial be
f(x) =ax2+bx+c (329
If Eq.(3.28) passes through the points (X,_o, fn_0), (%n—1, fa_1) and (X, f,), then

ax; ,+bx, ,+c=f,, (329)
Xy +bx, g +e=fiy

ax2+bx, +c= f,
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Eliminating a, b, ¢ from Eq.(3.29), we obtain the following determinant

f(x) x> x
fio X2 X2 -0
fr X4 X (330)
X% X%
By expanding this determinant in Eq.(3.30), the function f (X) can be written as
X=X _1 ) X— X—X._ X —
f(x)= (X=X-2)(X= %) foot (X=X%-2)(X= %) .
(Xn-2 = %-2) (Xq—2 = %5) (X1 = Xn-2) (Xa-1 = %)
(X=Xn—2)(X=Xy1)
+
(0 =% 2) 0~ Xg) " (330
Equation (3.31) is a quadratic polynomia passing through the three given points.
Let h =X =Xy hn =% — X1 and hng = Xy 1 — X2
Now, Eq.(3.31) becomes
htheh) . hthehthy) o (heh)hehth) 0

hya(hy+hy) "2 e, 7 h(h+hy) "
Noting f(x)=0.
Let A=—, Ay = L and §, =1+A,
h, hs

The Equation (3.32) now reduces to the following form:

A2 (fshd oo+ Tha)Oat+ A A0 = £ 80 + fa(hy +8,)[8,1+ 1,=0  (339)
or A%c,+ Ag, +8,f,=0 334
where On = }"ﬁ 1:n—2 _6§ fn—l + (}‘n + 6n) fn

Ch= kn()‘n 1:n—2 - 8n fn at fn)
Equation (3.34) can be written as

1
Snfn(ﬁ)+%+cn:0 (3.35)

Solving Eq.(3.35) for 1/A, we obtain
B 20,1,
On i\/grf _48n fnCn

The sign in the denominator of (3.36) is + according as g, > 0 or g, <O.

A=

(339)
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Hence A= XK or X = Xn + (X — Xn_)A (3.37)
Xn =%
Now, replacing x on left hand side by x, + 1 in Eq.(3.37), we obtain
Xn+1= %o+ (X0 = X 1)A 333

Equation (3.38) is the Muller’'s formula for the root and the procedure for finding a root is summarised in
Table 3.1.

Table 3.1: Muller's method

h_n yOn=1+A,
n-2

gn = }\‘ifn—z _Sﬁfn—l + (}\‘n + 6n )fn

Cn = An(Anfrz = Onfna + fr)

" 25 f.

g, Vgi _45nfncn

X1 = Xn + (Xn = Xn1)A
Xn1=Xn+ (Xn - Xn—l)x

hn = Xn —Xn1, A, =

Example E3.17
Find aroot of the equation x3 — 3x — 7 = 0 using the Miller’s method where the root lies between 2 and 3.

Solution:
Let x9=2, % =25and x, = 3. The calculations are shown in Tables E3.16 and E3.17(a).

Table E3.17: Muller's method

n Xn-2 Xn-1 Xn hn hn—1 )\,n 8n
212 2.5 3 0.5 0.5 1 2
3|25 3 24272 | -0.5728 0.5 —1.14559 | —0.14559
4|3 24272 | 2.42599 | -0.00122 | -0.5728 0.00213 | 1.00213
5| 24272 | 242599 | 242599 | O —0.00122 | —0.0029 0.99710
Table E3.17 (a): Muller's method
n fro fra fn On Cn A Xn+1
2|5 1.125 11 235 3.75 —1.14559 | 2.42720
3| 1125 11 0.01781 1.22026 | -0.37867 | 0.00213 | 2.42599
4111 0.01781 | —0.00005 | —0.01789 | 0.00001 | —0.0029 | 2.42599
5] 0.01781 | —0.0005 0 0.00005| O —0.00005 | 2.42599

Hence oneroot is2.42599 correct up to five decimal places.
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3.8 CHEBYSHEV METHOD

Consider the equation to be solved as f (X) = 0. The function f () can be expanded by Taylor’s series in the
neighbourhood of x, as

0=F() =f06) +x=x)f'(x) +- - (339
Equation (3.39) gives

f (%)
X=Xy ————
() (340)
Equation (3.40) gives the (n + 1)t gpproximation to the root.
Hence
_ (X))
Once again, we expand f (xX) by Taylor’s series and retain up to the second order term, we obtain
2
X_
0= 19 = () + (x=3) 1 0x) + Z220 () (342
_ 2
Hence )= 106)+ 00 =) 00+ 2222 100y 0 £2)
Substituting the value of x,,1 — X, from (3.41) to the last term and we obtain
, N EECS)
FOG) + G = %) /O + 55 17(%) =0 344
* 201 (%) @49
f ETCS
Hence Xnp1 = X — ) 11106 (%) (345)

P00 20170
Equation (3.45) can be recognised as the extended form of Newton-Raphson formula and it is called the
Chebyshev’s formula.

The rate of convergence of this method can be shown to be a cubic.

3.9 AITKEN’S A2 METHOD

Suppose we have an equation

f() =0 (340)
whose roots are to be determined.
Let | be an interval containing the point x = c.

Now, Eq.(3.46) can be written as x = ¢(x) such that ¢(x) and ¢’(x) are continuous in | and |¢’(X)| < 1 for al
xinl.

Denoting X; 4, X% and X; +; as the three successive approximations to the desired root o, we can write
o—X% = Ao —X%_1) (347
and o —X+1 = Aol —X) (348)
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where A is a constant so that |¢'(X)| < A < 1 for al i.

Dividing Eq.(3.47) with Eq. (3.48), we obtain
O-X _%—-X
o= %4 =X

Equation (3.49) gives

o=, — (X|+1 XI)

Now AXi = X 41— X

and A% 4= (E-1)2x1=(BEP—2E+1)X 1 =X+ -2+ X1

Using Eq.(3.51), Eq.(3.50) can be written as

(%41 =2% =%_1)

(349)

(350)

(351)

(352)

(4%)?
o= X g —
X|+l Aiz_l
Equation (3.52) gives the successive approximation to the root oo and method is known as the Aitken's
A2 method.
A A
Xi-1
AXi_q
X Ay
AX;
Xi+1
Example E3.18

1+ cosx

Find the root of the function x = (

Solution:
f(X) =cosx—3x+1
fO =1
f(n/2) = cog(n/2) —3(n/2) + 1 =—8.42857
Hence f(O >0andf(m/2) <0
Also f(0) f (n/2) = 1(—8.42857) =—-8.42857 <0

Therefore, aroot exists between 0 and 7t/2.
Equation (E.1) can be written as

:(1+ Zosxj — ()
Now (X = —si3nxz ¢’(x)|: —si3nx

<1—xe(0,£j
2

) correct to four decimal places using Aitken's iteration method.

ED

(E2)
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Equation (E.2) signifies that Aitken’s method can be employed.
Let Xo = 0 be an initial approximation to the root of (E.1).

1+ cosO

%, = 0(X) =( ) = 0.66667

1+ cos(0.66667)

Xo = 0(%) = = 0.59530

= 0.60933

1+ cos(0.59530
X3 = 0(%) = %

We can now construct the table as shown in Table E3.18.
Table E3.18: Aitken’s method

X AX A?

—0.07137

X1 = 0.66667 Tl

0.08540

X, = 0.59530 Ax,
0.01403

Xz = 0.60933 A,

Therefore, Xy = Xg— W;—Z)z =0.60933- M =0.60702
(A%%) (0.08540)

Hence, theroot is0.6070 correct up to four decimal places.

3.10 COMPARISON OF ITERATIVE METHODS

The Bisection method and the method of False Position always converge to an answer, provided a root is
bracketed in the interval (a, b) to start with. Since the root lies in the interval (a, b), on every iteration the
width of the interval is reduced until the solution is obtained. The Newton-Raphson method and the method
of Successive Approximations require only one initial guess and on every iteration it approaches to the true
solution or the exact root. The Bisection method is guaranteed to converge. The Bisection method may fail
when the function is tangent to the axis and does not cross the x-axis at f (x) = 0.

The Bisection method, the method of False Position, and the method of Successive Approximations
converge linearly while the Newton-Raphson method converges quadratically. Newton-Raphson method
reguires less number of iterations than the other three methods. One disadvantage with Newton-Raphson
method is that when the derivative f () is zero, a new starting or initial value of x must be selected to
continue with the iterative procedure. The Successive Approximation method converges only when the
condition |¢'(X)| < 1 is satisfied. Table 3.2 gives a summary of the comparison of the methods presented in
this chapter.
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Table 3.2: Comparison of the methods

S.No. Method Formula co(r?\r/(;regr]eoijce Funct;(t)r:\alcﬁvgl eLrj)atlonS
_a+b One
1. | Bisection Xa =75~ bit/iteration 1
gain
L af (b) — bf (a)
2. Fal t X,=—""" 1 1
se position = (b)-f(a)
f(x)
3. | Newton-Raphson Xig =X ") 2 2
4. | Modified f,
- Xiw =Xn =20 15 777
Newton-Raphson 1 tx, —3F, 11/ 3 3
5. | Successive X1 = ¢(Xo) 1 1
approximation
6. Secant Xivg =X —M 1.62 1
f (Xi ) —f (Xi—l)
7. Muller Xn1 = Xp + (Xn — Xp-1)A 1.84 1
fn 1 fn2 ”
8. Chebyshe\/ Xn+l =Xn _f_,_Ef_’?’fn 3 3

3.1 SUMMARY

In this chapter, the techniques for the numerical solution of algebraic and transcendental equations have
been presented. Numerical methods involving iterative solution of nonlinear equations are more powerful.
These methods can be divided into two categories: Direct methods and Indirect (or iterative) methods. The
indirect or iterative methods are further divided into two categories: bracketing and open method. The
bracketing methods require the limits between which the root lies, whereas the open methods require the
initial estimation of the solution. Bisection and False Position methods are two known examples of the
bracketing methods. Among the open methods, the Newton-Raphson and the method of Successive
Approximation are most commonly used. The most popular method for solving a non-linear equation is the
Newton-Raphson method and this method has a quadratic rate of convergence. These methods have been
illustrated with examples.

Problems
3.1 Usethe Bisection method to find a solution accurate to four decimal places for x = tan x in the interval
(44, 4.6).

9
3.2 Determine the solution of the equation 8 — > (x —sin X) = 0 by using the Bisection method accurate
to five decimal placesin the interva (2, 3).

3.3 Usethe Bisection method to compute the root of ¢ — 3x = 0 correct to three decimal places in the
intervd (1.5, 1.6).
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3.4 Find the root of log x = cos x correct to two decimal places using Bisection method.
3.5 Use the Bisection method to find a root of the equation x3 —4x — 9 = 0 in the interva (2, 3), accurate

3.6

3.7

3.8

3.9

3.10

311

3.12

3.13
3.14
3.15

3.16
3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

to four decimal places.

Use the Bisection method to determine a root correct to three decimal places of the equation
x logyo X = 1.2. Interva (2, 3).

Use the Bisection method to find aroot of the equation 4.905t2 — 15t + 5 = 0 in the interval (0.3, 0.4)
with an accuracy of 4 digits.

Use Bisection method to find the root of f (x) = x3 — 10x2 + 5 = 0 that lies in the interval (0.6, 0.8)
correct within four decimal places.

Use Bisection method to find the root of f (X) = x —tan x in the interval (7, 8) correct to four decimal
places.

1
Use Bisection method to find the smallest positive root of cos x = > + sinxintheinterva (0.41, 043).

Use an error tolerance of € = 0.0001.

Use the method of False Position to find solution accurate to within 10 for the function f (x)
=Xx—cosxintheinterva (0, n/2).

Use the method of False Position to find solution accurate to within 10 for the function f (x)
=x-08-02snx=0intheinterva (0, /2).

Repeat Problem 4.6 correct to four decimal places using the False Position method.

Repeat Problem 4.7 correct to four decimal places using the False Position method.

Use the method of False Position to solve the equation x tan x + 1 = 0 accurate to three decimal
places starting with 2.5 and 3.0 as the initial approximations to the root.

Use method of False Position to solve the equation x log x — 1 = 0 correct to three significant figures.
Use the method of False Position to solve the equation xeX — cos x = 0 correct to four decimal places
in the interval (O, 1).

Use the method of False Position to find a root correct to three decimal places for the function
tan x—4x = 0.

Use the method of False Position to find aroot of f (x) = < — 2x2 = 0 with an accuracy of four digits.
The root lies between 1 and 1.5.

Use the method of False Position to find a root correct to three decimal places of the function
x2—4x-9=0.

A root of f (X) = x3—10x2 + 5 = 0 lies close to x = 0.7. Determine this root with the Newton-Raphson
method to five decimal accuracy.

A root of f (X) = e — 2x2 liesin the interval (1, 2). Determine this root with the Newton-Raphson
method to five decimal accuracy.

A root of f (X) =x3—x2—5=0liesin theinterval (2, 3). Determine this root with the Newton-Raphson
method for four decimal places.

Use Newton-Raphson method to find solution accurate to within 10~ for the function f (x)
= X—cosxintheinterva (0, n/2).
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3.25

3.26

3.27

3.28
3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

3.40

341

3.42

3.43

Use Newton-Raphson method to find solution accurate to within 10 for the function f (x) = x — 0.8
—0.2sinx=0in theinterval (0, n/2).

2 3
- . X° X L .
A positive root of the equation €* =1+ x+7+€e0'3X lies in the interval (2, 3). Use Newton-

Raphson method to find this root accurate to five decimal places.

Use Newton-Raphson method to find the smallest positive root of the equation tan x = x accurate to
four decimal places.

Determine the positive root of the equation x = 2 sin x accurate to three decimal places.

Use the Newton-Raphson method to estimate the root of f(x) = e* —x with an initial guess of x, = 0
accurate to five decimal places.

2 3 X4

The equation f(x) =0.1— x+7—£+%+---: 0 has one root in the interval (0, 1). Determine this

root correct to five decimal places.

Use the Successive Approximation method to find correct to four significant figures a real root of
cosx—3x+1=0.

Use the Successive Approximation method to find correct to four significant figures a real root of
eX—10x=0.

Use the Successive Approximation method to find correct to four decimal places a real root of
2x—log,, x=7=0.

Use the Successive Approximation method to find correct to four significant figures area root of the
function e*tan x—1 = 0.

Find the real root of the equation x — sin x — 0.25 = 0 to three significant digits using the Successive
Approximation method.

Use the method of Successive Approximation to find a root of the equation e — 3x = 0 in the interval
(O, 1) accurate to four decimal places.

Use the method of Successive Approximation to find ared root of e — x2 = 0 correct to four significant
figures.

Use the method of Successive Approximation to determine a solution accurate to within 102 for
x*-3x2-3=00n[1 2]. Usex, =1

Find aroot of the equation x3 — 3x2 + 4 = 0 using the modified Newton-Raphson method, starting
with x, = 1.8.

Find aroot of the following function with an accuracy of 4 digits using modified Newton-Raphson
method, starting with x, = 1.4. f (x) = € —2x2 = 0.

Find aroot of the equation x3 — 8x — 4 = 0 using the modified Newton-Raphson method starting with
X, = 2.8 up to four significant figures.

Find aroot of the equation x3 — 3x — 5 = 0 using the modified Newton-Raphson method correct up to
four decimal places starting with x, = 2.0.

Find aroot of the equation x3 — x — 1 = 0 using the modified Newton-Raphson method correct up to
four decimal places starting with x, = —1.5.
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3.44
3.45

3.46

3.47

3.48

3.49
3.50
351
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61
3.62

Find aroot of the equation x5 —x — 1 = 0 using the secant method approximations: x, = 2 and x, = 1.0.
Find aroot of the equation x3 — 75 = 0 using the secant method with the initial approximations of
X, =4and x, = 5.

Find a root of the equation tan x — tanhx = 0 using the secant method with initial approximations:
Xy =7andx, =7.5.

Find a root of the equation cos x cosh x — 1 = 0 using the secant method with initial approximations:
X, =4.5and x, =5.0.

Find a root of the equation sin x — 0.1x = 0 using the secant method with initial approximations:
X, =2and x, = 3.

Repeat Problem P3.39 using Muller’s method given that a root is near 1.0.

Repeat Problem P3.40 using Muller’'s method given that a root is near 4.0.

Repeat Problem P3.41 using Muller’s method given that aroot is near 7.0.

Repeat Problem P3.42 using Muller’s method given that aroot is near 4.6.

Repeat Problem P3.43 using Muller’s method given that aroot is near 2.8.

Find aroot of the equation cos x — xe*= 0 using Aitken’s A2 method.

Find the root of the equation x3 — 5x — 11 = 0 correct to three decimal places using Aitken’s method.
Find the root of 0.5 + sin x —x = 0 and X, = 1 using Aitken’s method.

Use Aitken’s method to find a root of the equation 3x —log10x — 16 = 0.

Use Aitken’s method to find a root of the equation €< — 3x = 0 lying between 0 and 1.

Use Aitken's method to find a root of the equation x3 + x — 1 = 0.

Use Aitken’s method to find a root of the equation 5x3 — 20x + 3 = 0 in the interval (0, 1).

Use Aitken's method to find a root of the equation x3 + 2x — 2 = 0 up to three decimal places.

Use Aitken's method to find a root of the equation x3 — 3x2 + 4 = 0.

ONORO)



CHAPTER

Numerical Differentiation

4.1 INTRODUCTION

Numerical differentiation deals with the following problem: given the function y = f () find one of its derivatives
at the point x = x,. Here, the term given implies that we either have an algorithm for computing the function,
or possesses a set of discrete data points (X, V), 1 =1, 2, ...., n. In other words, we have a finite number of
(%, y) data points or pairs from which we can compute the derivative. Numerical differentiation is a method
to compute the derivatives of a function at some values of independent variable x, when the function f(x) is
explicitly unknown, however it is known only for a set of arguments.

Like the numerical interpolation discussed in Chapter 5, a number of formulae for differentiation are
derived in this chapter. They are:

(a) Derivatives based on Newton's forward interpolation formula. This formula is used to find the
derivative for some given x lying near the beginning of the data table.

(b) Derivatives based on Newton’s backward interpolation formula. This formula is suitable to find
the derivative for a point near the end of the data table.

(c) Derivatives based on Stirling's interpolation formula. This formula is used to find the derivative
for some point lying near the middle of the tabulated value.

A method to find the maxima and minima of a given function is also discussed in this chapter.

INTERPOLATION FORMULA
Suppose the function y = f(x) is known at (n + 1) equispaced points Xg, Xy, . ..., X, ad they are yo, Y1, ... Yn
respectively i.e, y, =f(x),i=0,1, .....,n. Letx, =X +ihand u= % , Where h is the spacing.
Referring to Chatper 5, the Newton's forward interpolation formulais

u(u-1
2!

u(u—l)---(u—n_—l)Anyo

2
A%Yy+-t v

y=F(X)=yo+Ulyp+
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2 3 2 4 3 2
- —3u?+2 —6u +11U% -6
=yo+uAy0+u UA2y0+u i UA3yo+u ur UA4yo
2! 3! 41
5 4 3 2
u® —10u™ + 35u” - 50u“ + 24u
N - ASyq + - 4.1
Differentiating Eq.(4.1) w.r.t. X, we get
! u-1., 3u’-6u+2 .3  4P-18u2+22u-6 ,
f(X)—F Ay, + ol AyO+TA Yo+ 21 A"y
5u* — 40u® +105u% — 100U + 24
N u u° +105u U + A5yo 42
5!
Note here that %—1
dx h
Differentiating Eq.(4.2) w.r.t. X, we obtain
1 6uU—6 12u% - 36U+ 22 20u® —120u® + 210u —100
f”(x)=?{A2yo+ Sy Ny s S T Ny | (43)

and so on.
Equations (4.2) and (4.3) give the approximate derivatives of f(X) at arbitrary point X = X + uh.
When x = Xy, U =0, Egs.(4.2) and (4.3) become

, 1 1, 13 1., 15
f (XO):F|:AyO_EA YO+§A YO_ZA yo"‘gA YO_"} 44

., 1 11 5
and f (xo)=F[A2yo—A3yo+EA“yo—gA5yo+--1 (45)
and so on.
Example E4.1

: . dy  d’y :
From the following table find the value of o and Fa{ the point x = 1.0.
X
1 11 12 13 14 15

y | 54680 | 5.6665 5.9264 6.2551 6.6601 7.1488
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Solution:
The forward difference table is

X y Ay A%y A’y
1.0 | 5.4680
0.1985
1.1 | 5.6665 0.0614
0.2599 0.0074
1.2 | 5.9264 0.0688
0.3287 0.0074
1.3 | 6.2551 0.0763
0.4050 0.0074
1.4 | 6.6601 0.0837
0.4887
1.5 ] 7.1488

Here xg = 1.0 and h = 0.1. Then u = 0 and hence

dy 1 1., 1 5 1 1 1
—— =y (1.0)=—| Ayy — =AY, + =AY, —- | = —| 0.1985— = (0.0614) + = (0.0074) | = 1.7020
ax y’(1.0) h[ Yo > Yo 3 Yo 01 2( ) 3( )

d?y 1 3 1
=Y o yra.0) == Ay, - A3yg + - | = ——[0.0614 - 0.0074] = 5.4040
2=V 0= Ay A%+ o ]

h2
Example E4.2
Obtain the first and second derivatives of the function tabulated below at the points x = 1.1 and x = 1.2.
X: 1 12 14 16 18 20
y: 0 0.128 0544 1298 2440 402
Solution:
We first construct the forward difference table as shown below.
X y | Ay | Ay | Ay | Al
1.0— 0~
$0.128 <]
1.2—+0.128 70.28
416 8\"‘0.05 <
1.4 0.544 0.338\[ 0
0.754 0.05 N
1.6 1.298 0.388 0
1.142 0.05
1.8 2.440 0.438
1.580
2.0 4.02

Since x = 1.1 is a non-tabulated point near the beginning of the table, we take Xy = 1.0 and compute
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_X=X 1.1-10 _05
h 0.2
1 3p?-6p+2
Hence, _y=_ A2y, 2P TOPT <3
ax h{ A%Yo 6 Yo
2_
=1 10128+0+ X0 =609*2 15 | _ 62088
0.2 6
d°y_1r, DA - 6575
ﬁ_hz[A Yo+ (P-DA YO] =0.

Now, x = 1.2 is a tabulated point near the beginning of the table. For x = x;= 1.2, p=0and

dy 1 1., 1.4 1 1 1
2 2L Ay - = A?yy + =A%y, | = —| 0.416- = (0.338) + = (0.05) | = 1.31833
X h[ Yo > YO+3 YO} 0_2[ 2( )+3( )}
ﬂ—i[AZy A%yo] = ———[0.338-0.05] = 7.2
a2 h2 0 ) )

Example E4.3

Find the first and second derivatives of the functions tabulated below at the point x = 1.1 and x = 1.2.

Xx|1|12|14]16 |18]20
y|[0]/01]05]125]24]39

Solution:
First, we construct the forward difference table:
X y Ay Ay | Ay | Ay
1.0—> 0 N
SN0.1
12—=—p0.1 3
T04 40.05
1.4 05 P0.35 0
0.75 .05
1.6 1.25 0.40 =0
1.15 0.05
1.8 2.40 0.45
15
2.0 3.90

Here x = 1.1 is a non-tabulated point near the beginning of the table. For X, = 1.0,

X=X 11-10

= =05
h 0.2
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dy 1 2p-1., 3p’-6p+2 ;3
Hence —=—|Ayp+ AYg+——7—A
ix h{ Yo > Yo 6 Yo
2_
_ é{o.u 04+ X095 ~6(0.5)+2 (0.05)} — 048958
ﬂ=i[A2y +(p-DAdy, ]: ! [03+(05-1)0.05]=6.875
a2 h2l" 7° %17 (0.2)?
For x = 1.2, it is atabulated point near the beginning of the table.
Let X=x%=12,p=0
dy 1 1., 1.4 1 1 1
—=—| Ay ——AY,+=A =—04-—(0.35)+=(0.05) | =1.208
ax h[ Yo > Yo 3 Yo 0.2 2( ) 3( )
ﬂ—i[AZy N 1 [0.35-0.05] = 7.5
Y e v '

43 DERIVATIVES BASED ON NEWTON’S BACKWARD
INTERPOLATION FORMULA

Here, we assume the function y = f (X) isknown at (n + 1) points g, X1, ..., X0, i-€, ¥i =f (%), 1=0,1, 2, ....,

nareknown. Let x, =xg+ih,i=0,1,2, ....,nand v= X_hX” .
Then, the Newton’'s backward interpolation formula from Chapter 5 is given by
F(X) = Yy + VWY, +%V2yn N v(v+1;)!(v+ 2) ngn N v(v+ 1)(v:! 2)(v+3) V4yn
N v(v+1)(v+ 25)!(v+ 3)(v+4) Vsyn N
When the EQ.(4.6) is differentiated w.r.t. X successively, we obtain
00 = %{Vyn N 2\/24;1V2yn L +3?v+ 20y 4 M3 +18v;+ 2046 a

5v* + 40v3 +105v +100v+ 24 _¢
+ 5 VZy, +

2
6465, 12430V 2 0,

20V +120v2 + 210v+100 _¢
Vy, +

” _ 1 2
f (X)_F{V It g n 4l n 51

and so on.

(4.6)

@7

n

(4.8)
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Equations (4.7) and (4.8) can be used to determine the approximate differentiation of first, second, etc. order
at any point X, where x = x, + vh.

If Xx=x, thenv=0.
Equations (4.7) and (4.8) become

’ _ 1 1 2 1 3 1 4 1 5
f (Xn)—F|:Vyn+EV yn+§V yn+ZV yn"'gV Yn+"':| (4.9)
” 1 11 5

and f (xn)=F{szn+V3yn+EV4yn+EV5yn+--1 (4.10)

Example E4.4

A dlider in a machine moves aong a fixed straight rod. Its distance x(m) along the rod are given in the
following table for various values of the time t (seconds).

t(sec) | 1 2 3 4 5 6
x(m) | 0.0201 | 0.0844 | 0.3444 | 1.0100 | 2.3660 | 4.7719

Find the velocity and acceleration of the slider at timet = 6 sec.
Solution:
The backward difference table is

t X VX 2% V3x V% V>
1.0 | 0.0201
2.0 | 0.0844 | 0.0643
3.0 | 0.3444 | 0.2600 | 0.1957
4.0 | 1.0100 | 0.6656 | 0.4056 | 0.2100
50 | 2.3660 | 1.3560 | 0.6904 | 0.2847 | 0.0748
6.0 | 47719 | 2.4059 | 1.0499 | 0.3595 | 0.0748 | 0.0000

Hereh=1.0
L VLV S L W S L
d h 2 3 4 5
1 1 1 1 1
= | 2.4059+ = (1.0499) + = (0.3595) + — (0.0748) + = (0.0) | = 3.0694
1.0 2 3 4 5
2
X L ooy vk 2ty | = — 1110499+ 0.3505+ 1 (0.0748) + > (0) | =1.4780
dt?  h? 12 1.0)? 12 6

4.4 DERIVATIVES BASED ON STIRLING’S INTERPOLATION FORMULA

Suppose Vi = f(x4), i =0, 1, ...., n are given for 2n + 1 equispaced points Xg, Xi1, X42, ...y Xin, Where
X+i= X xih,i=0,1,....,n.
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The Stirling’s interpolation polynomial is given by

ul Ay +Ay, | u? w-u| Ay ,+A%,
f(X)=yp+—| —220 14+ = A%y 4+
9= 1!{ 2 Z TR 2

+

4 2 5 3 5 5
- —5u°+4u| A’y 3+ A
u®-u Sy u’-5u”+4u { Y3 : Yo, }

41 51 (4.1)

where u= %

When Eq.(4.11) is differentiated with respect to x successively, we obtain

2 3 3
f,(x):%[AYr"AYO cuaty o 3 1(A Yo +A yl]

2 6 2

+

(412

2u3—uA4y +5u4—15u2+4 A%y, + A%y, e
12 2 120 2

1] 5 Ay ,+A%-1 6u’-1, 2u° -3u( A%y 5+ A%y,
f7(x)=—|A A
and ) hzl Yari— Tt 2 "
(4.13
At X = Xo, u =0 and Egs.(4.12) and (4.13) become
£/( )_l Ayo+Ay, 1 A%y i+ A%y, +i A%y ,+ A%y 4 .
)=y 2 6 2 30 2 (4.14)
” 1 2 1 4
(%) :F[A y—l_EA Y2+"1 (415
Example E4.5
o dy dPy . .
Find ik and Ffor x = 0.2 for the data given in the following table
X

x|0]01 0.2 0.3 0.4 0.5
y | 0] 0.10017 | 0.20134 | 0.30452 | 0.41076 | 0.52115
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Solution:
Construct the following difference table.
X y Ay A%y Ay Ay
0 0
0.10017
0.1 0.10017 0.001
0.10017 0.00101
0.2 0.20134 0.00201 0.00004
0.10318 0.00105
0.3 0.30452 0.00306 0.00004
0.10624 0.00109
0.4 0.41076 0.00415
0.11039
0.5 0.52115

Here, we use Stirling’'s formula. Hence, for x = 0.2, we have

dy 1Ay +Ay, 1A%, +A%,
dx h 2 6 2

= %[ 0'10117; 0.10318 _ 1—12(0.00101+ 0.00105} =1.020033

d2 y 1 2 1 4 1 1
—=—|A -—A =——{ 0.00201--—(0.00004) | = 0.200666
dX2 h2 |: y—l 12 y—2 (0 1)2 12 ( )

Example E4.6

Compute the values of f'(3.1) and f'(3.2) using the following table.

x |1]2 |3 |4 |5
f(x) | 0| 1.4 | 33|56 8.1

Solution:
The central difference table is

x |y=fx) ] Ay | Ay | Ay | A%y
Xo=1 0
14
Xq1=2 14 0.5
1.9 0.1
Xo=3 3.3 0.4 0.1
2.3 0.2
X1=4 5.6 0.2
25
X2=5 8.1
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Let

3.1-3
X=3,h=1, U=T=0.1

Ay_; + Ay

S UAZy , +

2 _ 3 3 3 _
f/(31)=%[ 3u 1(A y,2+A y1]+ 2u UA4y_2+---]

6 2 12

+0.1(0.4) +

_1/19+23
1

3(0.2)% —1( -0.1- o.2) . 2(0.0)%-01

; 5 (-0.1)}

=[2.1+ 0.04 + 0.02425 + 0.00082] = 2.16507

2 3 2 _
f'(3-1)=h—12[A2y1+u(A Yo+ A y-lj+6“ 1A4y2+--}

2 12

— — 2 —
- liz{om 0.1( 0'12 0'2) + 6(0'1)2 1(—0.1)} =[0.4-0.015+ 0.00783] = 0.39283

4.5 MAXIMA AND MINIMA OF A TABULATED FUNCTION

From calculus, we know that if a function is differentiable, then the maximum and minimum value of that
function can be determined by equating the first derivative to zero and solving for the variable. This method
is extendable for the tabulated function.

Now, consider the Newton's forward difference formula given in Eq.(4.1).
Differentiating Eq.(4.1) w.r.t. u, we obtain

d 2u-1 3u?-3u+2
Vo Ay + o Ay ARy (416)
du 6

For maximum or minimum, (;_dz = 0. Neglecting the term after the third difference to obtain a quadratic equation

inu.

Hence Ayg+| u-2 a2y, + U_Z_H_,_E A3y, =0 417
Yo 5| A Yot S5t Ao .
A%y, 1 1 1

or TOUZ‘{AZYO_EAZVO}U‘{AVO—EAZ)’0+§A3)’0}=O

or a2+ au+a,=0 418)

which gives the values of u.
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Here a =A%,

1
a.2 = Ayo _EAZyO +—A3y0 (419)

The values of x will then be obtained from x = X + uh.

Example E4.7

Find x correct to four decimal places for which y is maximum from the following data given in tabular form.
Find also the value of y.

x|1]12 14 1.6 1.8
y | 0]0128 | 0.544 | 1.298 | 2.44

Solution:
We first construct the forward difference table as shown below:

X y Ay | Ay | Ay
10| 0
0.128
1.2 | 0.128 0.288
0.416 0.05
14 ] 0544 0.338
0.754 0.05
1.6 | 1.298 0.388
1.142
18| 244
Let % =10
Here ag = %(0.05) =0.025

a = 0.288—%(0.05) =0.2630

a, =0.128- % (0.288) + % (0.05) = 0.128-0.144 + 0.0166 = 0.000666

Hence agu? + ayu + a, = 0, which gives the value of u.

or 0.025u2 + 0.263u + 0.000666 = 0
—0.263++/(0.263)% — 4(0.025)(0.000666
U, = \/( ) ( ) ) = (0,-10.5175)
' 2(0.025)
Hence u=0oru=-105175

Therefore, x=10and x=1.0-10.5175(0.2) =-1.1035
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Atx=10,y=0and a x — 1.1035, we apply the Newton's forward interpolation formula.

u(u2!—1)A2y0+u(u—1)(u—2) A3

Y= Yo+ UAY, + 3

Yo+

— 0+ (~10.5175)(0.128) + (‘10'5175)2(‘11-5175)

(0.288)

(-10.5175)(-11.5175)(-12.5175)
©leale
= 346132 (maximum vaue)

4.6 CUBIC SPLINE METHOD

The cubic spline method described in Section 5.7 of Chapter 5 can be used to find the first and second
derivatives of afunction. The method requires two steps. In the first step, the cubic splines are constructed
with suitable intervals. In the second step, the first and second derivatives are determined from the appropriate
cubic spline. These steps are illustrated by an example as follows:

(0.05)

Example E4.8

Giveny =f (X) = cos x, 0 < x < /2. Determine
(@ the natura cubic splineintheinterval 0 < x<m/4 and m/4 < x< /2
(b) the first and second derivatives f'(n/8) and f”(n/8).

Solution:
T T 1 T
Here h=—,yg=cos0=1,y, =cos —=— andy, = cos—= 0. Also ky = k, = 0.
2 Yo Y1 2 > Y2 2 ko = ko
From Eq.(5.85) of Sec.5.7 of Chapter 5,
6
ki—1+4ki+ki+1:F[yi—l_2yi +VYial, i=23..,n-1 ED
6
or ko+4k1+k2:F[YO_ZY1+YZ]
96
or 4k, = —2(1—J§)
o
or k= 2—‘2‘(1— V2)= -1.007247
o

Therefore, the cubic spline is given by Eq.(5.81) of Chapter 5,

fo,% (¥)
f (X) = fLL(X) (E.2)
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40 x3 1 = n
where fO,% (X) = E[E kl_[l_ﬁ_i—%klj X+ z:| (E“?’)
3
4/ 2 1 |(n
Hence f [E) = f¢x (E) — - 0.339961
8)” °il3

71 2= 10| 2| = - 0503623
g)” %ils

4.7 SUMMARY

Numerical differentiation is not a particularly accurate process due to a conflict between round off errors and
errors inherent in interpolation. Hence, a derivative of a function can never be computed with the same
precision as the function itself.

Problems

4.1 From the following table of values, estimate y'(1.0) and y"(1.0):

@ 1] 2] 3] 4] 5] 6
4| +3| 22|59 120 | 211
1
5

(b) 15 [2] 25 [3 ] 35

6.125 | 9| 14375 | 23 | 35.625

< | X | <X

© 23 [4 |5 |6

251104 | 309 | 730 | 1481

< [ X

©)

1
6
1 15 2 2.5 3 35
2.7 | 55188 | —27.8 | —75.4688 | —163.3 | —309.5188

< | X

C 1 2 3 2 5 6

-26.2 | -157.9 | 523 | -1307.5 | —2752.6

(f) 1 3 5] 7 9 11

52| 284|130 | 367.6 | 798.8 | 1481.2

< [ X | < |X
N
©

@

x
=Y

15 2 25 3 35
—48 | -41.0068 | —24.362 | 8.1098 | 64.084 | 152.7363
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4.2 Find the values of y'(3.5) and y"(3.5) from the following table:

@ 1 15 2 25 3| 35
—49 | —46.6250 | —42 | —34.3750 | —23 | —7.1250

< | X

(b) 1]15 2| 25 3| 35

5]6.1250 | 9 | 14.3750 | 23 | 35.6250

© 1 15 2 25 3 35

0.5470 | 0.4536 | 0.2020 | —0.3284 | —1.2930 | —2.8814

(d) 1 15 2 25 3 35

0.2377 | 0.3108 | 0.4829 | 0.7941 | 1.2849 | 1.9953
4.3 Find the values of y'(6.0) and y"(6.0) from the following table:

@ [x[ 1 2 3 4 5 6
y | —0.5530 | —0.7740 | —1.2490 | —2.0380 | —3.1770 | —4.6780

< X| <|X]| [<|X

® [x]1 2 3 4 5 6
y | 0.0858 | -0.0099 | —0.3242 | —-0.9827 | —2.1094 | —3.8270

4.4 A particle is moving along a straight line. The displacement x at some time instance t are given below.
Find the velocity and acceleration of the particle at t = 4.

t]1 3 5 7 9 11
X | 0.1405 | 0.7676 | 3.5135 | 9.9351 | 21.5892 | 40.0324

4.5 Find the values of y'(4) and y"(4) from the following table:

x]0[1] 2] 3] 4
y| 58| 12[17] 26

4.6 Find the values of y'(2) and y"(2) from the following table:

x| 15 1.6 17 1.8 1.9 2.0

y | 0.3328 | 0.5312 | 0.7651 | 1.0384 | 1.3552 | 1.7198
4.7 Compute the values of y'(3) and y"(3) from the following table:

@ [x[1]2 [3 4 5
y| 0| 14]165]5673]8.0978

b [x]1 [2 3 4 5
y|04]065]075] 087098

4.8 Compute the values of y'(2) and y"(2) from the following table:
@)

1152 |25]|3
0/[05]11|32]|53

(b) 152 25 |3

—2 |2 |3456 5674 | 84592

< [ X | <X
-
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4.9 Compute the values of y'(1.2) and y"(1.2) from the following table:

@ [x[1 [11 [12 |13 |14
y | 0.1]034] 042 053] 0.62

0 [x]1 11 12 13 14
y | 0.0254 | 0.0437 | 0.0587 | 0.0670 | 0.0780

© [xT1 11 12 13 14
y | 0.0012 | 0.2342 | 0.5786 | 0.7693 | 0.8934

4.10 Find x for which y is maximum and also find the corresponding vaue of y, from the table given below:

@

x| 1] 2] 3] 4] 5] 6
y|4|+3[22|59]120] 211
M [x[1]15 [2] 25 3] 35
y | 5|6125] 914375 23| 35.625
© [x[1] 2] 3] 4] s 6
y | 6] 25| 104|309 | 730 | 1481
@ [xT1 15 2 25 3 35
y | 2.7 | 55188 | —27.8 | —75.4688 | —163.3 | —309.5188
© [x]1 2 3 4 5 6
y | 29| —26.2 | -157.9 | -523 | -1307.5 | -2752.6
f) [x]1 T3 5] 7 9 11
y | 52| 284130 | 367.6 | 798.8 | 1481.2
@ [x 1 15 2 25 3 35
y | —48 | —41.0068 | —24.362 | 8.1098 | 64.084 | 152.7363

4.11 Repeat Problem P5.68 of Chapter 5.
4.12 Repeat Problem P5.71 of Chapter 5.
4.13 Use cubic spline method to find f'(2.0) and f'(2.5) from the following table:

X| 2| 3] 5] 6
y | 13]34] 136 | 229

4.14 Repeat Problem P4.7(a) using the cubic spline method.
4.15 Repeat Problem P4.8(a) using the cubic spline method.
4.16 Repeat Problem P4.9(a) using the cubic spline method.

4.17 Repeat Problem P4.9(b) using the cubic spline method.
OO0




CHAPTER

Finite Differences
and Interpolation

5.1 INTRODUCTION

Interpolation is the technique of estimating the value of a function for any intermediate value of the
independent variable. The process of computing or finding the value of a function for any value of the
independent variable outside the given range is called extrapolation. Here, interpolation denotes the method
of computing the value of the function y = f(x) for any given value of the independent variable x when a set
of values of y = f(x) for certain values of x are known or given.

Hence, if (x;, V), 1=0,1, 2, ...., nare the set of (n + 1) given data points of the function y = f(x), then
the process of finding the value of y corresponding to any value of x = x; between %y and x,, is called
interpolation. There are severa definitions available for the term interpolation. Hiral defines interpolation as
the estimation of a most likely estimate in given conditions. It is the technique of estimating a past figure.
Theile's definition of interpolation is “Interpolation is the art of reading between the lines of atable” while
Harper’'s definition is “Interpolation consists in reading a value which lies between two extreme points’.

If the function f(x) is known explicitly, then the value of y corresponding to any value of x can easily
be obtained. On the other hand, if the function f(X) is not known, then it is very hard to find the exact form
of f(X) with the tabulated values (X;, ;). In such cases, the function f(x) can be replaced by a simpler, function,
say, ¢ (X), which has the same values as f (X) for Xg, X1, X, ..., X, Thefunction ¢ (X) is caled the interpolating
or smoothing function and any other value can be computed from ¢ (x).

If ¢ (X) isapolynomial, then ¢ (X) is called the interpolating polynomial and the process of computing
the intermediate values of y = f(X) is called the polynomial interpolation. In the study of interpolation, we
make the following assumptions:

(@) there are no sudden jumps in the values of the dependent variable for the period under

consideration

(b) the rate of change of figures from one period to another is uniform.

In this chapter, we present the study of interpolation based on the calculus of finite differences. The following
important interpolation formulae obtained or derived based on forward, backward and central differences of
a function are presented.
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(@ Newton's binomia expansion formula for equal intervals

(b) Newton's forward interpolation formula for equal intervals
() Newton'sbackward interpolation formulafor equal intervals
(d) Lagrange'sformulafor unequa intervals

() Lagrange'sformulafor inverse interpolation

(f) Gauss'sforward interpolation formula

() Gauss's backward interpolation formula

(h) Bessd’sformula

() Strling'sformula

(j) Laplace-Everett'sformula

5.2 FINITE DIFFERENCE OPERATORS

Consder afunction'y = f(x) defined on (a, b). x and y are the independent and dependent variables respectively.
If the points xg, Xy, ..., X, &€ taken at equidistancei.e, X, =X +ih, i =0, 1, 2, ...., n, then the value of y, when
X = X;, is denoted as y;, where y; = f(X;). Here, the values of x are called arguments and the values of y are
known as entries. Theinterval his called the difference interval. The differencesy; — Vo, Yo — Y1, -+, Yo — Y1 &€
called the first differences of the function y. They are denoted by Ayg, Ay, ..., €tc. That is

AYo =¥1—Yo
Ay =Yo—y1
AYn =Yn—Yn1 (5-1)

Thesymbol A in Eq.(5.1) iscalled the difference operator.

5.2.1 Forward Differences

The forward difference or simply difference operator is denoted by A and may be defined as

Af(¥) = f(x+h) =f(x) (52
or writing in terms of y, at x = ¥;, Eq.(5.2) becomes

AF(X) = % + h) = f(x) 53
or AYi = Yis1 =i i=0,1,2, ....,n—1

The differences of the first differences are called the second differences and they are denoted by A2y,, A2y;,
coeny AR

Hence A% = Ayr —Ayo = (V2= Y1) — (Y1 = Y0) = Y2—2y1 + Yo
A%y = Ay, —Ay1 = (Y3 =Y2) — (Y2 = Y1) =¥z —2¥2 + V1
Ao =A%y — A= (Y3 =22+ Y1) — (Y2 —2y1+ Yo) = Y3 — 3y + 3y1— Yo
A3y, =y, —3yz+ 3y,—y efC.
Generalising, we have
A™I (X) = A[AM(X)], i.e, APty = A[AY],n=0, 1, 2, .... (54
Also, A (X) = AMf(x + h) —f (X)] = A"f (X + h) — A"f(X)
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and ANtly = Afy L — AN n=0,1,2, ... (65)
where A9 = identity operator i.e., A% (x) = f(X) and A = A.
Table 5.1: Forward difference table

X |y | Ay | Ay | Ay | Ay | Ay
Xo | Yo

Ayo
X1 | Y1 A%y, 5
Ay: A'Yo
X2 | Y2 A%y, A'yo
Ay, Ay, A%o
X3 | Y3 A%y, Ay
Ays Ay,
X4 | Ya A%’s
Ay

X5 | Y5

The forward differences for the arguments xg, X4, ..., X5 e shown in Table 5.1. Table 5.1 is called a diagonal
difference table or forward difference table. The first term in Table 5.1 isy, and is called the leading term.
The differences Ayo, A%, A%, ...., ae called the leading differences. Similarly, the differences with fixed
subscript are called forward differences.

5.2.2 Backward Differences

The backward difference operator is denoted by V and it is defined as

vi) =f(x) —f(x—h) (56
Equation (5.6) can be written as
VYV, = Vi —Vi_1, i=nn-1,..,1L 567
or VY1 =Y1=Yo, VY2 = Y2 = Y1, ooes V¥ = Yn = Y1 (58)
The differences in Eq.(5.8) are called first differences. The second differences are denoted by
Vay,, Vs, ..., V.
Hence V2, =V(VY) = V(Y2 —Y) = VYo = VY1 = (Y2 = Y1) = (Y1 =Y0) = Y2~ 2¥1 + Yo
Smilarly, V23 =y3—2y, + Y1, V44 = Y4 — 2y3 + >, and so on.
Generalising, we have
Vky, = Vily, — Vkly i=nn-1,...,k (59)
where V% =y, Vly =Vy.

The backward differences written in a tabular form is shown in Table 5.2. In Table 5.2, the differences V"y
with afixed subscript ‘i’ lie along the diagonal upward sloping.
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Table 5.2: Backward difference table

X |y | Vy | Vy | Vy|Vy

Xo | Yo

Vyi

X1 | Y1 vy,

VY, Voys

X2 | Y2 Vs

VY,

Vys VY,

X3 |Ys VZY4

VY,

X4 | Ya

Table 5.2 is called the backward difference or horizontal table.

5.2.3 Central Differences

The central difference operator is denoted by the symbol § and is defined by

Sf () =f(x+h2) —f(x—h2)
where h is the interval of differencing.
In terms of y, the first central difference is written as

OY1 = Vi+w2 — Vi—w2

where Yiewz = F(6 + W2) andy _yp = f (X —
Hence dY12 = Y1 = Yo, 8Yar2

=Yoo —VYiy eeer, OYpo1p2

=¥~ Yna

The second central differences are given by
3% = OYi+ 12— OYi—112
= Ve —¥) — (¥ —¥id)
=Yi+1— 2 tVYia
Generalising
3y; = 8™y 1, — 8"y
The central difference table for the seven arguments xq, Xy,

(5.10)
h2).

(611
...., Xg isshown in Table 5.3.
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Table 5.3: Central difference table

X |y ) 5° 5° 5 5° 5°
Xo | Yo
Oy
X1 | Y1 8%y,
Sy 53)/3/2
X2 | Y2 5%’2 54)’2
OYspo 53)/5/2 85)’5/2
X3 | Y3 52}’3 54}’3 56}’3
Sy 8%y 8%
X4 | Ya 52}’4 54}’4
Sy 8%ar
X5 | Y5 5%/5
Oy
X6 | Yo

It is noted in Table 5.3 that all odd differences have fraction suffices and all the even differences are with
integral suffices.

Example E5.1
(a8 Construct the forward difference table and the horizontal table for the following data:

x |1]2]3]4]5
y=f(x) | 4|6]|9]| 12|17

(b) Construct a forward difference table for the following data

x |0 |10 20 30
y |0 | 0174 | 0347 | 0518

(© Congruct adifferencetablefory=f(x) =x3+2x+ 1forx=1, 2, 3, 4, 5.
(d) Obtain the backward differences for the function f (X) = 3 from x = 1 to 1.05 to two decimals chopped.

Solution:
(@ The forward and the horizonta or backward difference tables are shown in Tables E5.1 (a) and E5.1
(b) respectively.
Table E5.1(a): Forward difference table

X | f(X) | Af(X) | A%(X) | A%(x) | A%(X)
1] 4
2
2| 6 1
3 1
3] 9 0 3
3 2
4] 12 2
5
5] 17
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Table E5.1 (b): Horizontal or backward difference table

X | f(X) | Af(X) | A%(x) | A%(x) | A%(X)
1 4
2 6| 2
3 9| 3 1
4| 12| 3 0 1
5| 17| 5 2 2 3
(b) Table E5.1 (c) shows the forward difference operations.
Table E5.1(c)
X y Ay A%y Ay
0 0
0.174
10 0.174 —0.001
0.173 —0.001
20 0.347 —0.002
0.171
30 0.518
(c) Table E5.1(d) shows the forward difference table.
Table E5.1(d)
X x=f(x) | Ay A%y A’y
1 4
9
2 13 12
21 6
3 34 18
39 6
4 73 24
63
5 136
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(d) The following table E5.1(e) shows the backward differences.
Table E5.1(e)

X y =f(x) Vy sz V3y V4y
1.00 1
0.030
101 1.030 0.001
0.031 -0.001
1.02 1.061 0.000 0.002
0.031 0.001
1.03 1.092 0.001 -0.001
0.032 0.000
1.04 1.124 0.001
0.033
1.05 1.157

Note the typical oscillations in sign and growth of the entries.

5.2.4 Error Propagation in a Difference Table

Let yo, V1, Y2, ..., Yn be the true values of a function and suppose the value y, to be affected with an error
€, S0 that its erroneous value is y, + €. Then the successive differences of the y are as shown in Table 5.4.

Table 5.4: Error propagation in a difference table

y Ay Ay Ay
Yo
Ayo
Y1 A%
Ay, A%y,
Y2 A%
Ay, Ay,
Y3 Ay, | _--T -
Ays | -7 Ay, +e
Ya | .--""" Ays+e
===l Ay, + e AYy;—3e
ys+ € A%y, —2e
~~~~~~~ Ays—€ A3y4 + 3e
Ye D W
Aye e A¥ys—e
Y7 A%y TT--l
Ay7 A%e
Ys A%y,
Aysg
Yo
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Table 5.4 shows that the effect of an error increases with the successive differences, that the coefficients of
the €’s are the binomial coefficients with alternating signs, and that the algebraic sum of the errors in any

difference column is zero. The same effect is also true for the horizontal difference Table 5.2.

Example E5.2
Table E5.2 gives the values of a polynomial of degree five. It is given that f (4) isin error. Correct the value
of f (4).
Table E5.2
X 1 2 3 4 5 6 7
y =f(x) | 0.975 | -0.6083 | —-3.5250 | -5.5250 | —6.3583 | 4.2250 | 36.4750
Solution:

Itisgiventhat y = f (X) is apolynomial of degree five. Hence A%y must be a constant and f (4) isin error.

Let—-5.5250 + € bethetrueor correct value. The differencetableisshownin Table E5.2(a).

Table E5.2(a)

X y Ay Ay Ay Aly Ay
1 0.975
—1.5833
2| -0.6083 —1.3333
—2.9167 2.25+¢
3| -35250 0.9167 + € —2—4¢
—2+¢€ 0.25-3e 12 + 10e
4| -55250+¢ 1.1667 — 2¢ 10 + 6¢
—0.8333-¢ 10.25 + 3¢ —10-10e
5| -6.3583 11.4667 + 0-4e
10.5833 10.25—¢
6 4.2250 21.6667
32.2500
7| 36.4750
Since the fifth differences of y are constant, we have
12 +10e =-10-10e
or 20e =-2
or e =-11
Hence f(4) =-55250+¢€ = -55250-1.1
or f(4) =-6.6250

Example E5.3

The following is atable of values of a polynomia of degree 5. It is given that f (3) isin error. Correct the error.

Table E5.3
X 0 1 2 3 4 5 6
y 1 2 33 254 1054 3126 777
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Solution:

It isgiven that y = f (X) is a polynomial of degree 5.

Hence, A% must be constant; f (3) isin error.
Let 254 + € be the true vaue, now we form the difference table as shown in Table E5.3 (a).

Table E5.3 (a)

x |y Ay A%y A%y Ay A%y
0 |1
1
112 30
31 160 + €
2 |33 190+ € 200 —4e
21+e 360 —3e 220 + 10e
3 | 254+¢€ 550 - 2¢ 420 + 6¢
1771—¢€ 1780 + 3¢ 20— 10e
4 | 1054 1330+ € 440 - 4¢e
2101 1220-€
5 | 3126 12550
4651
6 | 7777
Since the fifth differences of y are constant
220+ 10 =20-10e
= 20 =-200
= e =-10
Hence f@) =254 +¢
= f(3 =244
Example E5.4
Table E5.4 below shows a difference table. Find the location of error.
Table E5.4
X y=x3 A A? A3
5 125 7.651 0.306 0.006 0
5.1 132.651 7.957 0.312 0.006 0
5.2 140.608 8.269 0.318 0.006 | -0.027
5.3 148.877 8.587 0.324 -0.021 0.081
5.4 157.464 8.911 0.303 0.060 | —0.081
55 166.375 9.214 0.363 -0.021 0.027
5.6 175.616 9.577 0.342 0.006 0
5.7 185.193 9.919 0.348 0.006
5.8 195.112 10.267 0.354
5.9 205.379 10.621
6 216
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Solution:
The location of an error is obviously centered on 0.060 in the third difference. Instead of 9.214, one has
wrongly entered it as 9.241.

5.2.5 Properties of the Operator A
1 If cisaconstant then Ac = 0.

Proof:
Let f(x) =c
Hence f(x+ h) = ¢, where histheinterval of differencing.
Hence Af(X) =f(x+h)—f(x)=c-c=0

or Ac=0

2 Alisdidtributive, i.e.,
Alf(X) £ g(xX)] = Af(X) £ Ag(X).
Proof:  A[f(X) + g()] = [f(x + h) + g(x + W] = [f(x) + g(X¥)] =f(x + h) —f(x) + g(x+ h) —g(x) = Af(x) + Ag(X).
Similarly, we have
Alf(X) —g(¥)] = Af(x) — Ag(x)
3 If cisaconstant then
Alcf(X)] = cAf(X).
From properties 2 and 3 above, it is observed that A is alinear operator.
Proof:  A[cf(X)] = cf(x + h) —cf(X) = c[f(x + h) — f(X)] = cAf(X)
Hence A[cf(X)] = cAf(X).
4. If mand n are positive integers then AMA" (x) = A™* "f(X).
Proof: AMAf(X) = (AXAXA ... mtimes) (AX A ... ntimes) f(X) = (AAA ... (m+ n) times) f (X) = A™* "f(X).
In a similar manner, we can prove the following properties:
5 Alf(¥) + () + -+ Fa ()] = Afy(X) + Afp(X) + -+ + Afy (X).
6. A[f(Qg()] =f(x) Ag(¥) +9(x) Af(X).

A[ f(x)} _ 9094 (x) - F(x)Ag(x)
94 9(xg(x+h)

5.2.6 Difference Operators
(@ Shift operator, E:
The shift operator is defined as
Ef() =f(x+h) (512
or Byi = Yiu (613
Hence, shift operator sifts the function value y; to the next higher valuey; ,1. The second shift operator
gives
E?f(x) = E[Ef(X)] = E[f(x + h)] =f(x + 2h) (519
E islinear and obeys the law of indices. Generalising,
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E"f(X) = f(x+nh) or E; = Vi
The inverse shift operator E is defined as
Ef(X) =f(x—h)
In asimilar manner, second and higher inverse operators are given by
EZA(X) =f(x—2h) and Ef(X) =f(x—nh)
The more general form of E operator is given by
Ef(x) =f(x+rh)
where r is positive as well as negative rationals.
(b) Averageoperator, u:
The average operator u is defined as

uf (x) =%[f(x+ h/2)+ f(x—h/2)]

] 1
ie, uy; :E[yi+1/2+yi—l/2]

(c) Differential operator, D:
The differential operator is usually denoted by D, where

Df (x)=%f(x)= £/(x)

d2
sz(x):yf(x): f7(x)

5.2.7 Relation between the Operators

(519

(5.16)

(5.17)

(5.18)

(5.19)

In order to develop approximations to differential equations, following summary of operators is useful.

Table 5.5
Operator Definition
Forward difference operator A Af(x) = f(x + h) —f(X)
Backward difference operator V| Vf(x)=f(x) —f(x —h)
Central difference operator § Of(x) = f(x + h/2) f(x —h/2)
Shift operator E Ef(x) =f(x + h)
Average operator i uf(x) = 0.5[f(x+h/2) — f(x—h/2)]
Differential operator D Df(x) =f’(x)

Here h is the difference interva. For linking different operators with differential operator D we consider Taylor's

formula

f(x+h) =f(x) + hf'(x) +%h2f"(x) + o
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In operator notation, we can write it as:
1
Ef(x) = {1+ hD + E(hD)z + } f (%)
This series in brackets is the expression for the exponential and hence we can write
E=¢P

This relation can be used by symbolic programs such as Maple or Mathematica to analyse the accuracy of
finite difference scheme.

From the definition of A, we know that
Af(X) = f(x+h)—-f(X)

where h isthe interval of differencing. Using the operator E we can write
Af(X) = Ef(x) —f(X)

= Af(X) = (E-1) f(¥
The above relation can be expressed as an identity
A=E-1
ie, E=1+A
Proof: EAf(X) = E(f(x + h) —f(X))

= Ef(x + h) — Ef(X)
= f(x + 2h) —f(x + h)

= Af(x+h)
= AEf(X)
Hence EA = AE.
Example E5.5
Af
Show that Alog f(x) = log 1+ﬂ
f(x)
Solution:

Let h be the interval of differencing
fxX+h)=Ef()=(A+ 1) f(X) =Af(x) +f(X)
f(x+h) _ Af(x)+1
f(x) f(x)
Taking logarithms on both sides we get

f(x+h)| Af (X)
Og{—f(x) }_ Iog[1+ —f(x) }

= logf(x+h)—logf(x) =log [1+ Af (x)}

f(x)
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— Alogf(x) = log {1+M}
f(x)

Example E5.6
2
Evaluate (AEJ X3

Solution:
Let h be the interval of differencing

2
(AEJ X*= (A2E) 58

(E—12E1x3

(E2—2E + 1) E1x3
=(E-2+EDx
=ER-2G+E1x3

= (x+ h)3— 23 + (x— h)3
= 6xh

A2
Note: If h =1, then (EJ X2 = 6x

Example E5.7

A%, E€” . . . .
Prove that e~ =?e F the interval of differencing being h.
e

Solution:
We know that
Ef(x) = f(x+h)
Hence Eex = e*h,
Again Aex = gth—ex =g - 1)
= A%ex = gf- (e —1)2

AZ
Hence [EJ €= (A%EY) e = A2ex-h = eN(A%e) = e~NeX(e) — 1)2

X+h

Therefore, the right hand side = eeX (€' — 1) - = €
e'(e' -1

Relation between E andV :
VX =f(X)-f(x—h)=f(x) —EH X
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= vV =1-E1!
E-1
VETES
Example E5.8

Prove thefollowing (@) (L+A) (1-A)=1(b) A V=A-V
Solution:
@ @A+A)(A-V)IW=EEY(X)=Ef(x—h)=Ff(x) =1 f(x).

1+A)(1-v)=1
() VAKX =E-DA-EHFR)=E-1)[f()—f(x—h)]

Proofs for the Relations among the Operators:

1 A=E-1
Since Af(x) = f(x+h)—f(X)
or Af(X) = E[f(¥]-fX) =(E-1) (X

Since f (X) is arbitrary, so ignoring it, we have
A=E-1orE=1+A

2 V=1-E1
We have VI(X) =f(X) —f(x—h)
=1 - E{f(x)]
=(1-EDHTK
Hence V=1-E1

3 § =EV2 - E12
We have S[f(¥)] =f(x+h2)—f(x—h2)
= EY2- [f(9] - E*2- [f (¥)]
= (E2-E)1()
Hence d =EV2-E12

4 A =EV = VE = 6E¥2
We have  EV[f(X)] = E[f(X) —f(x—h)]
= E[f(X)] - E[f(x—h)]
=f(x + h) —f(x) = Af(X)

Hence EV = A
Again, VE[f(X)] = Vf(x+h) = f(x+h) —f(X) = Af(X)
Hence VE = A

Also,  SEY2-[f(X)] = S[f(x + h2)]
= f(x+h) —f(x) = Af(X)
Hence SEYV2 = A
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E =¢eP
d
D=—
where ix

2
We know E[ f (X)] = f (x+h) = f(X)+hf ’(x)+%f”(x)+---, by Taylor’'s series

22

2
= f(X)+th(X)+%D2f(x)+---=(1+hD+hz?

+] f(x)=e"™- f(x)
Hence E = v,

U= %(El/z + E71/2)

Since uf £ (x)] :%[f(x+ h/2)+ f(x—h/2) :%[E”zf(x)+ E Y2 (x)] :%[E1’2+ EY2)f(x)
Hence U=%(El/2+Efl/2)

AV = AV = &

Since AVE(X) = A(f(x) —f(x—h))

= A(f(x) —Af(x=h)
= [f(x+h) =f(] = [F(x) —f(x—h)]
=8 - f(x + h/2) — &f(x — h/2) = §%(x)
Hence AV =&
Also VAf(X) =V (f(x + h) —f(X))
= Vf(x + h) — Vf(x)
= [f(x+h) =f(] — [f(x) —f(x—h)]
=3- f(x + hf2) — 8f (x — h/2) = &% (X)
Hence VA = &
L+A)(1-A) =1
LHS=E-El=Erl1=E0=1=RHS.
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Hence the result. The relationships among the various operators are shown in Table 5.6.

Table 5.6: Relationship among the operators

E A \Y S
E E A+1 a-v)?*

A E-1 A 1-v)t-1 1

v 1-E* 1-(1+A)7 v
1 [1+%82j

6 E]JZ _ E]JZ A(l + A)—]JZ V(l _ V)—]JZ

S
! %(E”2+E’”2) (1+%Aj(1+A)”2 (1—%A)(1—A)”2 /(1+%52)

5.2.8 Representation of a Polynomial using Factorial Notation

A polynomial of degree n can be expressed as a fractional polynomial of the same degree. Let f(x) be a
polynomial of degree which isto be expressed in factorial notation and let

f(x) =ag+ apxl + ax@+ -+ + ax" (5.20)
where ag, ay, ...., a, are constants and ag # 0 then
Af(X) = Alag + agxt + -+ + a x|
= Af(X) = ag+ 2axt + -+ + rax-
Hence A (X) = Alag + 28Xt + -+« + raxn-1)]
or A%f(X) = 2a, + 2 x 3agxt + --- + n(n — 1)x("-2)

A"f(x)=af(n-1) - 2x1x? =g’
Substituting x = 0 in the above, we obtain
A"f(0)
,———=a,

AF(0)  _ AZf(0)
ATy Ty
Putting the values of ag, a1, ay, ..., &, in Eq.(5.20), we get

f(0) = a,

f(x)=f(0)+ MO o, AFO) o,  AO)
1 2! n!

Example E5.9

(S m s
Evaluate (a) E X (b) Asinx

(© Alogx (d) tanlx
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Solution:
2 _n2 2

@ Ao | Y| o [EP-2E41),
E E E
=S(E-2+E)=BC-2+EW=(x+12-2@+ (x+1)2=2.

. . i X+h+x) . [ x+h-x h) . h
(b) Asinx=sin(x+h) —sinx= 2 cos > sin > = 2cos X+ ]sn>

Hence Asinszcos(x+D)sinD
2 2
(©) Alog x=log(x + h) —log x = log ihzlog[1+ﬂ}
X X
_ h
Hence Alog x =log [1.4._}
X

X+h-x |_. h
Atan! =tan(x + h) —tanl =tanl | ————— |7t | ————

1+ (x+h)x 1+ hx+ X
Example E5.10
Find (a) A% (b) A log x
Solution:
(@ A%< = A(Ae) = Alesh —e] = AleX (@ - 1)] = (€' - 1) Ae*= (" — 1)(e*" — &) = (" — 1)e
Hence  AZ%eX=(eh—1)%
(b) See sol. E5.9 (c).
Example E5.11

2
Evaluate (A—J X3
E

Solution:
Let h = interva of differencing.

2
(AEJ X = (A2E)C = (E-D)2E 3= (E2—2E + DELE = (E—2 + E)@ = B3 - 2 + EL3
=(x+h32-23+ (x—h)*=6xh
Example E5.12
Given U=1u =11, u, =21, uz = 28, u, = 30,

find A4u.

Solution:
A4U0 = (E - 1)4UO = (E4 - 4ClE3 + 4C2E2 - 4C3E + 1)UO = E4y0 - 4E3U0 + 6E2U0 - 4EUO + Up
=U—4uz+6u,—4u; +Up=30-112+ 126 -44+1=1.
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Example E5.13
Estimate the missing term in the following table.

X
y=f(x) | 4|3 |4|2]| 12

Solution:
We are given four values, so the third differences are constant and the fourth differences are zero.
Hence A (x) = Ofor al values of x.
Thatis (E-1)%(X) =0
(B*—4E3 + 6E2—4E + 1)f(x) =0
B (X) — 4E3f(x) + 6E2f(x) —4Ef(x) + f(x) =0
f(x+4)—4f(x+3) + 6f(x+2) —4f(x+ 1) +f(x) =0
where the interval of differencing is 1.

Now substituting x = 0, we obtain
f(4) +4f(3) + 6f(2) —4f(1) +f(0) =0
12+4f(3)+6(4)-43)+4 =0

or f3 =7
Example E5.14
Find A3(1-3x) (1-2X) (1 —X).
Solution:
Let f)=(1-3X)(1-2)(1-Xx) =—6x + 11x2 —6x+ 1

Here, f(x) is a polynomial of degree three and the coefficient of X3 is (—6).
Hence A3f(X) = (-6)3! =-36.

Example E5.15
Evaluate A(e®* log bx).
Solution:
Let f(X) = e* and g(x) = log bx.
Hence Af(X) = ealx+h) — gax = eaX(e?h — 1)
Ag(x) =log b(x + h) —log bx = Iog(1+ D)
X

Also A(f(x) - 9()) = f(x+h) Ag(x) +g(x) - Af(X)

= e |og(1 + h/X) + log bx - e(e?h — 1)

=eX. [élog(1 + h/x) + (€" — 1)log bx].
Example E5.16

If mis apositive integer and the interval of differencing is 1, show that
AZXEM = m(m+ 1) xtm-2)
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Solution:
1
(X+D(x+ 2)--(x+m)

1 1
(X+2)(X+D-~(x+m+1)  (X+D)-(x+m)

X(fm) —

A[XCM] =

3 1 1 1
T (X4 2-(x+m) | (x+m+1)  (x+1)

. &) = (~m)xt™
(X+D(x+2)-(x+m+1)
A2(xEM) - = (—m)(=m— 1) xE™A = m(m + 1)xm-2),
Example E5.17
Expressf(x) = 33 + x2 + x + 1, in the factoria notation, interval of differencing being unity.

Solution:

Here f (x) is a polynomial of degree 3.
We can write

Af1§0) s A? ; !(0) @t A3 ;(0) .

The interval of differencing is unit and finding the values of the function at x = 0, 1, 2, 3, we get
fO=Lf1)=6f2=3Lf3)=%

The difference table (Table E5.17) for the above values is given below:

f(x) =f(0) +

Table E5.17
X f(x) Af(X) A%(X) A%(x)
0 1
5

1 6 20

25 16
2 31 38

63
3 94

From the table we have f (0) = 1, Af (0) = 5, A%f (0) = 20, A3f (0) = 18.
Substituting the above values in f (x), we get

f —1+51+§2+E3
® = X 2!x 3!x,

Hence f(x) = 3x3+ 10x2 + 5x + 1.
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5.3 INTERPOLATION WITH EQUAL INTERVALS

Here, we assume that for function y = f(x), the set of (n + 1) functiona values yy, Vi, ..., Y, are given
corresponding to the set of (n + 1) equally spaced values of the independent variable, x; = Xg + ih, i =0, 1,
..., N, where h is the spacing.

5.3.1 Missing Values

Let afunctiony = f(x) is given for equally spaced values xg, X1, X, ..., X, Of the argument and yq, 1, V>, ...,
Y, denote the corresponding values of the function. If one or more values of y = f(x) are missing, we can
determine the missing values by employing the relationship between the operators E and A.

5.3.2 Newton’s Binomial Expansion Formula
Suppose Yo, Y1, Yo, ----» Yn denote the values of the function y = f(x) corresponding to the values x,, Xy + h,

Xo + 2h, ...., Xo + nh of x. Let one of the values of y is missing since n values of the functions are known.
Therefore, we have
Anyo =0

or (E-D"y =0 521
Expanding Eq.(5.21), we have

[En — nClEn—l + ”CQE”‘Z + o+ (_1)n] Yo=0 (522)

n(n-1)
or EYo—nE™ o+ ——— EMo+ - + (1) =0
n(n-1)

or Yn—NYpa + T Yoot o+ (-1)"o=0 (622

Equation (5.23) is quite useful in determining the missing values without actually constructing the difference
table.

Example E5.18
Determine the missing entry in the following table.

x |O0|1]2]3]4a
y=f(x) | 1|4 |17 || 97

Solution:

Letyo=1,v, =4y, =17 and y, = 97. We are given four values of y. Let y be a polynomial of degree 3.
Hence A%y =0

or (E-D*%, =0

(E*—4B3+6E2—4E+ 1)y, =0

E%yo—4E3y, + 6E%yp—4Eyo + Yo = 0

or Ya—4y3+ 6y, —4y1 +Yyo =0

That is 97 —(dy3) +6(17)—-4(4H+1 =0
or ya = 46.
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Example E5.19
Find the missing entry in the following table.

X |0 4] 5
y=f(x) | 1|3 |11 |- 189 | 491

[EnN
N
w

Solution:

Here, wearegiveny, =1, y; = 3, y» = 11, y, = 189 and ys = 491. Since five vaues are given, we assume that
y isapolynomia of degree 4.

Hence ASyy =0

or (E-13%,=0 (ED
(E5—5E4 + 10E3 — 10E2+ 5E—1)y, = O

or Y5 —5ys + 10y3 — 10y, + 5y1 —yo = O (E2

Substituting the given values for yy, vy, ..., ¥5 in EQ.(E.2), we get
491 —5(189) + 10y; —10(11) +5(3) -1 = 0

or 10y; = 530
or y3 = 55
Example E5.20

Find the missing entries in the following table.

x |0|1] 2] 3]/4] 5
y=f(x) | 1| —| 11| 28| — | 116

Solution:

Here, we are given yg = 1, y, = 11, y = 28, and y5 = 116. Since three values are known, we assume y = f ()
as a polynomial of degree three.

Hence Ay =0
or (E-D%, =0
That is (E*—4E3 +6E2—4E+ 1)y, = O
or Ya—4y3+6y2—4y1 +yo = 0
Va—4(28) + 6(11) -4y, +1 = 0

Ya—4y1 = b (E1)
and Ay =0
or (E-D%, = 0
or  (E5—5E*+ 10E3—10E2 +5E— 1)y, = O
Y5 —5ys + 10y3 — 10y, + Sy1 —Yo = O
116 — 5y, + 10(28) — 10(11) + 5y; —1 = O

or -5y, +5y; = 285 (E2

Solving Egs.(E.1) and (E.2), we obtain
yi =4 andy, = 6L
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5.3.3 Newton’s Forward Interpolation Formula

Let y = f(x), which takes the values yq, Y1, V>, ..., ¥, that isthe set of (n + 1) functiona values yo, V1, ¥, ...,
Y, are given corresponding to the set of (n + 1) equally spaced values of the independent variable,
Xi =% +ih,i=0,1, 2, ...., nwhere h is the spacing. Let ¢(x) be a polynomial of the nt" degree in x taking
the same values as y corresponding to X = Xg, X1, ...., X, Then, ¢(X) represents the continuous function
y=f(x) such that f (%) = d¢(x) fori =0, 1, 2, ...., nand a al other pointsf(x) = ¢(X) + R(X) where R(X) is cdled
the error term (remainder term) of the interpolation formula.

Let 0(x) = ag + ay(X —Xo) + a(X — Xo)(X — Xq) + a(X —X0)(X = X1) (X = Xp) + -+
+ 8n(X = Xo)(X = X)) (X = Xp) -+ (X — Xp1) (5.24)

and o) =vy;; 1=0,1,2 ....,n (525
The constants ay, a;, a, ...., a, can be determined as follows:
Substituting X = X, Xq, X, ..., X, successively in Eq.(5.24), we get

a = Yo (5.26)

Y1 = + ay(X — Xo)
or Y1 = Yo+ &u(x —Xo) [using Eq.(5.26)]

- A
stk S 62

Yo = ag + a1(Xo — Xo) + ax(Xo — Xo)(X2 — Xq)

or Yo — Yo — @1(X2 — Xo) = @(X2 — X0)(X2 — X1)

(Y1~ Yo)
or (YZ—YO)—ﬁ(Xz_Xo):az(xz_xo)(xz—xl)
—VYp)2h
or (yZ_YO)—%:aZZhh
Y2—2%1+ Yo Az)’o
a = = 5.28
o 2 2h? 212 62
Similarly, we obtain
g = Ay _A",
T nth"
Hence, from Eq.(5.24), we have
A A? A"
000 = Yo + 02 (X 10) + 2 (X3 (X %) + I (x4 ) (X 3)-(X= %) (529
Let X = X + uh
or X—Xg = uh
and X=X =(X=%) = (X1 =% =uh—h=(u-21h (5.30)

X=X = (X=%1) = (X% —X%) =(u—-2h—-h=(u-2)h, etc.
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Using the values from Eq.(5.30), Eq.(5.29) reduces to

-9 2y, , WO-D0-D)

O(X) = Yo + UAY, + e 5 Yo+t uu-1--(u-(n-12)

3! n!
The formula given in Eq.(5.31) is called the Newton's forward interpolation formula. This formulais used to

interpolate the values of y near the beginning of a set of equally spaced tabular values. This formula can
also be used for extrapolating the values of y alittle backward of yq.

Example E5.21

Given that /15500 = 124.4990, /15510 = 124.5392, /15520 = 124.5793 and /15530 = 124.6194, find the value
of V15516 .

Solution:
The difference table is given below:

X y=/x Ay A%y
15500 Xo | 124.4990 y,

0.0402

15510 | 124.5392 0 A%y,
0.0401

15520 | 124.5793 0
0.0401

15530 124.6194

Here %o = 15500, h = 10 and x = 15516

- X~ % _ 15516-15500 _
 h 10 B

Newton's forward difference formulais

109 = yo+unyo + Py, v

1.6

or f(15516) = 124.4990 + 1.6(0.0402) + 0 = 124.56323

Example E5.22

A second degree polynomia passes through the points (1, -1), (2, —2), (3, —1) and (4, 2). Find the polynomial.
Solution:

The difference table is constructed with the given values of x and y as shown below:

X |y |Ay | Ay | Ay
1|-1

-1
2|2 2

1 0
3|1 2

3
4| 2
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Here Xo=1Lh=1y,=-1 Ayg=-1 and A%y, =2

u= X_hxo =(x-1)

From the Newton's forward interpolation formula, we have

u(u-1
2!

(x-)(x-1-1) 2
2

A2y0+...

y=f(x)= yo+Uyp+
or F0) = -1+ (x-D(-D + 3 —dx+2

Example E5.23
Find y = e¥ for x = 0.05 using the following table.

Xx |0]01 0.2 0.3 04
e | 1| 1.3499 | 1.8221 | 2.459 | 3.3201

Solution:
The difference table is shown in below:

x |y=e¥| ay Ny | Ay | Ay
0.00 | 1.0000
0.3499
0.10 | 1.3409 0.1224
04723 0.0428
0.20 | 1.8221 0.1652 0.0150
0.6375 0.0578
0.30 | 2.4596 0.2230
0.8605
0.40 | 3.3201

We have X, = 0.00, x = 0.05, h=0.1

_ X=X 0.05-0.00
h 01
Using Newton's forward formula

Hence u 0.5

f(x)= yo+uAyo+%A2yo+

3! 0 4

0.5(0.5—1)

f(0.05) =10+ 05(0:3499) + ————(01224)+ (0.0428)

(0.5)(0.5-1)(0.5-2)
6

, 05(05-1)(05-2)(05-3)
24

(0.0150)

£(0.05) = 1.16172

uu-Yu-2) A%y, + uu-Hu-2)(u-3) A
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Example E5.24
The values of sin x are given below for different values of x. Find the value of sin 42°,
X 40 45 50 55 60
y=f(x)sinx | 0.6428 | 0.7071| 0.7660 | 0.8192 | 0.8660
Solution:
X = 420 is near the starting value xo = 40°. Hence, we use Newton’s forward interpolation formula.
x [y=snx] ay A%y Ay | Ay
40° | 0.6428
0.0643
45° | 0.7071 -0.0054
0.0589 —-0.0004
50° | 0.7660 —-0.0058 0
0.0531 —0.0004
55° | 0.8192 —0.0062
0.0469
60° | 0.8660

X% _ 420 40°
h 5
We have y, = 0.6428, Ay, = 0.0643, A%y, = —0.0054, A3y, = —0.0004

04

Putting these values in Newton's forward interpolation formula we get

u(uz!— 1) A2y, + uu-1(u-2) A3

F00=Yo+uaye+ 3!

Yo+

0.4—(0.4-1)(0.4-2)

f (42°) = 0.6428+ 0.4(0.0643) + -

(~0.0054) +

0.4(0.4-1)
2

Example E5.25
The profits of a company (in thousands of rupees) are given below:

Year (X) | 1990 | 1993 | 1996 | 1999 | 2002
Profity = f(x) | 120 | 100 | 111 | 108 | 99

Calculate the total profits between 1990-2002.

Solution:
The forward difference table is constructed as shown further:

(~0.0004) = 0.66913
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X Yy AYo A%O A3y0 A4y0
1990 | 120
-20
1993 | 100 31
11 —45
1996 | 111 -14 53
-3 8
1999 | 108 —6
-9
2002 | 99
To calculate profits at 1991
ld %=1990,x=191,h=3 p=>2=03

Using Newton's forward interpolation formula we obtain

N u(u —1;!(u -2) A3y0 N u(u —1)(u4—! 2)(u-3) A4y0

(Ul—l) A%y,

y(1991) = y, + UAY, + u >

0.33(0.33-1)(0.33- 2)

=120+0.33(-20) + 0'33(053_ D a1+ 5 (-45)
N 0.33(0.33-1)(0.33-2)(0.33-3) (53) =104.93
24
or 104.93 thousand rupees.
As an example, consider the difference table (Table E5.25) of f(X) = sin x for x = 0° to 50°:
Table E5.25
x(deg) | f(x)=sinx A A2 AS A* A®
0 0 0.1736
10 0.1736 0.1684 | —0.0052 | —0.0052
20 0.3420 0.1580 | —0.0104 | —0.0048 | 0.0004 | O
30 0.5000 0.1428 | —0.0152 | —0.0044 | 0.0004
40 0.6425 0.1232 | —0.0196
50 0.766

Since the fourth order differences are constant, we conclude that a quartic approximation is appropriate. In
order to determine sin 5° from the table, we use Newton's forward difference formula (to fourth order); thus,
teking x = 0, we find a = = =
ing x =0, wefinda=—-== .
Hence s€in5°=sn(0°+%(0.1736) + (¥3)(¥2)(—2) (-0.0052) + (1/6)(Y2)(-2)(-3/2)(-0.0052)
+ (1/24)(©2) (-2 (-3/2)(-5/2)(0.0004) = 0 + 0.0868 + 0.0006(5) — 0.0003(3) — 0.0000(2) = 0.0871.
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In order to determine sin 45° from the table, we use Newton's backward difference formula (to fourth order);
45-40 1
10 2

1 113
and sin45° =sin 40° +E(O'1428) + 5235 (-0.0152) +

= 0.6428 + 0.0714 — 0.0057 — 0.0015 + 0.00001
Example E5.26
If f(X) is known at the following data points

x|0]1] 2] 3| 4
fi |1]7]23]55]| 109

Find f(0.5) using Newton’s forward difference formula.
Solution:
Forward difference table is prepared as shown in Table E5.26.

thus, taking x= 40, we find b =

N | w
N o

% (-0.0048) + - = = — —(0.0004)

I ok

0.7071

Table E5.26

N f Af A% INi A

16 6

32 6
3 55 22

4 109

By Newton's forward difference formula

f (X, +ah) = { fo +aAfy + a(aZ'—1) A% £, + a(a—l?),'(a— 2) A® fo}
To find f(0.5):

At x=05a=(x—-%)/h=(05-0)/1=05

05(0.5-1) . 0.5(0.5-1)(0.5-2)
——10+ 5 6}

Hence f(0.5 = {1+ 0.5x6+

=1+3+25 x (—05) + (- 0.25)(= 1.5) = 3.125

Example E5.27
Find f (0.15) using Newton backward difference formula from Table E5.27.



148 /I Numerical Methods //

Table E5.27
X f(x) Vi V2t V3 V4
0.1 | 0.09983
0.09884
0.2 | 0.19867 —0.00199
0.09685 —0.00156
0.3 | 0.29552 —0.00355 0.00121
0.0939 —0.00035
0.4 | 0.38942 —0.0039
0.09
05| 0.97943
Solution:
Using Newton-Gregory's formula
£(x) = [ fenvi + b(b24'-1) N b(b+1?)"(b+ 2) NI b(b+1)(b; 2)(b+3) v fn:|

where in present case: h=0.1, n=5
b=(x—x,) /h=(0.15-0.5)/0.1= -35

~3.5(-35+1)(-35+2)
3

~3.5(-35+1)
|

Hence f (0.15)=0.97943 + —3.5x0.09+ (~0.0039) + (~0.00035)

, ~35(-35+1)(-35+2)(-35+3)
41

=0.97943 — 0.315 - 0.01706 + 0.000765625 + 0.00033086 = 0.14847

(0.00121)

5.3.4 Newton’s Backward Interpolation Formula

Newton’s forward interpolation formula is not suitable for interpolation values of y near the end of a table of
values.

Let y = f(X) be afunction which takes the values yy, y1, Yo, ..., ¥ corresponding to the values xg, Xq, Xo,
..., X, Of the independent variable x. Let the values of x be equally spaced with h as the interval of
differencing.

That is Xi =% +ih, 1=0,1,2 .....,n

Let ¢ (X) be a polynomial of the n" degree in x taking the same values of y corresponding to X= X, X,
coe X That is, 0(X) represents y=f (X) such that f(x)=¢(x), i =0, 1, 2, .... Hence we can write ¢(x) as

o(x%) =V, i=nn-1,...,1,0
and Xn—i = Xn—ihr i=12..,n
Let “9'(X) = ap + ay(X —Xp) + 8(X = X)(X = Xn_1) + =+ + 8y(X = Xn)(X = Xq1) ==+ (X —X0) (632
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Substituting X = X,, Xn_1, ---., X1, Xo SUCCESSIVElY, we obtain
aO = yn (53'3)
Yn-1 = ao + &(Xn1 — %n)
_ Yn-1—Yn _ %
or & —Xn—l “x, h (.34
Similarly, we obtain
V2, Y,
T 63

Substituting the values from Egs.(5.33), (5.34) and (5.35) in Eq.(5.32), we get

\Y v? V"
000 = Yo = (X X) B X ) Xy ) ot (X)X K g) X %) (53
Now, setting X = x, + vh, we obtain

X=X, =Vh
X=%1 = (v+1)h

X=X =(v+n-=21)h
Hence, Eq.(5.36) reduces to

v(v+1)
2!

szn ot V(V+D) - (V'i'n#l)vn

O(X) =y, + Yh (537)
X~ *n

h
The formula given in Eq.(5.37) is called the Newton’s backward interpolation formula. Thisformulais used
for interpolating values of y near the end of the tabulated values and also used for extrapolating values of
y alittle backward of y,,.

where V=

Example E5.28
Calculate the value of f (84) for the data given in the table below:

X 40| 50| 60| 70| 80| 90
f(x) | 204 | 224 | 246 | 270 | 296 | 324

Solution:

The value of 84 is near the end of Table E5.28. Hence, we use the Newton’'s backward interpolation formula.
The difference table is shown below.
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Table E5.28
X [f) | v | V2| V3| V|V
40 | 204
20
50 | 224 2
22 0
60 | 246 2 0
24 0 0
70 | 270 2 0
26 0
80 | 296 2
28
90 | 324

We have x,=90, x=84, h=10, t, =y, = 324, Vt, = Vy, = 28, V¥, =2and fh = fh.

V¥, = Vi, = Vo, =0,
X=X, 84-90
u= = =

-0.6
h 10
From Newton's backward formula
f(84) =t, +uvt, + uu+d V2,

f(84) = 324 0.6% 28+

+ .

(- 0.6)(- 0.6+1)

2=324-16.8—-0.24 = 306.96

Example E5.29
Use Gauss forward formula to find y at x = 30 given the following table of values:
x |21 25 29 33 37
y | 18.4708 17.8144 | 17.1070 | 16.3432 | 15.5154
Solution:
We construct the following difference Table E5.29:
Table E5.29
X y Ay A%y Ay
Xo—2h=21 | 18.4708
—0.6564
Xo—h=25 17.8144 —0.0510
—0.7074 —0.0054
Xo = 29 17.1070 —0.0564 —0.002
—0.7638 —0.0076
x+h+33 16.3432 —0.0640
—0.8278
Xo+2h=37 | 155154
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Here h=4,u= =—=0.25

u = 0.25 lies between 0 and 1.
Hence, the Gauss's forward formula is suitable. Substituting in the Gauss's interpolation formula

(u-1

u u+Du(u-1 u+Huu-Hu-2
= + sy, +2 A%y 4 ¢ )3'( ) p3y 4 U+D (4| U=2) oy
We get Yozs = f(0.25) = 17.1070 + (0.25)(— 0.7638) +
(0.25)(2—0.75) x (~0.0564) + (1.25)(0.265)(—0.75)

(1.25)(0.25)(~0.75)(~1.75)

—0.0076) +
x ( ) o

(-0.0022) = 16.9216

Example E5.30

From the following table estimate the number of students who obtained marks in computer programming
between 75 and 80.

Marks 3545 | 4555 | 5565 | 65-75 | 7585
No. of students 20 40 60 60 20

Solution:
The cumulative frequency table is shown in Table E5.30.

Table E5.30
Markslessthan | No. of students | vy | V¥ | Viy | Viy
(x) v)
45 20
55 60 40
65 120 60 | 20
75 180 60 0|20
85 200 20 | 40| 40| -20

To find the number of students with marks less than 80

X_
Let X, =85, x =80, h=10, p=TX“=—0.5

Then using Newton's backward interpolation formula we obtain

v(v+1)
2!

v(v+D(v+2) v(V+D(v+2)(v+3)
3! Vot 4l v
-0.5(-0.5+1)(-0.5+2)
6

Y= Yo+ PV, + VY, +

= 200+ (-0.5)(20) + —0-5(—20.5+1)

(~40) + (-40)

, “05(-05+1)(-05+2)(-05+3)
24

(-20) = 198.2813
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So number of students getting marks in computer programming between 75 and 80
=198-180=18.

5.3.5 Error in the Interpolation Formula
Let ¢(x) denote the interpolating polynomial. Also, let the function f(x) be continuous and possess

continuous derivatives within the interval (Xo, X,). Now, defining the auxiliary function F(t) as
(t =)t = %) (t = x;)

(X =%)(X= %) (X~ %)

The expression (t — xg) (t —xq)-++ (t —xg) isapolynomia of degree (n + 1) int and the coefficient of t = 1.
Hence, the (n + 1)1 derivative f polynomial is (n + 1)!. That is
(n+1)!

F) = O -0t —{f()-o(x)} (5.38)

EMLey = ey 1 (x) — - 5.39

€)= ") (100~ 00— e S (539

or f(X) —0(x) = ) (X=%0)(X=%)-(X=%,) (540)
(n+D! ! '

Let R(x) denote the error in the formula. Then

RO =1() —0(¥)

~ fn+l(é) ~ ~ B
Hence R(X)_—(n+1)! (X=X )(X=%q)++(X = X;)

Sincex—xg=uhor x—x; = (Uu=21)h, .... (x—x%,) = (u—n)h where h isthe interval of differencing, we have

n+l ¢ n+l
Error R(x)=L@u(u—l)(u—Z)---(u—n)
(n+1)!
Now, employing the relation
D=2a
h
+1 1 1
we have DMl = _—— _AM*
hn+l
AI’H—lf
or g = A _100) (541)
n+1
The error in the forward interpolation formula is given by
An+1y
R(X) = ——2u(u-1)(u-2)--(u-n
() (n+1)! (u-HD(u-2)--(u-n) (542

In a similar manner, by taking the auxiliary function F(t) in the form

(t =X )(t = Xy0)+(t = %)
(X=X ) (X = Xq_1) (X = Xp)

F(O) = £ -o) ~{f () -0(x)}
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and proceeding as above, we obtain the error in the Newton’s backward interpolation formula as

Vn+ly
R(X) = (n+1)r; uu+D--(u+n) (643
where u= X%
h
Example E5.31

Using Newton’s forward interpolation formula find the value of cos 52° from the following data and estimate
the error.

X 45° 50° 55° | 60°
y=cosx | 0.7071 | 0.6428 | 0.5736 | 0.5

Solution:
The difference table is given below:

X | y=cosx Ay A%y Ay
45° | 0.7071
—0.0643
50° | 0.6428 —0.0049
—0.0692 0.0005
55° | 0.5736 —0.0044
—0.0736
60° | 0.5

Here Xo = 45°, X1 = 520, yo= 0.7071, Ayg= — 0.0643, A2y, = — 0.0049 and A3y, = 0.0005.

U X=%, 520-45°
h 5°

14

From Newton’s forward interpolation formula

y = Uy + UAY, + G |_1) A%y, + u( —:g(u ) A3y + -
Hence y= f(52)=0.7071+1.4(—0.0643) + &24’1) (—0.0049) + (1'4)(1'4’61)(1'4’ 2) (0.0005)
= 0.615680
—1)(u-2)-(u-
Error = u(u=Bu=-2)-u=-n) A"y, wheren=2.
n+1
_u(u —1;(u 2 4y _ 1.4(1.4—;)(1.4— 2 (0.0005

Error = —0.000028
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54 INTERPOLATION WITH UNEQUAL INTERVALS

The Newton's forward and backward interpolation formulae are applicable only when the values of n are
given at equal intervals. In this section, we present Lagrange's formula for unequal intervals.

5.4.1 Lagrange’s Formula for Unequal Intervals

Let y = f(x) be areal valued continuous function defined in an interval [a, b]. Let Xg, Xq, X, ...., X, b€
(n + 1) distinct points which are not necessarily equally spaced and the corresponding values of the function
areyo, Y1, ---- Yn- Since (n + 1) values of the function are given corresponding to the (n + 1) values of the
independent variable x, we can represent the function y = f(x) is a polynomial in x of degree n.

Let the polynomial is represented by
f(¥) = ao(X = X)) (X = Xo) -+ (X = Xq) + @(X — Xo)(X = Xp) -~ (X = Xn)
+ 8(X = X0)(X = X1)(X = Xg) -+ (X = Xq) + =+ + Bn(X = Xg) (X — Xq) -+ (X — Xq-1) (544)
Each term in Eq.(5.44) being a product of n factorsin x of degree n, putting X = X, in Eq.(5.44) we obtain
f(X) = ag(Xo — X2)(Xo = X%2) -+ (X0 — Xn)
) f (%)
(%0 = %) (X = %2)+ (X = %n)
Putting x = X, in Eq.(5.44) we obtain
f(x1) = a1(X1 —Xo) (X1 —X2) -+ (X1 — %n)
) f (%)
(4 = %) (3% = %)% = %)

or 3

or &

Similarly putting X = X, X = X3, X = X, in Eq.(5.44) we obtain

a = f(x;)
, =
(%2 = X) (X = %) +(Xo = Xp)

f (%)
(% = %) (X = %¢)-++(Xy = Xq1)
Substituting the values of ag, &, -, a, in Eq.(5.44) we get

and a, =

(UK %) (X)) (%)

fxq)+
(%0 = %) (X = %2)-+(X = %y) (4 = %) (% = %)+ (% = %,)

y=f(9=

(X= %) (X= %) (X=X 1)
(Xn - XO)(Xn - Xl)'"(xn - Xn—l)

The formula given by Eq.(5.45) is known as the Lagrange’s interpolation formula.

f (%) (545)
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Example E5.32
Apply Lagrange’s interpolation formula to find a polynomia which passes through the points (0, —20),
(1, -12), (3, —20) and (4, —24).
Solution:
We have Xp=0,% =1,% =3, X3 =4, Yo = f(X) =20, y1 = f (X)) =12, y, = f(x2) =20 and y; = f(x3) = —24.
The Lagrange’s interpolation formulais
) = FTREXEXIXX) () (XXX X)X )
(% = %) (X0 = %) (% — X3) (4 = %) (% = X2) (4 — X3)
XXX ) (XXX X)(x= %)
(% = X0) (% = X)X 7 (%= %0) (X% = X0) (% = %)
_ (X=D(x=3)(x-4) (—20)+ (x=0)(x-3)(x—4)
(0-1)(0-3)(0-4) (1-0)(1-3)(1-4)

(X=0)(x=D(x—4) (=20)+ (Xx=0)(x-D(x-3)
(3-0)(3-1)(3-4) (4-0)(4-1)(4-3)

f (%)

(%)

Hence f(X)

(-12)

(-24)

or f(X) = x3 —8x2 + 15x + 20 is the required polynomid.

Example E5.33

Using Lagrange's interpolation formula find a polynomial which passes the points (0, —12), (1, 0), (3, 6),
(4, 12).

Solution:
Wehavexg =0, %=1 % =3, X3=4, Yo =f(X) ==12, y; =f (X)) = 0, yo = f (%) = 6, y3 =f (X3) = 12.
Using Lagrange’s interpolation formula we can write
0= FTRXEXIXX) () (X X) (X X)(X=)
(%0 = %) (X = X2) (% — X3) (4 = %) (% — %) (X — %3)
X=X)X=X)X) s, (XXX X)X %)
(e —X%)0e =)0 =) (%= %)% =) (%~ Xp)
Substituting the values, we get:

_ (X=D(x=3)(x-4) 12— (x=0)(x-3)(x—4) <0+ (x=0)(x-)(x—-4) <6
12 6 -6

+ (x=0)(x-D(x-3) «
12

f(x)

f (%)

f(x) =

12=—-(x-D)(x=3)(x=4) +-(x-0)(x=D(x=4) + (x=0)(x-D(x-3)

Example E5.34
Using Lagrange's interpolation formula, find the value of y corresponding to x = 10 from the following data.

X 5] 6] 9] 11
y=1f(x) | 380 | —2 | 196 | 508
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Solution:
The Lagrange’s interpolation formulais

(X=%)(X= %) (X~ X3) Vot (X= %) (X=X )(X—X3) y
(% —X) (% = %) (% = Xa) *° (% — %)% — %) (% — %) "

y=1()=

x=X)X=X)x=%) L (X)X %)
(= %)% = X)X = %) 0 (% = %)X = X)X = Xp) ~°

Here, wehave Xy =5, X1 = 6, X% = 9, X3 = 11, Yo = 380, y; = 2, ¥» = 196 and y; = 508. Substituting these values
in Eq.(E.1), we get

ED

_ (10-6)(10-9)(10-11) (10— 5)(10- 9)(10—11)

f (10) % (380) + x(-2)
(5-6)(5—-9)(5-11) (6-5)(6-9)(6-11)
N (10-5)(10-6)(10-11) « (196) + (10-5)(10-6)(10-9) « (508)
(9-5)(9-6)(9-11) (11-5@11-6)(11-9)
or f(10) = 330.

5.4.2 Hermite’s Interpolation Formula

Hermite's interpolation formula provides an expression for a polynomial passing through given points with
given slopes. The Hermite interpolation accounts for the derivatives of a given function. Let x, f;, f;',
(fori=0, 1, 2,..., n) begiven.

The polynomial f(x) of degree (2n + 1) for which f (x) = f; and f'(x) = f'; is given by:
n n _
f(x) =2 h; () f; + 2 h; () i’
j=0 j=0

where h; (x) = l—M(X— X)L ()7
qn(xj)
hy () = (x=x))[L; ()]
On(¥) = (X —Xg) (X —=Xq) -+ (X —X5)
0 (X)
L. -
9= )

It is used to write the interpolation formulae in finite element analysis. Famous cubic polynomials are derived
from two points with their dopes. It is used to represent bending motion of a beam. For example, in the case
of a beam finite element, suppose we need to obtain cubic polynomials that satisfy the following cases:

() Consider: y=ax+bx2+cx+din [0, 1].
(@ Apply conditions
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@x=0 x=1
Case 1 y=1 y=0 y=y =0
Case 2: y=0, y=1 y=y =0
Case 3: y=0, y=0 y=1 y =0
Case 4 y=0, y=0 y=0, y=1

(3 Solve each casefor a, b, c, d.
Then we obtain:

y(X) =1+ 0x— 1% + 2x%(x—1) = 2x° - 3x? +1
Y(X) = 0+IX—1¢% + D3 (x—1) = X3 — 2%% + X
Y(X) = 0+ Ox+1x? — 2x% (x—1) = —2xC + 3%?
y(X) = 0+ 0x+ 0x% + 1% (x 1) = x° - X2

These polynomials are plotted in Figure 5.1.

For cases involved with higher order derivatives, the principle is same. When y("(x;) is used, all lower
derivatives and y(x) itself must be included in the constraints. For example, you can not have y'(x) as a

constraint but not y(x;), nor y@(x;) but not y'(x) and y(x;).

0.8
! O data points
0.6 - .
0.8 — Hermite Polynomial
0.4
0.6
y y 02
0
0.2
casel -0.2
case 2
-0.4
0 0.5 1 0 05 1
X X
0.8
1
0.6
0.8
0.4
0.6
y y 0.2
0.4
0
0.2 case3 oz case 4
0
-0.4
0 0.5 1 0 0.5 1

Fig. 5.1: Hermite interpolation
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Example E5.35
Construct displacements in a beam element from Hermite polynomials.

Solution:
Consider the beam of length L. The Hermite polynomials are:

X 8 X 2
Nl(X)=2(IJ —3(Ij +1

3 2
X X
N,(X)=——-2—+X
2( ) L2 L
X 3 X 2
N3(X)=—2(Ej +3(tj
3 2
X X
Ny ()= 5 - X
4( ) L2 L

These polynomial interpolation functions may be thought of as the fundamental modes of deflection. The

deflection w(x) of any statically loaded beam can be written in terms of these modes as

where the subscripts associate quantities with positions (or nodes) 1 and 2 on the beam and

W, 6;, i=1 2, are the deflection and slope, respectively, at each node.
5.4.3 Inverse Interpolation

In interpolation, we estimate the missing value of the function y = f (X) corresponding to a value x intermediate
between two given values. In inverse interpolation, we interpolate the argument x corresponding to an

intermediate value y of the entry.

5.4.4 Lagrange’s Formula for Inverse Interpolation
In Lagrange interpolation formulay is expressed as a function of x as
(X=%)(X= %) (X = %,) Yot (X=%0)(X= %) (X=%,)
(% = %) (X = X2)-+(X = %5) (3 = %) (4 = %p)- (% = X,)
(X= %) (X= %) (X=%1)
(% = %) (% = %)+ (% = Xy-1)
By interchanging x and y in Eq.(5.46) we can express x as a function of y as follows:

_ (Y=Y~ ¥2)- (Y~ ¥n) Yo + (Y= Yo)(y = ¥2)-+(Y = ¥n)
(Yo = YD) (Yo = ¥2)-+(Yo — ¥n) (Y= Yo) (Y1 = ¥2)-+(Y1 = ¥n)

(Y= Yo) (Y = Y1)-(Y — ¥n1)
(Yn = Y0)(Yn = Y2)-(¥n = ¥n-1)
Equation (5.47) can be used for inverse interpolation.

y=f(x)=

Yn

ht

X +

(546)

(547)
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Example E5.36

The following table gives the values of y corresponding to certain values of x. Find the value of x when
y = 167.59789 by applying Lagrange’s inverse interpolation formula.

x |1] 2] 5] 7
y=f(x) | 1| 12| 117 | 317

Solution:
Here X0=1LX=2,%=5xX3=7,Y=1,y1 =12, ¥, = 117, y3 = 317 and y = 167.59789.
The Lagrange's inverse interpolation formulais given by

(Y= Y)Y = ¥2)(Y— ¥3) X + (Y= Yo)(Y= ¥2)(Y— ¥3)
(Yo = YD) (Yo = ¥2)(Yo — ¥a) (V1= Yo) (Y1 = ¥2)(V1 — ¥3)

(Y= Yo)(Y=Y)(Y— ¥3) o + (Y= Yo)(Y=Y)(Y—¥>)
(Y2 = Yo)(Y2 = Y1) (Y2 — ¥3) ? (Y3 = Yo)(Y3 = Yi)(¥s — ¥2) ®

. (167.50789 12)(167.59789 - 117)(167.59789 ~ 317)

Hence @
(1-12)(1-117)(1- 317)
, (167.50789-1)(167.59789 ~117)(167.59789~ 317) 2
(12-1)(12-117)(12-317)
, (16759780 1)(167.50789 - 12)(167.50789-317) | .
(117 - 1)(117 -117)(117 - 317)
, (16750789 -1)(167.50789 ~12)(167.59789 - 117) @17
(317 -1)(317-12)(317-117)
or X = 5.65238.

5.5 CENTRAL DIFFERENCE INTERPOLATION FORMULAE

In this section, we derive some important interpolation formulae by means of central differences of afunction,
which are quite frequently employed in engineering and scientific computations.
In particular, we develop central difference formulae which are best suited for interpolation near the
middle of atabulated data set. The following central difference formulae are presented:
1 Gauss'sforward interpolation formula
Gauss's backward interpolation formula
Bessdl’s formula
Stirling's formula
Laplace-Everett formula

ar N
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Let the function y =y, = f(x) be given for (2n + 1) equispaced values of argument X, Xg £ h, Xo £ 2, ...., X,
Xp. The corresponding values of y bey; (i =0, £ 1, £2, ...., £ n). Also, let y =y, denote the central ordinate
corresponding to X = X,. We can then form the difference table as shown in Table 5.7. Table 5.8 shows the
same Table 5.7 written using the Sheppard’s operator §, in which the relation = AEY2 was used. Tables 5.6
and 5.8 are known as central difference tables.

Table 5.7: Central difference table

X Y [ Ay | Ay | Ay | Ay | Ay | Ay
Xo—3h | Y3
Ay_s
XO - 2h y_2 Azy_3
Ay, Ay,
Xo—h |ys Ay, Ay 4
Ay Ay, A% g
Xo Yo APy, Ay, A%y,
AYo Ay, A%,
Xoth |y A%Yo Ay,
Ay, N
Xo + 2h Y2 A2y1
Ay,
Xo+3h | ys3

Table 5.8: Central differences written in terms of Sheppard’s operator &

x |y | ¥ | & | & [ &y | & |8y
Xo— 3h Y3
Oy s
Xo—2h | Yy %Y.,
OY_ar2 8% ar
Xo—h |yq 8%y 8y
OY12 8% 1 8%.12
Xo Yo 8o "o %o
OY1r2 8%yu» 8%yu»
Xoth |v1 8%y, 8y,
O3 8%an
Xo+ 2h Y2 6%’2
OYs/o
Xo+3h | ys

5.5.1 Gauss’s Forward Interpolation Formula
The Newton's forward interpolation formulais

u(u-17 Ay, +u(u—1)(u—2)

o 3 A%y + o, (549)

y= f(X) = yp +UAY, +

X

where u=2"22 and x = x, is the origin.
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In deriving the Gauss's forward interpolation formula, we assume the differences lie on the bottom solid
lines in Table 5.9 and they are of the form

Yp = Yo + GiAyg + GoA%y 1 + GaA3y; + GA%, + -+ (549
Table 5.9: Gauss's forward and backward interpolation formulae
X |y | Ay | Ay | Ay | Ay | Ay | A%y
Xa|Ya
Ay 4
X3 | Y=s Ay,
Ay_s N
X2 | Y2 Ay Ay,
Ay NE A%y
Xa | Y Ay, Ay, A%y,
Ay, Ao, ,ASY—B\
Xo | Yo A7 Ay ! A%
YAy £ Ay A T’y A1
X1 | Y1 A%o Ay, A%,
Ay, Ao N
X2 | Y2 A%y, A'yo
Ay,
X3 | Ys A%y,
Ays
X4 | Ya
where Gy, G, ...., G, are coefficients to be determined. From the Newton's forward interpolation formula
[Eq.(5.48)], we have
Yp = EPyo = (1+A)Pyo = Yo +UAYy + u(u2|— ) A%y, + ulu —]:.;(u =2 (550)

Now Azy_l = AZE_lyO = A2(1 + A)_lyo = Az(l —A+AZ_A3+ ) Yo = Azyo — ASyO + A4y0 - A5y0 + -
A3y_; = A3y — Atyp + A%y — Ay + -

A% o= AE2yy= AY1—A)2yp= AY1—2A + 3A2—4A3 + ) y,

= A4Y0 - 2A5y0 + 3A6yO—4A7y0 + ...

and so on.
Hence Eq. (5.49) becomes

Yo = Yo + G1Ayp + Gx(A% — Ay + Aty — ASyg + --+) + Gg(A%yp — A%yp + ASyp — Abyp + --)

+ Gy(A%p — 2A%, + 3A8yy — 4ATyg) + -

Comparing Egs. (5.50) and (5.51), we have

Gl =u
u(u-12

G=7

(551)



162 /I Numerical Methods //

_ (u+Du(u-1

G 3!
u+)(Ww(u-Y(u-2
G4=( )( )(4' )( )’etc (552)
Hence, the Gauss's forward interpolation formula can be written as
u(u-1 u+2u(u—-1 u+Ju(u-H(u-2
o = Yo + UAYo + (2' ) 2y, 4 ¢ >3|( ) 3y, + Ut (4| U=2) a
(553

This formula given by Eq.(5.53) can be used to interpolate the vaues of y for u (0 < u < 1) measured forwardly
from the origin.

Equation (5.53) can also be written as

u(u-1 uu-Y(u-2
y=f()=yo+uly,+ (2, a7y, +a%y - D22 3),( L(8%y 4+ 8%y)
uu-Hu-2)(u-3
D203 iy sy s 65
or Vo= 100 = yo+usyo+ LD p2y  (HUUZD o)

2! 3! -

(U+Du(u-H(u-2)
* 4

Equation (5.55) is known as the Gauss's forward interpolation formula. The Gauss's forward interpolation
formula employs odd differences above the central line through y, and even differences on the centra line.
Gauss's forward formula is used to interpolate the values of the function for the value of u such that
O<u<l

Aty p+ - (555)

5.5.2 Gauss’s Backward Interpolation Formula

The Gauss's backward interpolation formula uses the differences which lie on the upper dashed line in
Table 5.8 and can be assumed of the form

Yp = Yo+ GlAY 1 + GsA%y ; + GiA%Y , + GiA* Y, + - (556)

where G/,G;,G;,...., G/, are coefficients to be determined.
Now following the procedure described in Sec.5.5.1 and comparing with the Newton's backward interpolation
formula, we find
G{=u
_u(u+l)
-2
_(U+2)(u+)(u-u
- 3!

G;

G
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_ (u+DWu-1u-2) ot

G 41
u u(u-1
Hence y=100=yo+ 3 (Ay +A%y )+ (2, L(6%y A%y ) (557)
_ u uu+d (u+Yu(u-2) 5 (U+2)(u+Du(u-2  ,
or Yp=Yo +EAY71+TA y71+TA Yot 2 ATy 5+
(559

Equation (5.58) is called the Gauss's backward interpolation formula. Gauss's backward interpolation formula
employs odd differences below the central line through y, and even differences on the central line as shown
in Table 5.8. Gauss's backward interpolation formula is used to interpolate line value of the function for a
negative value of u which lies between —1 and 0 (-1 < u < Q).

Example E5.37
Use Gauss's forward interpolation formulato find y for x = 20 given that
11 15 19 23 27
19.5673 | 18.8243 | 18.2173 | 17.1236 | 16.6162
Solution:
The difference table constructed is shown below:
x| 'y Ay Ay Ay A’y
11 | 19.5673
—0.743
15 | 18.8243 0.1360
—0.607 —0.6227
19 | 18.2173 —0.4867 1.69570
—1.0937 1.0730
23 | 17.1236 0.5863
—0.5074
27 | 16.6162
X— 20-19
Here h=4, u= hX°= =025
The Gauss's forward interpolation formulais
u(u-1 u+2u(u-1 u+)(Wu-Hu-2
yo ot unyg s YUY 2y L @HDUWSD) o HDWO-DU=D)

2! 3! 4

0.25(0.25—1) (0.25+1)(0.25)(0.25—1)
2 6

=18.21730+ 0.25(—1.09370) + (~0.48670) + (1.07300)

, (0.25+1)(0.25)(0.25-1)(0.25-2)
24

(1.69570)
Yoo = 17.97657
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Example E5.38
Use Gauss's backward interpolation formula to find the sales for the year 1986 from the following data:
Y ear 1951 | 1961 | 1971 | 1981 | 1991 | 2001
Sdles (inthousands) | 13 17 22 28 41 53
Solution:
Here h =10, x = 1986 and xy = 1991.
uo X% _ 1986—1991: 05
h 10
X |y | Ay | Ay | Ay | Ay | APy
—4 | 13
4
-3 |17 1
5 0
2|22 1 6
6 6 20
-1|28 7 =14
13 -8
0|41 -1
12
1|53

Gauss's backward interpolation formulais

Y oy WIO0D o G-DOUIED)
(-0.5)(-0.5+1) (-0.5+1)(-0.5)(-0.5-1)
2 6

+ e

Y= Yo +UAY_4 +

or y=41+(-0.5)(13)+ (-1.0)+ (-8)

(-0.5-1)(~0.5)(-0.5+1)(-0.5+ 2)

(~14) = 33.79688
24

5.5.3 Bessel’'s Formula
Bessal’'s formula uses the differences as shown in Table 5.10 in which brackets mean that the average has to
be taken.

Table 5.10

X1 Ya

Xo Yo AzY—l 3 A4y—z 5 Aey_a
X AyO 2 A y—l 4 A y—2 6
1\ A%Y, Ay, Ay,
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Hence, the Bessdl’s formula assumes the form

Yo+ Y
Yp Z%“‘ AlAYO"‘AzAYO{ >

A%y + A%y,

ZYO"'(AL“‘%)AYO"'A{ 5

Azy—l + AZYO

}' A%y o+ A{

}' A3A3y,1+ A{

2

The Newton's forward difference interpolation formulais given by

(u-3 Azy +u(u—1)(u—2)

B u
Yp = Yo T UAY, + ol 0 3

A3y, +

uu-H(u-2)(u-

Ay, ; Ay, } .

4 4
A"y ,+A y—1}____

3

41

Now, comparing Egs.(5.59) and (5.60) and after simplifying the differences, we get

et

_ Uu+DHUuu-Hu-2) dc.

& 4

Hence, the Bessel’s formula (5.59) becomes

Yp = Yo T UAYp +

2! 2

1
uu-3 {AZYN'AZYO}_ u(u—l)(u—z) A3

L UrDUu-u-2) {Ally—z +A'y,

41 2

3l Yo

Using the central differences notation, Eq.(5.62) can be written as

where

1
_= _
(u ju(u 1) ,

3!

u-1
MHSZyﬂZ +

u
Yp = Yo +USYy 5 + o1
52 21 A2 A2
u Y1/2—2[ Yat YOJ

1
udtyy, = E[A‘ly,z + A4)’4} , efc.

Y2

- U+Du(u-DH(u-2)

41

Yy + -

(559)

A*yo + - (5.60)

(561)

(562)

(569)

(564)
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Example E5.39

Apply Bessel’s interpolation formula to obtain yos, given that y,o = 2860, y,4 = 3167, Yo, = 3555 and
Y32 = 4112.

Solution:
The difference table is shown below:
X Yx Ay A%{ A3y
X4 | 20 | 2860
307
Xo | 24 | 3167 81
388 88
X, | 28| 3555 169
557
X, | 32| 4112
X— 25-24
Here xg =24, h =4 and u=—x0= =0.25

The Bessdl’s formulais

Y= Yo +UAY, +

U(uz_ 1) {A2Y1; A%y, }L u(u —1)((3u -0.5) Ay,

= 3167+ 0.25(388) +

0.25(0.25-1) [81+ 169} 0.25(0.25-1)(0.25—-0.5)

(88) = 3252.96875
2 2 6

5.5.4 Stirling’s Formula

Consider the mean of the Gauss's forward and backward interpolation formula given by Eqgs.(5.54) and (5.57),
we get

+—A%y  +
Yty 2

[Ay_1 + Ay, } u? u(u? -1 {A?’y1 +A%y, }
2

u?(u? -1 uu?-nU?-4
+—( 21 ) Aty +—( 5)|( )[A5y72 + A5y73} (5.65)

Equation (5.65) is known as the Sirling's formula. In the central differences notation, Stirling’s formula given
by Eqg. (5.65) becomes

2 2 2,2 12
u u(u® -1 u“(u“-19)
Yo = Yo+ Utdyo + —-8%Y {T}Wyo L TR A (5.66)
1 1
where udyo = E[Ayo +Ay4 |= 5[53&/2 +8Y_1/ |

1 1
and u8yp = E[Agy—l + Agyfz] = 5[53%/2 + 533/71/2] (567)
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Stirling formula gives the most accurate result for —-0.25 < u < 0.25. Hence, X, should be selected such that
u satisfies this inequality.

Example E5.40

Use Stirling's interpolation formula to find yog, given that y,g = 48234, yo5 = 47354, yao = 46267, Y45 = 44978
and y, = 43389.

Solution:

8-30__ 0.4. The difference table is shown below:

Herex = 30 as origin and h = 5. Therefore u=

x | u=2 530 Yu Ay, | A%y, | Ay, | Ay,
20 -2 48234
—-880
25 -1 47354 -207
-1087 5
30 0 46267 —-202 -103
-1289 -98
35 1 44978 -300
-1589
40 2 43389

The Stirling's interpolation formulais

A%y, + A%y, .\ u?A?y . u?-1| A%y +A%y, . u?(u? -1)
2 2 6 2 24

_ 46267+ (~0.4) [ 1087~ 1289} 0 oy, (040471 [ 5- 98}

2 6 2

L (04°(-04°-1)

(~103) = 46724.0128
24

5.5.5 Laplace-Everett’s Formula
Eliminating odd differences in Gauss's forward formula [Eq.(5.54)] by using the relation
AYo =Yy1—Yo
We have A3y, = A%y — A%y,
NSy, = Ay — A%y, ...,
(u-3 Azy L+ (u+Du(u-2

o _ 3 A%y, —A%y.,)

u u
Hence y=f(X)yo +F(y1_ Yo) +

N (U+Du(u-Y(u-2) A%y + U+2)(u+Yuu-Y(u-2)

4 — 4 e
2 2 5 A"y —A"y,)+
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=(1- u)y0+uy1+u(u_]_)|:i_u—+1:|A2 71+WA2)/0

1x2 1x2x3 3!
+U+Duu-D(u- 2)[1><2i3><4_ U;2}Azy2 + (u+2)(u+1);!(u—1)(u— 2 N
uy; uu-1H(u-2) (u+Du(u-12
:(1_u)y0+T!1_TA2y—1+TA2yO
_(u +1)u(u—1;!(u—2)(u—3) A4y, +(u+2)(u+1);!(u—1)(u—2) A4y,1+--- 569)

Writingv=1-u, i.e, u=1-v and changing the terms (5.68) with a negative sign, we get

u v+1Dv(v—-1 u+Hu(u-1 v+ 2)(v+Dv(v-D(v-2
y=vyquﬁ( )3|( ) a2y 4 ¢ )3|( ) 2y, + 2 )5'( V=2 2,

uU+2)(u+Du(u-Y(u-2)
" 5!
Equation (5.69) can be written as

A*Y g+ (5.69)

2 42 2 a2\n2 o2
v(ve -1 V(v -1%)(u“ -2
Yo = T(X)=wy, +%A2y7 + ( él( )A4y72+...+uy1
2_42 2 _a2\(2 o2
+u(u . 1 )A2y0+ u(u 1;|(u 2 )A2y71+... 570

Equation (5.70) is known as Laplace-Everett's formula. Equation (5.71) uses only even differences of the
function.

Example E5.41
Use Everett's interpolation formula to find the value of y when x = 1.60 from the following table.

X 1.0 125 1.50 175 2.0 2.25
y=1(x) | 1.0543 | 1.1281 | 1.2247 | 1.3219 | 1.4243 | 1.4987

Solution:
The difference table is shown below:
i Xi Yi AY; A%, Ay Ay,
—2 | 1.00 | 1.0543
0.0738
-11]1.25] 1.1281 0.0228
0.0966 —0.0222
0 | 1.50 | 1.2247 0.006 0.0268
0.0972 0.0046
1| 175 1.3219 0.00520 -0.0378
0.1024 -0.0332
2| 20 | 14243 —0.0280
0.0744
3 | 2.25 | 1.4987
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Here % =150and h=0.25

Therefore y=2"% 160-1%0_,,
h 0.25

and u=1-v=1-04=06

The Everett’s interpolation formulais

2 2 2 2 2 2
v(ve -1 v(ve-1%) (v -2
y= {Wﬁ%ﬁyo +4 ;,( ) A“yl}
2 a2 2 a2\ 2 o2
{uyo T it s BN i 9 (i) A4y2}
3l 51
= 0.4(1.3219) + 04(016-1) (0.00520) + 04(016-1)(0.16-4) (—0.03780)
6 120
+ {0.6(1.2247) + % (0.0006) + 06036 1 2)(0'36 =4 (0.02680)} =1.26316

5.5.6 Selection of an Interpolation Formula
In general, the selection of an interpolation formula depends to a great extent on the position of the interpolated
value in the given data.
(8 Use Newton's forward interpolation formulato find a tabulated value near the beginning of the
table.
(b) Use Newton's backward interpolation formula to find a value near the end of the table.
() Useeither Stirling or Bessel’s or Laplace-Everett’s formula to find an interpolated value near the
centre of the table.
The coefficients in the central difference formulae are smaller and converge faster than those in Newton's
forward or Newton's backward interpolation formulae. Also, after a few terms, the coefficients in the Stirling’'s
formula decrease more rapidly than those of the Bessdl's formula. Similarly, the coefficients of Bessdl's formula
decrease more rapidly than those of Newton's forward or backward formula. Hence, wherever possible, central
difference formula are preferred than the Newton's formulae. However, as described in (a), (b) and (c) above,
the right selection of an interpolation formula greatly depends on the position of the interpolated value in
the given tabular data set.

5.6 DIVIDED DIFFERENCES

Let the function y = f (X) be given at the point Xy, X1, X, .., X, (which need not be equally spaced) f (xg), f(x1),
f(X), ..., T (%), denote the (n + 1) values the function at the points xg, X1, Xo, ..., Xn.

Then the first divided differences of f(x) for the arguments X, X; is defined as

f (%) — f(x)
X0~ %
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It is denoted by f(Xo, X1) or by [Xo, X4]

Likewise f(xq, X0) = W
-2
f(Xo, X3) = % etc.

The second divided difference for the arguments xg, Xq, X is defined as

f (X0, %) — F (%, %)
X0 =%
similarly the third differences for the arguments xg, X1, Xo, X3 is defined as
F (X0, X1, %) = T4, %3, X3)
X%
The first divided differences are called the divided differences of order one, the second divided differences
are called the divided differences of order two and so on.
The divided difference table (Table 5.11) is given below:

f (X X1, %) =

f (X0, X1, X2, X3) =

Table 5.11
Argument, x | Entry VF(X) V2 (X) V3 (x)

Xo f(%o)

f(Xo, X1)
X1 f(x1) f(Xo, X1, X2)

(X1, X2) f(Xo, X1, X2, X3)
X2 f(x2) f(X1, X2, X3)

f(x2, X3)
X3 f(x3)

Example E5.42

1
If f(x) =3 then find the divided differences f (a, b) and f (a, b, ¢)

Solution:
. 1
Given f(X)=;,
11
f(a)-f() a p b-a 1
f ,b = = = =
= (@ b) a—b  (a-b) ab(a-b) _ab
-1
_ f(ab)-f(bc) ab \bc) 1f-c+a) 1 1
and fab o= a-c ~ a-c¢ bl ac Ja-c abc
1
Hence f(a,bc)=—

abc
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Example E5.43

Prepare the divided difference table for the following data

Table E5.43
X 1 3 4 6 10
f(x) 0 18 58 190 920
Solution:
Table E5.43(a) shows the divided differences.
Table E5.43(a)
X | f(x) | Vf(x) v (x) V3 (x) V4 (x)
1 0 9 10.33333 | —0.33333 | 0.207672
3| 18| 40 8.666667 | 1535714
4| 58| 66 19.41667
6 | 190 | 182.5
10 | 920

5.6.1 Newton’s Divided Difference Interpolation Formula
A function f(x) is written in terms of divided differences as follows:
f() =1 (%) + (Xx—%0) f(Xo, X)) + (X =Xg), (X —X1) F(Xo, X1, X) + (X —X0) (X —X1) (X—X2) F(Xo, X1, X2, Xa)

+ (X = X0) (X=X%q) (X=X2) (X—=X3) f(Xo, X1, X, X3, Xa) + =

Example E5.44

Find the form of the function f(x) under suitable assumption from the following data.

Solution:

0 1

2 5

X
f(x)

2 3

12 | 147

The divided difference table (Table E5.44) is given as under:

Table E5.44

x | f(x) v | VA v
0 2

1
1 3 4

9 1
2 12 9

45
5 147

We have Xy = 0, f (Xg) = 2, f (X0, X1) = 1, f (X0, X1, X2) = 4, T (Xo, X1, X2, X3) = 1.



172 /I Numerical Methods //

The Newton’s divided difference interpolation formula for this case is:

f(X) = f(%0) + (X—Xo) f (X0, X1) + (X =Xo)(X —X1) f (X0, X1, %) + (X—X0) (X —X1) (X —%) F (X0, X, %21 Xg)-
Substituting all constants we get:
f)=2+1X-0+4xX-0x-1)+1(X-0)(x—1(x-2)
Hence f(X) =x3+x2—x+ 2.

Example E5.45
Derive the equation of the interpolating polynomial for the data given in Table 5.45 below:
Table E5.45
X(deg) f(x)
0 3
1 2
2 7
3 24
4 59
5 118

Solution:
First form the divided difference table as shown in Table E5.45(a):

Table E5.45(a)

X f(x) vf i v3f v
0 3 -1 3 1 0
1 2 5 6 1 0
2 7 17 9 1
3 24 35 12
4 59 59
5| 118

Using Newton’s divided difference formula, the interpolating polynomia is:

FO) =1 (%) + (X=%0) F (0, X2) + (X =X0)(X = X1) T (X0, X1, X) + (X —X0) (X—X1) (X =) T (X, X2, X1 X3)
=3-x+3AXX-1) +xx-1)(x-2)
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Figure E5.45 shows the variation of the function with actual values and those obtained from polynomial.

Newton Interpolating Polynomial
120 T T T T T T T T T

O data points
| — Newton Polynomial

100

80

40

20

Fig. E5.45: Newton’s polynomial

Main advantage of divided difference table approach is that it has less computational operations. We do not
need to write the polynomial and then use the C° condition to calculate the constants. Secondly, it is much
easier to incorporate in a computer code. It is important to realise that both the Lagrange and Newton
polynomials are C° continuous and each would generate the same resullt.

5.7 CUBIC SPLINE INTERPOLATION

Generally, we use only one polynomial to describe the data over the entire range. Here, we will use different
continuous polynomials to describe the function in each interval of known points. This type of approximation
is called the piecewise polynomial approximation. Therefore, for n + 1 set of data, there will be n piecewise
polynomials formed. Splines of different degree are available in the literature. However, cubic splines are
most widely used.

Cubic spline interpolation method interpolates a function between a given set of data points by means
of piecewise smooth polynomials. Here, the curve passes through the given set of data points. The slope
and its curvature are continuous at each point. The advantage of cubic spline interpolation method is that
these polynomials are of a lower degree and less oscillatory, therefore describing the given data more
accurately. Cubic spline interpolation method is very powerful and widely used. It has several applications
in numerical differentiation, integration, solution of boundary value problems, plotting two-and three-
dimensional graph.

With a cubic spline, an expression for the second derivative can be obtained which will describe the
behaviour of the data most accurately within each interval.
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y
'R '\»\‘ /fi,i+1(x)
»\"\‘
Y2 Yi Yis2 Yn—2 y,
2 Yigl Yis1 Y3 Yoa| 7"
0> % %1 % Xt Xna Xn2 Xo1 Xn

Fig. 5.2: Cubic spline

The second derivatives of the spline is zero at the end points. Since these end conditions occur naturaly in
a beam model (in strength of materials), the resulting curve is known as the natural cubic spline. The pins,
i.e., the data points, are called the knots of the spline in a beam model.

Figure 5.2 shows a cubic spline that spans n knots. Let us denote f; j.1(X) be the cubic polynomial that
spans the segment between knotsi and i + 1. In Fig. 5.2, we note that the spline is a piecewise cubic curve,
assembled together form the n — 1 cubics 1 2(X), f2,3(X), ..., fn_1 n (X), dl of which have different coefficients.

Denoting the second derivative of the spline at knot i by k;, the continuity of second derivatives requires
that

721 (6) = fi2(6) = K 57
In Eq.(5.71), k; is unknown, except for
ki =k, =0 (572

”

We know that the expression for f.7,,(X)is linear and the starting point for obtaining the coefficients of
fii+1(X) is £,1(x).

Hence, we can write using Lagrange's two-point interpolation,

fiT (%) = k6 () + K alia (%) (673
where 0 (x) = XX
— X
X=X
lis =
and 1(X) Yo% (5.74)
Hence fi,,i/+1(x) — ki(x_xifl)_kﬂl(x_xi) (575)
X =X

Integrating Eq. (5.75) twice with respect to x, we get

ki (X_ Xi+1)3 — ki+1(X_ XI)

3
6% — %) + A(X—%,1) — B(x=X%) (5.76)

fifa(¥) =
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_ k1 (X_ Xi+1)3 — Xi+1(X_ X|)3
or = 6(% —%.,) +Cx+D 5.77)

where A and B are constants of integration, C = A—B and D = —Ax; 4; + BX;.

Now applying the condition f; ; +1(X) = Vi, Eq. (5.76) becomes

(v v 3

—KG((Z: _:”1)) + A = %41) =Y (5.78)

Hence A= # k‘6 (% = %41) (679
i i+1

Similarly, applying the condition f; ; +1(X; +1) = Vi +1, Qives

B= Yis1 _ |+l
X~ X1 6
From Egs. (5.79) and (5.80), we obtain

— (% = %41) (5.80)

k1 (X X|+1)
X =X

k|+1

fiia(¥) = 5

—(X=%,1)(% —X42) |- = (X=%)(% = %.1)
Xi >(|+1
+ ¥i (X=%41) = Yisa (X = %)
%~ X4
We note here that the second derivatives k; of the spline at the interior knots are found from the slope
continuity conditions
fila(x)=fia(x) 1=1423 ..,n-1 (582)
Applying the conditions given by Eq.(5.82) in Eq. (5.81) and after some mathematical manipulations or
simplifications, we obtain the simultaneous equations:

Ki—a(Xi—1— %) + 2Ki(Xi—1 — X +1) + Ki+2(6 — Xi+1)

Yica =Y ¥ Vi
{Xil_xi Xi—Xm} i=23,....,n=-1 (583

(581)

If the data points are equally spaced at intervals h, then, we have
h=X_1—X=X—Xu (584)
and Eq.(5.83) becomes

6
Kig + 4K+ = F[yi—l_zyi +Yia) 1223 .01 (5.85)
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There are two boundary conditions normally used. They are

1. Natural boundary condition

The second derivatives of the data at the end points xg and x, are arbitrarily assumed to be zero. This
condition is known as the free or natural boundary condition. The polynomials resulting from this condition
are referred to as natural or free cubic splines. They may not provide very accurate values close to the
boundaries, but they are accurate enough in the interior region.

2. Clamped boundary condition

When the first derivative of the data are known at the end point X, and Xx,, the corresponding boundary
conditions are known. This condition is known as the clamped boundary condition.

Example E5.46

Given the data points:

x| 1] 2| 3|4| 5
y|13]15|12]|9| 13
Find the natural cubic spline interpolation at x = 3.4.

Solution:

For equally spaced knots, the equations for the curvatures are written as

6
ki—1+4ki+ki+1:F(yi—l_2yi+yi+1) ; 1=2,3,4
Here we have k; = ks and h = 1.

Hence 4k, + k3 = 613 —2(15) + 12] =-30
ko + 4k + k, = 6[15—-2(12) +9] =0
ks + 4k, = 6[12—-2(9) + 13] =42 (ED
Solving Eq.(E.1), we obtain
k, = —7.286, ks = -0.857, k,=10.714
The interpolant between knots 2 and 3 is given by

ks {(x—x@‘"

3
faa(¥ =" ﬁ{_(x )

—(X_X4)(X3_X4)}_ 6 —(X—X3)(X3—X4)}

X3 =Xy

X3 =Xy

+ Ya(X—Xg) = Vg (X—X3)
X3_X4

Hence, the natural cubic spline interpolation at x = 3.4 is

_ 3
f1a(34) = 0.857{(3.4 4)

10.714| (3.4-3)3
6 3-4

o —(3.4—3)(3—4)}

—(3.4—4)(3—4)}—
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(1284-4-9B4-9 _ ;5e4848 0509984 +10.8 = 10,2552

3-4
Example E5.47
Find the natural spline that passes through the points given below:
i |1]2]3
X |0]1]2
yi|0]2]1

Find the first and second derivatives at x = 1 noting that the interpolant consists of two cubics, one valid in
0<x<1,theotherinl1<x<2.

Solution:
For natural spline, we have k; = ks = 0. The equation for k; is given by

6
ky + 4k, + kg = F()ﬁ—z)’z"' Y3)

Hence 0+4k2+0:1£2[0—2(2)+1]
or k, =-4.5
The interpolant in 0 < x < 1 is given by
ko | (x=%)° V(X %) = Yo (X= %)
f =21 W (x- _
12(¥) 6 { X —%, (X=x)(% Xz)}' X —%,
— 3 — a—
= E( (x=07 _ (x— 0)(0—1)] +w = 0.75x° + 2.75%
6 0-1 0-

The interpolant in 1 < x < 2 is given by

ko | (X=%g)° —X3) — Y(X—
fr3(X) = —f{—(xz _Xi —(X=%g)(X — x3)}+ Y2 (X Xiz - iz(x %)
_ _ﬁ( (x=2° (x=2)(1- 2)} L2222 om0 1 75x+45
6| 1-2 1-2
Now f/5(X) = =3(0.75)X* + 2.75= =2.25x° + 2.75

f;3(X) = 3(0.75)(x - 2)* -1.75 = 2.25(x - 2)> ~1.75
f/>(1) = —2.25()? +2.75= 0.5
f/3(1) = 2.25(1-2)* ~1.75= 05
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f5(1) = —2.25(2) = -4.5
f55(1) = 2.25(2)(1-2) = -4.5

Hence f2(1)=f73() =05
and 51 = f5(0) =-4.5
Example E5.48

Use the end conditions with a cubic spline that has constant second derivatives within its first and last
segments (noting the end segments are parabolic). The end conditions for this spline are given as k; = k,
and k,; = k,. The data points are given below:

i |1]2
x| 0
y|1]|1]05]|0

w
N

[InY
N
w

Solution:
With evenly spaced knots, the equations for the curvatures are given by

6 .
Kiog + 4k +kiyy = F(yi—l_zyi + Yis1), =23 (ED

With k; =k, ks = ks and h = 1, Eq.(E.1) becomes
5k, + ks = 6(1—2(1) + 0.5) =-3 (E2
ko + Bks = 6[1-2(05) +0] =0

Solving Eq. (E.2), we get k, = —-5/8, k3 = 1/8. The interpolant can now be evaluated from

. —_— q 3 . _— . 3
a9 =g 0y —m}%{%—(x—m(x %)
Yi (X=%41) = Yisa (X = %)
" X=X €3

Substituting x; — X, +1 = =1 and i = 3, Eq. (E.3) becomes

f (9 = S [-(6= X+ (X X)) (K 2)+ (X %) = Yo (X=X + Ya X %)

vs vs
6 6

5.8 SUMMARY

Interpolation is the method of computing the value of the function y = f(x) for any given value of the
independent variable x when a set of values of y = f(x) for certain values of x are given. The study of
interpolation is based on the assumption that there are no sudden jump in the values of the dependent
variable for the period under consideration. In this chapter, the study of interpolation was presented based
on the calculus of finite differences. Some important interpolation formulae by means of forward, backward
and central differences of a function, which are frequently used in scientific and engineering calculations
were also presented.

Hence, f34(26)==—[~(26-3)°+(2.6-3)]-——[~(26-2)° + (2.6—2)] -0.5(2.6 - 3) + 0= 0.1853
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Problems
5.1 Show that

AV=A-V

52

53

@
(b)
©

(d)

©

(f)
©)
(h)
0]

0

V = AE?

E"=(1+A)"

2
e =(%Je

X

Ee*

A%

(h = interval of differencing)

n
oa) . a+
A"sin (ax + b) = (Zsmzj sm{ax+ b+ n(Tnﬂ (interval of differencing = 1)

A2 = (1 + A)32

A3y, = V3yg
5 = A(L +A)22
V=1-(1+V)?

AV
\Y

Find the following:

@
(b)
©

@

©

()

@

(h)
@

Ae
A sin x
A tanix

A[ 5x+12

X% +5X+ 6

()

AZ

A
1+ x?)
A sin (ax +

A%(3e)

b)

———=A+V
A

}

3
(E] (with interval of differencing = 1)

Construct a forward difference table for the following data:

@

45

55

65

75

X
y =f(x)

20

60

120

180
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40 | 50 | 60 | 70 | 80 | 90

(b) X
y=1f(X) | 204 | 224 | 246 | 270 | 296 | 324

5.4 Congtruct adifferencetable fory=x3+2x+3forx=1, 2, 3, 4, 5.

55 Givenuy=1,u; =5, u, =10, uz = 30, u, = 30, find A%uq.

5.6 Givenuy =5, u; = 24, u, = 81, uz = 200, u, = 100 and us = 8, find A3uj,
5.7 Estimate the missing term in the following tables:

€)) X 112 |3|4] 5
y=f(x) | 5| 14| ?| 74| 137

(b) X 1/2|3|4] 5
y=1f(x) | 8|17 |38 | ?| 140

(© X 0/1|2|3]| 4
y=f(x) |3 ]2|3|?]|11

5.8 If misapositive integer and the interval of differencing is 1, show that X™ = x(x — 1) ... [x — (X = 1)].
5.9 Express the following in the factorial notation. Take interval of differencing as equal to 1.

@ y=f(x=3+x2+x+1

() y=fX)=x*-5C+3x+4
5.10 Find the missing entry in the following tables:

€] X 0|1/ 2]|3 |4
y=f(x) |1|3|13|— |81
(b) X 0O|1| 2| 3| 4
y=f(x)|1]0|—|28]|69
(© X 0|12 3|4
y=f(x) |1|-2|-1|—|37
(d) X 0|1/ 2|3 |4
y=f(x) |1|4|—|28]61
(f) X 0|1]2]3)| 4
y=fx) | 6| 34| — |54

5.11 Find the missing entry in the following tables:

@ x |o[1]2][3] 4
y=f(x) |1]|3|—|55]| 189

(b) X 0/1]2]|3] 4
y=f(x) |1|-3|-1|—| 165

© 0] 1[]2]3] 4

X
y=f(x) | 31| 35| — | 5| 133
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0 1 123 4

(d) X
y=f(x) | 23 | =27 | — | 13 | 141

X 0|]11]2]3] 4
y=f(x) | 2|-2|0|— | 166

5.12 Interpolate the missing entries in the following tables:

©

(@ X 0(1| 2|3 ]| 4
y=f(x) | 1| —| 13| — | 81

(b) X 0j|1|2]|3]| 4
y=fx)|1|-2|—|— |37

© X 0123 |4
y=f(x) 1| — |11 | — |61

(d) X 0[1]2]3]| 4
y=fx) | 6|—|4|— |54

G) X 0|12 ]3] 4
y=f(x) | 6| —| 12| — | 118

5.13 Given that /12600 = 112.24972, /12610 = 112.29426, /12620 = 112.33877, /12630 = 112.38327. Find
the value of /12616 .

5.14 Evduatey = e for x = 0.25 from the data in the following table.

x | 0.2 0.3 04 0.5 0.6
e | 1.49182 | 1.82212 | 2.22554 | 2.71828 | 3.32012

5.15 The values of sin x are given below for different values of x. Find the value of sin 42°.

X 40° 45° 50° 55° 60°
y=sinx | 0.64279 | 0.70711 | 0.76604 | 0.81915 | 0.86603

5.16 In an examination the number of students who obtained marks between certain limits was as follows:

Marks 3040 | 4050 | 5060 | 60-70 | 70-80
No. of students | 18 40 64 50 28

Find the number of students whose scores lie between 70 and 75.
5.17 From the following table estimate the number of students who obtained marks in the examination between
50 and 55.

Marks 3545 | 4555 | 5565 | 65-75 | 7585
No. of students | 31 42 51 35 31

5.18 A second degree polynomial passes through the points (2, 1), (3, 1), (4, 5) and (5, 11). Find the
polynomial.
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5.19 A second degree polynomial passes through the points (1, 5), (2, 11), (3, 19) and (4, 29). Find the
polynomial.

5.20 Find a cubic polynomial which takes the following values.

x |0]1] 23
f) | 14|17 46

5.21 Refer to Problem P5.11. Find f (1.5).
5.22 Refer to Problem P5.10. Find f (3.5).

5.23 The table below gives the values of f (x) for 0.10 < x < 0.30. Find f (0.12) and f (0.26).

x |01 0.15 0.2 0.25 0.30
f(x) | 0.0998 | 0.1494 | 0.1987 | 0.2474 | 0.2955

5.24 The population (in thousands) of a small town is given in the following table. Estimate the population
in the years 1965 and 1995.

Year, X 1961 | 1971 | 1981 | 1991 | 2001
Populationy = f(x) | 46 66 81 93 101
(in thousands)

5.25 Using Newton's forward interpolation formula find the value of sin 52° from the following data. Estimate
the error.

X 40° 45° 50° 55° 60°
y=snx | 0.64279 | 0.70711 | 0.76604 | 0.81915 | 0.86603

5.26 Find the polynomia of degree three relevant to the following data using Lagrange's interpolation formula.

x | 1] 2]3]5
f(x) | =12 | —14 | —20 | —20

5.27 Find the polynomial of the least degree which attains the prescribed values at the given point using
Lagrange's interpolation formula.

X 1] 2] 4] 5
y=f(x) | —27 | 44| -84 | 95

5.28 Find the polynomia of degree three relevant to the following data using Lagrange's interpolation formula

X 1 3 5 6
y=f(x) | 71| 115 | 295 | 466

5.29 Find the polynomia of degree three relevant to the following data using Lagrange's interpolation formula.

X O|1| 2| 4
y=f(x) |2|5]| 12| 62
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5.30 Using Lagrange's interpolation formula, find the value of y corresponding to x = 8 from the following
table:

X 1] 3] 6] 9
y=1f(x) | 71 | 115 | 466 | 1447

5.31 Using Lagrange's interpolation formula, find the value of y corresponding to x = 6 from the following
table:

X 0| 3 5 7
y=f(x) | 2|29 | 117 | 317

5.32 Using Lagrange's interpolation formula, find the value of y corresponding to x = 4 from the following
table:

X 0 1 3 5
y="f(x) | -20 | -12 | =20 | 20

5.33 Using Lagrange's interpolation formula, find the value of y corresponding to x = 9 from the following
table:

X 5|16 11] 13
y=1(x) | 380 | -2 | 508 | 1020

5.34 The following table gives the values of y corresponding to certain values of x. Find the value of x
when y = 420.61175 by applying Lagrange’s inverse interpolation formula.

X 1|2 5 6
y=f(x) | 71| 82 | 295 | 466

5.35 The following table gives the values of y corresponding to certain values of x. Find the value of x
when y = —76.0188 by applying Lagrange's inverse interpolation formula

X 1] 2] 45
y=1(x) | —27 | —65 | -84 | —95

5.36 The following table gives the values of y corresponding to certain values of x. Find the value of x
when y = 89.64656 by applying Lagrange’s inverse interpolation formula.

X 1]2] 5] 6
y=1(x) | 71 | 82 | 295 | 466

5.37 The following table gives the values of y corresponding to certain values of x. Find the value of x
when y = —16.875 by applying Lagrange's inverse interpolation formula.

X 0] 1]3]5
y=1(x) | 20 | -12 | —20 | —20

5.38 Apply Gauss's forward interpolation formulato find the vaue of f(X) at x = 11 from the following table:

x |1]5]9]13]17
i) | 13|16 | 18 | 21| 26
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5.39 Find the value of f(X) at x = 10 by applying Gauss's forward interpolation formula from the following
data

x |0]4]8]12]16
f(x) | 23 | 28 | 36 | 39 | 45

5.40 Find the value of f (9) by applying Gauss's forward interpolation formula from the following data:

X |0 4] 8]12]16
f(x) | 15| 25 | 34 | 37 | 42

5.41 Apply Gauss's forward interpolation formula to find the value of f (12.2) from the following data:

X 10 11 12 13 14
f(x) | 23967 | 28060 | 31788 | 35209 | 38368

5.42 Find the value of f (9) by applying Gauss's forward interpolation formula from the following data:

X |0 4]8]12]16
f(x) | 17 | 19| 35 | 38 | 41

5.43 Use Gauss's forward interpolation formulato find y for x = 10 given that

X 0[4][8[12]16
y=f(x) | 15 | 25| 34 | 37 | 42

5.44 Use Gauss's backward interpolation formula to find the sales for the year 1966 given the following
data

Y ear 1931 | 1941 | 1951 | 1961 | 1971 | 1981
Sales (in millions) 5 7 12 17 23 31

5.45 Apply Gauss's backward interpolation formula and find the population of a city in 1946 based on the
following data:

Y ear 1931 | 1941 | 1951 | 1961 | 1971
Population (in millions) | 16 21 29 41 54

5.46 Use Gauss's backward interpolation formula to find the sales for the year 1966 based on the following
data

Y ear 1951 | 1961 | 1971 | 1981 | 1991
Sales (in millions) | 23 32 43 52 61

5.47 Apply Gauss's backward interpolation formula to find the population of a city in 1986 based on the
following data:

Y ear 1951 | 1961 | 1971 | 1981 | 1991 | 2001
Population (in millions) | 15 21 25 29 47 61
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5.48 Use Gauss's backward interpolation formula to find the sales for the year 1986 based on the following
data

Year 1951 | 1961 | 1971 | 1981 | 1991 | 2001
Sales (in millions) 1 3 6 11 17 23

5.49 Apply Bessel’s interpolation formula to obtain y,s, given that y,g = 515, yo4 = 438, y,g = 348 and
Y32 = 249.

5.50 Apply Bessdl’s interpolation formula to obtain y;g, given that y;5 = 0.345, Yoo = 0.375, y,5 = 0.478 and
Va0 = 0.653.

5.51 Apply Bessdl’s interpolation formulato obtain y; g, given that y; 5 = 0.345, y, o = 0.423, y, 5 = 0.512 and
Y30 = 0.756.

5.52 Apply Bessdl's interpolation formula to obtain yag, given that yy; = 19, Yo31 = 29, ya1 = 43 and y5; = 54

5.53 Apply Bessel's interpolation formula to obtain y, 4, given that y; o5 = 1.0772, y, 5 = 1.1447, y; 75 = 1.2051
and Yoo = 1.2599.

5.54 Apply Bessel's interpolation formula to obtain yggss, given that ypes = 1.89648, Yoe5 = 1.91554,
Yo.e6 = 1.93479 and Yoe7 = 1.95424.

5.55 Use Stirling's interpolation formula to find y;, » from the following table:

X 10 | 11 | 12 | 13 | 14
y =f(x) | 24765 | 27876 | 30879 | 36543 | 39879

5.56 Use Stirling's interpolation formula to find y; », from the following table:

x ]0]05 |10 |15 |20
y=1(x) | 0| 0.1910 | 0.3410 | 0.4330 | 0.4770

5.57 Use Stirling's interpolation formula to find y», ¢ from the following table:

X 20 21 22 23 24
y=f(x) | 1.2123 | 1.3546 | 1.4879 | 1.5765 | 1.6987

5.58 Use Stirling's interpolation formula to find y; g from the following table of data:

X 1 2 3 4 5
y =1f(x) | 0.12340 | 0.34560 | 0.87650 | 1.12346 | 1.34657

5.59 Use Stirling's interpolation formula to find ys »5 from the following data:

X 2 25 | 30 | 35 | 40
y =1f(x) | 49225 | 48316 | 47236 | 45926 | 44306

5.60 Use Everett’s interpolation formula to find the value of y when x = 3.5 from the following table:

X 1 2 3 4 5 6
y=1f(x) | 1.2567 | 1.4356 | 1.5678 | 1.6547 | 1.7658 | 1.8345
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5.61 Use Everett’s interpolation formula to find the value of y when x = 6 from the following table.

X 1 3 5 7 9 11
y=1(x) | -0.375 | —2.947 | 6.063 | —2.331 | 24.857 | 105.165
5.62 Use Everett’s interpolation formula to find the value of y when x = 0.35 from the following table.
X 0.1 0.2 0.3 0.4 0.5 0.6
y=f(x) | 1.23900 | 1.12999 | 0.95294 | 0.70785 | 0.39469 | 0.01348
5.63 Use Everett's interpolation formula to find the value of y when x = 0.35 from the following table.
X 0.1 0.2 0.3 0.4 0.5 0.6
y =f(x) | 2.4780 | 2.25997 | 1.90589 | 1.41569 | 0.78938 | 0.02696
5.64 Use Everett's interpolation formula to find the value of y when x = 0.644 from the following table.
X 0.61 0.62 0.63 0.64 0.65 0.66 0.67
y =f(x) | 1.850431 | 1.858928 | 1.887610 | 1.906481 | 1.925541 | 1.944792 | 1.964237
5.65 Use Everett’s interpolation formula to find the value of y when x = 1.71 from the following table.
X 14 15 1.6 17 1.8 1.9 2.0
y =f(x) | 4.055200 | 4.481689 | 4.953032 | 5.473947 | 6.049647 | 6.685894 | 7.389056
5.66 Fit a cubic spline curve that passes through the points as shown below:
x|0] 1 ]2] 3
y|0]05|2]|15

The natural end boundary conditions are: y"'(0) = y"(3) = 0.
5.67 Apply natural cubic spline interpolation method to find y at x = 1.5. The data points are given below:

2|3
1|10

1
0

4
1

5
0

X
y

5.68 Develop a natural cubic spline for the following data:

3 6
3.7 4.2

4
39

5
3.9

7
57

X
y

Find f ’(3.4), f'(5.2) and f (5.6).
5.69 Find the zero of the function y(x) from the following data:

1.0
-1.049

0.8
—0.0266

0.6
0.377

04
0.855

0.2
115

X
y

Use inverse interpolation with the natural cubic spline.
5.70 Fit a cubic spline curve for the following data with end conditionsy' (0) = 0.2 and y* (3) = -1

0
0

1
05

2
35

3
5

X
y
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5.71 Construct a clamped cubic spline for the following data given that the slope of 0.2 at x, and a dope of
0.6 at X,.

n| 0 1 2131 4
3|14]5]6]|7
y|37]139]39|42|57

x

Findf"(3.4),f' (5.2) and f (5.6).
5.72 Fit the data in Table P5.72 with cubic spline and find the value at x = 5.

Table P5.72
i 1 2 3 4
X| 3 45| 7 9

y| 25| 10| 25|05

5.73 Determine the cubic spline interpolation at x = 2.6 based on the data points given below:

x]0[1] 2 |3
y|1/1/05]0

Given the end conditions as f;’,(0) = O (zero slope).

ONONO)



This page
intentionally left
blank




CHAPTER

Curve Fitting, Regression
and Correlation

6.1 INTRODUCTION

In real life engineering practice, often a relationship is found to exist between two (or more) variables. For
example: the experimental data for force (N) and velocity (m/s) from awind tunnel experiment. A mechanical
element/component is suspended in a wind tunnel and the force measured for various levels of wind velocity.
This relationship can be visualised by plotting force versus velocity. It is frequently desirable to express this
relationship in mathematical/analytical form by establishing an equation connecting the variables.

In order to determine an equation connecting the variables, it is often necessary to collect the data
depicting the values of the variables under consideration.

For example, if x and y denote respectively the velocity and force from the wind tunnel experiment, then
a sample of n individual would give the velocities xy, X, ..., X, and the corresponding forces y;, yo, ..., Y.
When these points (Xq, V1), (X, ¥2), ---, (Xn, Yn) are plotted on a rectangular coordinate system, the resulting
set of points on the plot is called the scatter diagram. From such a scatter diagram, one can visualise a
smooth curve approximating the given data points. Such a curve is known as an approximating curve.
Figure 6.1(a) shows that the data appears to be approximated by a straight line and it clearly exhibits a linear
relationship between the two variables. On the other hand Fig. 6.1(b) shows a relationship which is not
linear and in fact it is a non-linear relationship between the variables. Curve fitting is the general problem of
finding equations of approximating curves which best fit the given set of data.

y y

(a) Linear Relationship (b) Non-linear Relationship

Fig. 6.1: Linear and non-linear relationship
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Approximating Curves

Table 6.1 lists a few common approximating curves used in practice and their equations. The variables x and
y are called the independent and dependent variables respectively. The scatter diagrams of the variables or
transformed variables will help determine the curve to be used.

Table 6.1
No. Equation Description of the curve
1. |y=a+bx Straight line
2. |[y=a+bx+ocx® Parabola or quadratic curve
3. [y=a+bx+ox®+dx® Cubic curve
4. [y=a+bx+o+d+ex? Quartic curve
5. |y=ap+ax+axl+ +ax n" degree curve
1 1
6. = or —=c+mx Hyperbola
C+mx y
7. | y=ab“orlogy =loga+ x(logb) = g + bpx Exponential curve
8. | y=ax"orlogy =loga+ b(log x) Geometric curve (power function)
9. |y=ab“+c Modified exponentia curve
10 [y=ax"+c Modified geometric curve

11. y:qux or logy=logp+b*logg=ab*+q | Gompertz curve

12. |y=pg” +h Modified Gompertz curve
13. | y= L o 1‘<’>1|0X+q Logistic curve
' ab*+q y o
14. | y=be™ or y=b10™ Exponential function
15. | y= 1 Reciprocal function
mx +b
16. | Y= O(B-I-LX Saturation-growth-rate equation

In Table 6.1, a, b, ¢, d, & ag, &, a, ..., &, by, p, g, h, M, & and § are al constant coefficients.

Linear Regression

Linear regression and correlation are two commonly used methods for examining the relationship between
guantitative variables and for making predictions. In this chapter, we review linear equations with one
independent variable, explain how to find the regression equation, the equation of the line that best fits a
set of data points. We also examine the coefficient of determination that is a descriptive measure of the
utility of the regression equation for making predictions. In addition, we discuss the linear correlation
coefficient, which provides a descriptive measure of the strength of the linear relationship between the two
guantitative variables.

6.2 LINEAR EQUATION

The general form of alinear equation with one independent variable can be written as
y =a+ bx
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where a and b are constants (fixed numbers), X is the independent variable, and y is the dependent variable.
The graph of alinear equation with one independent variable is a straight line, or smply aline. Also, any
non vertical line can be represented by such an equation.

Linear equations with one independent variable occur frequently in applications of mathematics to many
different fields, including the social sciences, engineering, and management as well as physical and
mathematical sciences.

For alinear equation y = a + bx, the number a is the y-value of the point of intersection of the line and
the y-axis. The number b measures the steepness of the line. b indicates how much the y-value changes
when the x-value increases by 1 unit. Figure 6.2(a) illustrates these relationships.

y h
y=a+bx ——

b units up

1 unit
increase

Fig. 6.2 (a): (Graph of y = a + bx)

The numbers a and b have specia names that reflect these geometric interpretations. For alinear equation
y = a + bx, the number a is called the y-intercept and the number b is called the slope.

The graph of the linear equation y = a + bx slopes upward if b > 0, slopes downward if b < 0, and is
horizontal if b = 0, as shown in Fig. 6.2(b).

yk y“ yk

/ _ y=a+bx
y=a+bx y =a+bx

b>0 b<O0

Fig. 6.2(b): Graphical interpretation of slope

6.3 CURVE FITTING WITH A LINEAR EQUATION

Curve fitting is a procedure in which a mathematical formula (equation) is used to best fit a given set of data
points. The objective is to find a function that fits the data overall. Curve fitting is used when the values of
the data points have some error, or scatter and require a curve fit to the points. Curve fitting can be
accomplished with many types of functions and with polynomials of various orders.
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Curve fitting using a linear equation (first degree polynomial) is the process by which an equation of the
form

y =a+bx 6.1
is used to best fit the given data points. This can be accomplished by finding the constants a and b that
give the smallest error when the data points are substituted in Eq. (6.1). If the data points consists of only
two points, the constants can be obtained such that Eq. (6.1) gives the exact values at the points. Figure 6.3
shows the straight line corresponding to the Eq. (6.1) and passing through the two points. When the data
has more than two points, the constants a and b are determined such that the line has the best fit overall as
shown in Fig. 6.4.

y4 y A

o > X e} » X
Fig. 6.3: Straight line connecting Fig. 6.4: A straight line passing
two points through many data points

The procedure for obtaining the constants a and b that give the best fit requires a definition of best fit and
an analytical procedure for deriving the constants a and b. The fitting between the given data points and an
approximating linear function is obtained by first computing the error, also called the residual, which is the
difference between a data point and the value of the approximating function, at each point. Figure 6.5 shows
alinear function (straight line) that is used for curve fitting n points.

A

f(xn)

f(xa)

f(xg) |=="==""7-Tmommommommmms '(x3,y3)
(@]

»

»X

Fig. 6.5: Curve-fitting points with a linear equation y = a + bx

Thus, the residual, e is the discrepancy between the true value of y and the approximating value, a + bx,
predicted by the linear equation.
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6.4 CRITERIA FOR A “BEST” FIT

A criterion that measures how well the approximating function fits the given data can be determined by
computing atotal error E in terms of the residuals as

E=) e =Y[y—(a+bx)] 62)

i=1 =1

where n = total number of points.

However, this is an inadequate criterion, as illustrated in Fig. 6.6, which shows that E is zero since
e =-gande,=—e;

Ya

v

O

Fig. 6.6: Straight line fit with E = 0

One way to remove the effect of the signs might be to minimise the sum of the absolute values of the
discrepancies:

E=Ylal=) |y -a-bx]| 63

i=1 i=1

Figure 6.7 shows why this criterion is also inadequate. For four points show, for the same set of points there
can be several functions that give the same total error. E is the same for the two approximating lines in
Fig. 6.7.

Ya

o) » X

Fig. 6.7: Two straight line fits with the same total error as per Eq. (6.3)
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A third strategy for fitting a best line is the minmax criterion. In this technique, the straight line is chosen
that minimises the maximum distance that an individua point falls from the line. Again as shown in Fig.6.8,
this technique gives undue influence to an outlier (a single point with a large error).

Ya

- @ outlier

o) » X

Fig. 6.8: Minimisation of the maximum error of any individual point

A method that overcomes the shortcomings of the aforementioned approaches is to minimise the sum of the
squares of the residuals:

n n
S =Y &= (%-a-bx)? 64)
i=1 i=1
Equation (6.4) always gives a positive number of S (total error) and positive and negative residuals do not
cancel each other. This criterion (Eq.6.4) is caled the least squares and has many advantages, including that
it gives a unique line for a given set of data.

Equation (6.4) can be used to determine the coefficients a and b in the linear function y = a + bx that
yield the smallest total error. Thisis accomplished by using a procedure called linear |east-squares regression,
which is presented in the next section.

6.5 LINEAR LEAST-SQUARES REGRESSION

Linear least-sgquares regression is a method in which the coefficients a and b of a linear functiony = a + bx
are determined such that the function has the best fit to a given set of data points. The best fit is defined as
the smallest possible total error that is computed by adding the squares of the residuals according to
Eq. (6.4).

For a given set of n data points (x;, v:), the overall error calculated by Eq. (6.4) is

n
S =2y - (a+bx) (65)
i=1
Since the values of x; and y; are known, S in Eq. (6.5) is a non-linear function of two variables a and b. This
function S has a minimum at the values of a and b where the partial derivatives of S with respect to each
variable is equal to zero.

Taking the partial derivatives and setting then equal to zero gives

a n
%:—zé(yi—a—bxi)=0 (66)
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9§ _

e 22[(y. a-bx)x]=0 6.7)

i=1

Equations (6.6) and (6.7) are a system to two linear equations for the two unknowns a and b, and can be
rewritten in the form

M:

na+

% }b 2 i 69)

i=1

s

Equations (6.8) and (6.9) are called the normal equations and can be solved simultaneously for

Xi}a z}b ny. 69)

EM:

° nzn: 2 En: Xa} (6.10)
o b i . (6.11)
. Be B B
or a=y-bx

Since Egs. (6.10) to (6.12) contain summations that are the same for a set of n points, they can aso be written
aS!

SS, = Z(% —X)? = 2% - (2x)?/n
S5, = 2(x —X)(¥% —¥) = Zx Y — (2%)(Zy;) /n
SS,, =2(y; - ¥)’ =Xy - (Zy)*/n
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The regression equation for a set of n data points is

y=a+bx

where b=%
1 L
and a=ﬁ(2yi—b2xi)=y—bx

6.6 LINEAR REGRESSION ANALYSIS

A regression moddl is a mathematical equation that describes the relationship between two or more variables.
A single regression modd includes only two variables: one independent and one dependent. The relationship
between two variables in a regression analysis is expressed by a mathematical equation called a regression
equation or model. A regression equation that gives a straight-line relationship between two variables is
caled alinear regression model; otherwise, it is called a non-linear regression model. Figures 6.9(a) and (b)
show a linear and a non-linear relationship between independent variable and the dependent variable.

»

A

»

h

Non-linear

Linear

Dependent variable
Dependent variable

\4

\4

(0]
(0]

Independent variable Independent variable

(@ (b)

Fig. 6.9: (a) Linear relationship, (b) Non-linear relationship

The equation of a linear relationship between two variables x and y is written as
y =a+ bx (6.13
where a gives the y-intercept and b represents the slope of the line.
In regression model, x is the independent variable and y is the dependent variable. The simple linear
regression model for population is written as
Equation (6.14) is called a deterministic model. It gives an exact relationship between x and y. However, in
many instances the relationship between the variables is not exact. Therefore, the complete regression model
is then written as
YA + Bx + € (6.15)
where € is called the random error term. This regression model (Eq. (6.5)) is called a probabilistic model

(or a statistical relationship). The random error term € isincluded in the model to take into consideration
of the following two phenomena:
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(@ Missing or omitted variables. The random error term € is included to capture the effect of al the
missing or omitted variables that were not included in the model.
(b) Random variation: The random error term € isincluded to capture the random variation.

In Eg. (6.15), A and B are the population parameters. The regression line obtained from Eq. (6.15) by using
the population data is called the population regression line. The values of A and B is the population
regression line is called the true values of the y-intercept and slope.

However, most often the population data is difficult to obtain. As a consequence, we amost always use
the sample data and use the model given by Eq. (6.15). The values of the y-intercept and slope calculated
from sample data on x and y are called the estimated values of A and B and are denoted by a and b.

The estimated regression model is then written as

y=a+bx (6.16)
where y isthe estimated or predicted value of y for a given vaue of x. Equation (6.16) is cdled the estimated
regression model. It gives the regression of y on x. A plot of paired observation is called a scatter diagram
as shown in Fig. 6.10.

Ya

Fig. 6.10: Scatter diagram

To find the line that best fits the scatter of points, we minimise the error sum of squares, denoted by SSE,
which is given by

SSE=3¢e’ = 3(y-¥)? (6.17)
where e=y-y
The least squares method gives the values of a and b such that the sum of squared errors (SSE) is minimum.

For the least squares regression line y = a + bx from Egs. (6.10) to (6.17), we have

b=% and a=y-bx 619
sy EOEY)
where S5y = Zxy N
S5, = 2xX% - "
S8,y = 2(y-¥) =Ty’ - (&y)*/n (619

The least squares regression line ¥ = a + bx is also called the regression of y on x.



198 /I Numerical Methods //

6.6.1 MATLAB Functions: polyfit and polyval
MATLAB has a built-in function polyfit that fits a least-square nth-order polynomial to data. It can be
applied asin

>> p = polyfit (x, y, n)
where x and y are the vectors of the independent and the dependent variables, respectively, and n = the
order of the polynomial. The function returns a vector p containing the polynomial’s coefficients.

It should be noted here that it represents the polynomial using decreasing powers of x as in the following
representation:

f(X) = plxn + pZXn_l + p3xn_2 T PXF P
Since a straight line is a first-order polynomial, polyfit (x, y,1) will return the slope and the intercept of the

best-fit straight line.
Another function, polyval can be used to compute a value using the coefficients.

It has the general format:
>>y = polyval (p, X)
where p = the polynomial coefficients and y = the best-fit value at x.

Example E6.1
Table E6.1 gives experimental data for force (N) and velocity (m/s) for an object suspended in a wind tunnel.
Table E6.1
Velocity, v(m/s) | 10 | 20| 30| 40| 50 60| 70 80
Force F(N) 24 | 68 | 378 | 552 | 608 | 1218 | 831 | 1452

(@) use the linear least-squares regression to determine the coefficients a and b in the function
y = a+ bx that best fits the data
(b) estimate the force when the velocity is 55 m/s.

Solution:
Heren = 8.
n| x y X2 Xy
1| 10 24 100 240
2| 20 68 400 1360
3| 30| 378 900 | 11340
4| 40| 552 | 1600 | 22080
5| 50| 608 | 2500 | 30400
6| 60| 1218 | 3600 | 73080
7| 70| 831 | 4900 | 58170
8| 80| 1452 | 6400 | 116160
Y | 360 | 5131 | 20400 | 312830
X = X = 360 =45
n 8
V:Q:%:Mlsﬁ

n
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From Eg. (6.16), we have

]
SS
where S, = Iy (ZX)(ZV) - 312830 3OUBI3Y _ 1935
and SS, = 2@ - &0 _ 20400- 38 _ 4000

b v _ 81935 _ 10 0e3
SS, 4200

From Eqg. (6.17), we have
a=Yy-bx =641.375-(19.5083)(45) = —236.50
Hence y=-236.50+ 19.5083x

(b) The estimated value of the force when the velocity is 55 m/s, is given by
y =a+bx=-236.50 + 19.5083(55) = 836.4583(N).

MATLAB Solution:

(@ >>x = [10 20 30 40 50 60 70 80] ;
>>y = [24 68 378 552 608 1218 831 1452];
>> a =polyfit (x, y, 1)
a =
19.5083 -236.5000

Hence, the dope is 19.5083 and the intercept is —236.50.

(b) The MATLAB function, polyval can be used to compute a value using the coefficients. Therefore,
>>y = polyval (a, 55)
y =
836.4583

Hence, the estimated value of the force when the velocity is 55 m/s is 836.4583(N).

6.7 INTERPRETATION OF a AND b

When b is positive, an increment in x will lead to an increase in y and a decrease in X will lead to a decrease
iny. That is, when b is positive, the movements in x and y are in the same direction. Such a relationship
between x and y is called a positive linear relationship. The regression line slopes upward from left to
right.

Similarly, if the value of b is negative, an increase in X will cause a decrease in'y and a decrease in x will
cause an increase in y. The changes in x and y are in opposite directions. Such a relationship between x and
y is called a negative linear relationship. The regression line slopes downward from left to right. Figure 6.11
shows these two relationships.
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0 » X O » X

(a) Positive linear relationship (b > 0) (b) Negative linear relationship (b < 0)
Fig. 6.11: Positive and negative relationship between x and y

Assumptions in the Regression Model

The linear regression analysis is based on the following assumptions:
1 Therandom error term € has a mean equal to zero for each x.
2 The errors associated with different observations are independent.
3. For any given x, the distribution of errors is normal.
4. The distribution of population errors for each x has the same (constant) standard deviation, which
is denoted by o, as shown in Fig.6.12 (a) and (b).

Normal distribution

with (constant)
/ standard deviation ce

E(e) =0
(@)

Population
regression line

(b)
Fig. 6.12: (a) Assumptions in the regression model, (b) Distribution on the regression line
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6.8 STANDARD DEVIATION OF RANDOM ERRORS

The standard deviation o, measures the spread of the errors around the regression line as shown in
Fig. 6.12 (b). The standard deviation of errors is calculated using

_ [SSE
“\n-2
where SSE= X(y-9)°
“b
x %= stn_ Zssxy (620
2
where SS, = (y-¥)? = By* - (EZ)
By = ZW—%;ZW (6.21)

In Eq. (6.20), (n — 2) represents the degrees of freedom for the regression model. The reason for df = n—2
is that we lose one degree of freedom to calculate x and onefory.

6.9 COEFFICIENT OF DETERMINATION

The coefficient of determination, denoted by r2, represents the proportion of the total sum of squares that
is explained by the use of the regression model. The computational formula for r2 is given by

rzzbﬁ 0<r2<1 (62

Sy

The total sum of squares denoted by SST is the total variation in the observed values of the response
variable

(Zy)?
n

SST = S5, =%(y-¥)’ =%y* - (623

which is the same formula we use for S5,
The regression sum of squares, denoted by SSR, is the variation in the observed values of the response
variable explained by the regression:
SE = 3(y-9)?
SSR = SST —-SSE
or SST = SSR+ SSE (624
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The ratio of SSR to SST gives the coefficient of determination. That is,

Z_SSR_SST—SSE_l_SSE 6
SST SST © SST (629

This formula shows that we can also interpret the coefficient of determination as the percentage reduction

obtained in the total squared error by using the regression equation instead of the mean, ¥, to predict the
observed values of the response variable.

r

The coefficient of determination, denoted by r2, represents the portion of SST that is explained by the
use of the regression model. Hence,

r2 6.26
$yy ( " )
and 0<rz<1

The value of r2is the proportion of the variation in y that is explained by the linear relationship between x
and y. The coefficient of determination is the amount of the variation in y that is explained by the regression
line. It is computed as

.2 _ Explained variation _ 2(Y-y)?
Totd varigtion  3(y-Y)?

The coefficient of determination, r2, always lies between 0 and 1. A vaue of r2 near 0 suggests that the
regression equation is not very useful for making predictions, whereas a value of r2 near 1 suggests that the
regression equation is quite useful for making predictions.
Example E6.2
For the data of Example E6.1, calculate the

() standard deviation of errors, s

(b) error sum of squares, SSE

(¢) total sum of sguares, SST

(d) regression sum of squares, SSR

(e the coefficient of determination, r2.
Solution:
Referring to Table E6.2, we have

n =8, x = 360, Ty = 5131, =x2 = 20400, Ixy = 312830, Zy? = 5104841

R 230
n 8

yzﬂzi?’lzsm_sm
n

= 81935

Sy = ny_%fy) - 312830_%85131)
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2 2
S5, = 3% —% ~ 20400- 39" _ 4500
=)’ (5131)?
—sy? - Y 5104841 - BT 1813045875
Sy =2y n 8
b2y 81935 _ 5 ches
S, | 4200

a=Yy-bx=641.375-19.5083x

(8 The standard deviation of errors, s

-b _
. - /ssyyn 2830, _ \/1813945.8758 15;.5083(81935) _189.5304

(b) The error sum of squares, SSE

SSE = X(y - ¥)? = 2155305833
(¢) Total sum of squares, SST
SST =SS, = 1813945.875
(d) The regression sum of squares, SSR
SSR = SST — SSE = 1813946.875 — 215530.5833 = 1598415.2917
(& The coefficient of determination, r2

2 _ b SS,, _ (19.5083)(81935)
SSH 1813945.875

r =0.8812

6.10 LINEAR CORRELATION

Linear correlation coefficient is a measure of the relationship between two variables. Linear correlation
coefficient measures how closely the points in a scatter diagram are spread around the regression line. The
correlation coefficient calculated for the population is denoted by p and the one calculated for sample data
is denoted by r. The linear correlation coefficient r measures the strength of the linear relationship between
the paired x-and y-quantitative values in a sample. The linear correlation coefficient is sometimes referred to
as the Pearson product moment correlation coefficient in honour of Karl Pearson (1857-1936), who originally
developed it. Square of the correlation coefficient is equal to the coefficient of determination. The value of
the correlation coefficient dwaysliesintherange-1to 1. Hence—-1<p<land-1<r <1

If r =1, it refers to a case of perfect positive linear correlation and al points in the scatter diagram lie
on a straight line that slopes upward from left to right, as shown in Fig. 6.13. If r =—1, the correlation is said
to be perfect negative linear correlation and all points in the scatter diagram fall on a straight line that
slopes downward from left to right, as shown in Fig. 6.13(b).
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When there is no linear correlation between the two variables and r is close to 0. Also, in this case,
all the points are scattered all over the diagram as shown in Fig. 6.13(c).

y

Ya
° °.
) [}
....I’—O
°
® o
* . e
» X » X
© ©

Fig. 6.13: Linear correlation between two variables

(a) Perfect positive linear correlation, r = 1,

(b) Perfect negative linear correlation, r = -1

(c) No linear correlation, r = 0
Two variables are said to have a strong positive linear correlation when the correlation is positive and
close to 1. If the correlation between the two variables is positive but close to zero, then the variables have
a weak positive linear correlation. Similarly, when the correlation between two variables is negative and
close to —1, then the variables are said to have a strong negative linear correlation. A weak negative linear
correlation exists when the correlation between the variables is negative but close to zero. The above four
cases are shown in Figs. 6.14 (a) to (d). Figure 6.15 shows the various degrees of linear correlation.

(a) Strong positive correlation

(rclose to 1)

(c) Strong negative linear correlation

(r close to -1)

(a) Weak positive linear correlation
(r is positive but close to zero)

(d) Weak negative linear correlation
(r is negative and close to zero)

Fig. 6.14: Linear correlation between variables
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y y y
)
»
o
X X X
(@) Perfect positive linear correlation (b) Strong positive linear correlation (c) Weak positive linear correlation
r=1 = =
y y r=0.92 y r= 0.42
°
-
°
X X X
(d) Perfect negative linear correlation (e) Strong negative linear correlation (f) Weak negative linear correlation
r=1 r=0.92 r=0.42
y
-

X
(9) No linear correlation (linearly uncorrelated)
r=0
Fig. 6.15: Various degrees of linear correlation

The simple linear correlation, denoted by r, measures the strength of the linear relationship between two
variables for a sample and is calculated as

fo Dy
m (6.27)

It should be noted here that r and b calculated for the same sample will always have the same sign.

Properties of the Linear Correlation Coefficient r
1 The value of r is aways between —1 and +1 inclusive. That is, -1 <r < 1.
2 The values of r do not change if all values of either variable are converted to a different scale.

3 The value of r is not affected by the choice of x or y. Interchange al x- and y-values and the value of
r will not change.
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4, ‘r’ measures the strength of a linear relationship. The magnitude of r indicates the strength of the
linear relationship. A value of r close to —1 or to 1 indicates a strong linear relationship between the
variables and that the variable x is a good linear predictor of the variable y. That is, the regression
equation is extremely useful for making predictions. A vaue of r near O indicates at most a weak linear
relationship between the variables and that the variable x is a poor linear predictor of the variabley.
That is, the regression equation is either useless or not very useful for making predictions. It is not
designed to measure the strength of a relationship that is not linear.

5. The sign of r suggests the type of linear relationship. A positive value of r suggests that the variables
are positively correlated, meaning that y tends to increase linearly as x increases, with the tendency
being greater the closer that r isto 1. A negative value of r suggests that the variables are negatively
linearly correlated, meaning that y tends to decrease linearly as x increases, with the tendency being
greater the closer that r isto —1.

6. r reflects the slope of the scatter plot. The linear correlation coefficient is positive when the scatter
plot shows a positive slope and is negative when the scatter plot shows a negative slope.

7. The sign of r and the sign of the slope of the regression line are identical. If r is positive, so is the
slope of the regression line. That is, the regression line slopes upward. If r is negative, so are the
slope of the regression line and the regression line slopes downward.

Explained and Unexplained Variation

The total variation is defined as (y—y)?i.e, the sum of the squares of the deviations of the values of y
from the meany . This can be written as

S(y-y)* =2(y-9*+2(§- V) (628)
where y isthe value of y for given values of x as estimated from ¥ = a + bx, a measure of the scatter about
the regression line of y on x.

The first term on the right side of Eq. (6.28) is called the unexplained variation while the second term
is called the explained variation. The deviations ¥—¥y have a definite pattern while the deviationsy — ¥
behave in a random or unpredictable manner. Similar results hold true for the variable x.

The ratio of the explained variation to the total variation is called the coefficient of determination. If
there is zero explained variation i.e., the total variation is al unexplained, then this ratio is zero. If there is
zero unexplained variation i.e., the total variation is all explained, the ratio is one. In al other cases, the ratio
lies between zero and one. The ratio is always non-negative.

The quantity, r, is called the coefficient of correlation, and it is given by

Explained variation 2(y-V)?
—_— 1'? adion _, |X(y X)Z 629
otal variation (y-Y)

r varies between —1 and +1. The signs + are used for positive linear correlation and negative error correlation
respectively. ‘r’ is a dimensionless quantity. The coefficient of determination equals the square of the linear
correlation coefficient.




/I CurveFitting, Regression and Correlation // 207

Example E6.3

Determine the correlation coefficient for the data given in Example E6.1.

Solution:

Refer to the solutions obtained earlier for Examples E6.1 and E6.2. We have
SSy = 81935, SS,,=4200 and SS,, = 1813945.875

fo Sy _ 81935 .
/55,55, |/(4200)(1813945.875)

Hence,

6.11 LINEARISATION OF NON-LINEAR RELATIONSHIPS

Linear regression provides a powerful technique for fitting a best line to data. There exists many situations
in science and engineering that show the relationship between the quantities that are being considered is
not linear. There are several examples of non-linear functions used for curve fitting. A few of them were
described in Table 6.1.

Non-linear regression techniques are available to fit these equations in Table 6.1 to data directly. A
simpler alternative is to use analytical manipulations to transform the equations into a linear form. Then
linear regression can be used to fit the equations to data.

For instance, y = bx™ can be linearised by taking its natural logarithm to give

/ny=/nb+minx (6.30)

A plot of /ny versus /nxwill give a straight line with a slope of m and an intercept of ¢/nbas shown in
Fig. 6.16.

‘n yA

Slope =m

/ Intercept = /nb

fe) »(n X

Fig. 6.16: Linearised version of the exponential equation y = bx™

Many other non-linear equations can be transformed into linear form in a similar way. Table 6.2 lists several
such equations.
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Table 6.2
Non-linear : Relationship to Values for least
AL equation Ll y =a+bx sguares regression
1 |y=cox" /n(y) = m/n(x) + /n(c) y=1/n(y), X=/n(x) | ¢n(x;) and /n(y;)
b=m,a=/n(c)
2. |y=ce™ /n(y) = mx + n(c) ¥=/n(y), X=x x and /n(y;)
b=m,a=/n(c)
3 y=c10™ log(y) = mx + log ¢ ¥=1log(y), X=X % and £n(y;)
b=m, a=log(c)
4. 1 1 ~ 1 1
y= ~=mx+c y=—, X=X X; and —
mx+c y Yi
b=m,a=c
5 mx 1 ¢ 1 ~ 1 .1 1 1
C+X y mx m y X X, Y,
b=£, a=i
m m
6. | xy°=d 1 1 y=1logy, Xx=logx | logx andlogy;
Gas equation Iogy=EIogd—EIogx 1 1
a==logd, b=—=
c c
7. | y=cd logy=logc+xlogd y—logy, X=x x; and log y;
a=logc,b=logd
8. | y=c+dVx | y=c+dX g=y and x=vx | /x andy,
where % =/ a=candb=d

The curves in Figure 6.17 may be used as guides to some of the simpler variable transformations.

y=c+dVx




/I CurveFitting, Regression and Correlation //

209

)

y = a + b[log(x)]
y = a+ bx?

y = a+ box + cx?
log(y) = a + box +cx?

y = a+ box + cx2+ dx3
log(y) = a + box + cx2+dx3

X X

Fig. 6.17: Non-linear data curves

Example E6.4
Fit y = cx™ (power function) to the data in Example E6.1 using a logarithmic transformation.
Solution:
The data can be set up in tabular form as shown in Table E6.4.
Table E6.4
X | logx, | logyi | (logx) | (log x)(log ;)
1| 10 24 | 1.0000 | 1.3802 | 1.0000 1.3802
2| 20 68 | 1.3010 | 1.8325 | 1.6927 2.3841
3| 30| 378| 14771 | 25775 | 2.1819 3.8073
4 | 40| 552 |1.6021 | 2.7419 | 2.5666 4.3928
5| 50| 608 | 1.6990 | 2.7839 | 2.8865 4.7298
6| 60| 1218 | 1.7782 | 3.0856 | 3.1618 5.4867
7| 70| 831 1.8451 | 2.9196 | 3.4044 5.3870
8| 80| 1452 | 1.9031 | 3.1620 | 3.6218 6.0175
> | 360 | 5131 | 12.606 | 20.483 | 20.516 33.585
The means are computed as
x = Zlogx 12606 _, g7y
n
y= Ylogy _ 20.483 — 25604

n

8
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The dope and the intercept are then calculated using Egs. (6.13), (6.14), (6.15) and (6.16).

b= 5y _ nX(logx)(logy;) — (Zlogx )(Zlog y;) _ 8(33.585) — (12.606)(20.483) — 20055

SS,, nZlogx? — (Zlogx)? 8(20.516) — (12.606)?

a=Yy-bx =2.5604-2.0055(1.5757) = — 0.5997
The least-square fit is
log y = —0.5997 + 2.0055 log x
The fit dong with the data is shown in Fig. E6.8.
Transforming to the original coordinates, we have
¢ = 10059 = 0.2514 and m = 2.0055
Hence the least-squares fit is
y = 0.2514 x20055

6.12 POLYNOMIAL REGRESSION

The least-sgquares procedure described in earlier sections can be readily extended to fit the data to a higher
order polynomial. Consider a second-order polynomial or quadratic:

y=za+bx+c2+e (6.31)
The sum of the squares of the residuals is

S =Y (% —a-bx —ox)? 632)

i=1

To generate the least-squares fit, we take the first derivative of Eq. (6.32) with respect to each of the unknown
coefficients of the polynomial.

S 4 2
e S . —a—bx —cx
> é(y' a-bx —cx’)
a n
B—S*b=—22>q(yi —a-bx —cx’) 633
i=1
a n
a—S*=—22>92(yi —a-bx —cx?)
c i-1

Equations (6.33) are set equal to zero and rearranged to obtain the following set of normal equations:
n n
na+[ &]b+(2>ﬁ2j0=2)’i
i=1 i=1 i=1
n 9 3 n
(2&]%( &]b+(2>ﬁ]0=2>ﬁyi (6:34)
1 i=1 i=1 i

i= i i=1

1l M:

M=
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Equations (6.34) are al linear equations in three unknowns: a, b and c. These coefficients a, b and ¢ can be
determined directly from the observed data. The above procedure can be easily extended to an m' order
polynomial asin

y=a+bx+ol+de+ - +2x"+e (6.35)

Hence, the determination of the coefficients of an mh order polynomial is equivalent to solving a system of
(m+ 1) simultaneous linear equations.

The standard error in this case is given by

Syix = ,{ﬁ (6.36)

The coefficient of determination, r2, can be computed for a polynomial regression with Eq. (6.25).

Example E6.5

Fit a second-order polynomia to the data in Table E6.5 and determine the total standard deviation, the standard
error of the estimate and the correlation coefficient.

Table E6.5

x|0]1]2 |3 |4 |5
yi|2[8]14]27]41 |61

Solution:
Table E6.5(a) and (b) shows the computations for an error analysis of the quadratic least-squares fit.
Table E6.5(a)

X | Vi XiYi | x| X7y, | x* | x!
0 2 0 0 0 0 0
1 8 8 1 8 1 1
2 14 28 4 56 8 16
3 27| 81 9 243 27| 81
4| 411|164 | 16 656 64 | 256
5 61| 305| 25| 1525 | 125 | 625
> | 151|153 | 586 | 55| 2488 | 225 | 979
Table E6.5(b)
Xi Yi (yi _y)z (yi —a— bXi _Cxi2)2
0 2 552.3 0.2500
1 8| 306.3 1.3391
2 14 132.3 0.6862
3| 27 2.3 0.2951
4| 41 240.3 0.5300
5| 61| 1260.3 0.1282
Y | 15 | 153 | 2493.50 3.2286
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Hence, the simultaneous linear equations are

6 15 55(|a 153
15 55 225|b;=4 586
55 225 979]||c 2488

Refer to Appendix-C (Cramer’s rule for solving a system of linear algebraic equations).

6 15 55
Here D=[|15 55 225|=3920
5 225 979

153 15 5
D,=| 586 55 225 =9800
2488 225 979

6 158 55
D,=[15 586 225|=9884
55 2488 979

6 15 153
D;=15 55 586|=7140
55 225 2488

D, 9800
a=—= =

Therefore, D ﬁ

poD2_ 9884 0,
D 3920

C:&:L‘wzl.BZM
D 3920

These equations can also be solved to determine the coefficients using MATLAB:
These equations can be solved to determine the coefficients. Here, we use MATLAB.
>>A =[6 15 55; 15 55 225; 55 225 979);
>>h = [153; 586; 2488];
x = Alb
x =25 25214 18214
or a = 25 b=25214, and c = 1.8214.
Hence, the least squares quadratic equation for this problem is

y = 25+ 2.5214x + 1.8214x2
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The standard error of the estimate is based on the regression polynomial given by Eq. (6.36), where
S =Z(y-¥)?. Here, we have

[ s [329
Sy’X_\/n—(m+1) _\/6—(2+1) =10374

The coefficient of determination is given by Eq. (6.25)
2 S-S 24935-3.229

r =0.9987
S 2493.5
where § =2(y -y
and S =2(% - 9)°

Therefore, the correlation coefficient is r = /0.9987 = 0.99935 . These results show that 99.935% of the
origina uncertainty has been explained by the model.

6.13 QUANTIFICATION OF ERROR OF LINEAR REGRESSION

Noting that the sum of the squares is defined as

§ = Z(Yi —a-bx; _sz,i)2 6.37)

i=1

Equations (6.46) is similar to the equation

n
S=X0-V)° (639)
i=1
In Eq. (6.38), the squares of the residual represented the squares of the discrepancy between the data and
a single estimate of the measure of central tendency (the mean). The sgquares of the residual represent the
squares of the vertical distance between the data and another measure of central tendency (the straight
line). If the spread of the points around the line is of similar magnitude along the entire range of data and the
distribution of these points about the line is normal, then the least-squares regression will provide the best
estimates of a and b. This is known as the maximum likelihood principle. Also, if these criteria are met, a
standard deviation for the regression line can be determined as

Syix = % (6.39)

where S, is called the standard error of the estimate.

The difference between the S and S quantifies the improvement or error reduction due to describing
the data in terms of a straight line rather than as an average value. The difference is therefore normalised to
S to give
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. S-S
r S (6.40)

where r2 is called the coefficient of determination and r is the correlation coefficient. For a perfect fit,
S =0, and r2 = 1, indicating that the line explains 100% of the variability of the data. For r2=0, S = S and
the fit represents no improvement. An aternative formulation for r is given by
n
i=1

) vt s o

Example E6.6

Determine (a) the total standard deviation, (b) the standard error of the estimate and (c) the correlation
coefficient for the datain Example E6.1.

Solution:

Table E6.6 shows the data and summation to compute the goodness-of-fit statistics. From Example E6.1, we
have a = —236.50, b = 19.5083, x =45 and Y = 641.375.

Table E6.6
i [x [y [atbx (v, -y)? (yi —a—bx;)?
1| 10| 24| -41.4167 | 381151.8906 | 4279.3403
2| 20| 68| 153.6667 | 328758.8906 | 7338.7778
3| 30| 378| 348.7500 | 69366.3906 |  855.5625
4| 40| 552 | 543.8333| 7987.8906 66.6944
5| 50| 608 | 738.0167 | 1113.8906 | 17139.1736
6| 60| 1218 | 934.0000 | 332496.3906 | 80656.0000
7| 70| 831|1129.0833 | 35957.6406 | 88853.6736
8 | 80| 1452 | 1324.6667 | 657112.8906 | 16341.3611
> | 360 | 5131 | 5131 1813945875 | 215530583

The standard deviation is given by

where S is the total sum of the squares of the residuals between the data points and the mean.

Hence

- {a

S, - f181394i 875 — 4761746
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The standard error of the estimate is

Syix = \/ S _ [215580.583 _, ) o0
n-2 8-2

Since Sy < S, the linear regression model has merit.
The coefficient of determination r2 is given by Eq. (6.41)

2 S-S 1813945.875-215530.583

r = 0.8812
S 1813945.875
or r =/0.8812 = 0.9387

These results indicate that 93.87% of the original uncertainty has been explained by the linear model.

6.14 MULTIPLE LINEAR REGRESSION

Consider a function y which is a linear function of x; and X, asin
y=a+bx,+cx+e (642

Equation (6.42) is quite useful in fitting experimental data where variable being studied is often a function of
two other variables. For this two-dimensional case, the regression line becomes a plane. The best values of
the coefficients are obtained by formulating the sum of the squares of the residuals:

S = Z(Yi —a-bx; _CXZ,i)2 (643)

i=1

Differentiating Eq. (6.43) with respect to each of the unknown coefficients, we get

a n

(ra_sra= _22‘1(34 —a—bx;; —Cxy;)

a n

a—iz 2% (% —a=bx; — o)
i-1

a n

a—ir =-2) % (¥ —a—bx; — X))

i=1
The coefficient giving the minimum sum of the squares of the residuals are obtained by setting the partial
derivatives equal to zero and expressing the result in matrix form as

n n
Xlz,i le,ixz,i br= le,iYi (6.44)
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Example E6.7

The following data was generated from the equation y = 7 + 3x; + 4%,. Use multiple linear regressions to fit
this data.

~
N
o

X1 1| 2| 1] 4
X2 2 1 3 5
y | 7]118]17|22|39|32|25]| 23

o|o

Solution:
Table E6.7(a)

Yi Xii | Xai | X2 | XuiXai | X3, | X2i Vi | X1 Vi

7 0 0 0 0 0 0 0

18 1 2 1 2 4 36 18

17 2 1 4 2 1 17 34

22 1 3 1 3 9 66 22

39 4 5 16 20 25 195 156

32 7 1| 49 7 1 32 224

25 2 3 4 6 9 75 50

23 0 4 0 0 16 92 0

| > | 183 | 17 | 19 75 40 65 513 504

The summations required for Eq. (6.44) are computed in Table E6.7(a) as shown above. Substituting these
valuesin Eq. (6.44), we get
8 17 19|[a 183
17 75 40|<b;=+:504
19 40 65||c 513

which can be solved using MATLAB.
Refer to Appendix-C (Cramer’s rule for solving a system of linear algebraic equations).

8 17 19
D={17 75 40/=6180
19 40 6
183 17 19
D, =504 75 40|=43260
513 40 65

8 183 19
D, =17 504 40 =18540
19 513 6

8 17 18
D; =17 75 504 = 24720
19 40 51
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D, 43260
D 6180
D, 18540
"D 6180
Dy 24720
"D 6180

MATLAB Program:

>>A=[8 17 19; 17 75 40; 19 40 65];
>>B =[183; 504; 513];
X =A/B
X=7;b=3 and c=4
or a=7,b=3,andc=4.

which is consistent with the original equation from which the data was derived.

6.15 WEIGHTED LEAST SQUARES METHOD

Referring to the sections 6.3 and 6.4 and assigning weights w; to each error, e (i =1, 2, ..., n) in Eq. (6.4)
such that Zw; = 1.

Equation (6.5) can be written as

n
S =Y wly - (a+bx)P? (6.45)
i=1
For S to be a minimum, we have
9S _pad S oo (646)
oa db
We obtain the normal equations as
a+bIwx =Zwy, (647
asw x +bZwx? = Swx v (649)

The solution of Egs. (6.47) and (6.48) gives the values for a and b. These values give the minimum of § with
respect to the weight w;.

Similarly, for a parabolic equation, we need to minimise
S = 2wy, - (a+bx + o)’ (649)

where 2w = 1.
For S to be minimum, we have

9B _ 0% _pad g

da  db oc (650)
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On simplification, we obtain the following normal equations to determine a, b and c.

a+bIwx +cIwx? = Swy; (6.51)
axw X +bEw X + cXw X = Swx v, (652)
axw X +bIw + cEw xt = Zwx (653

6.16 ORTHOGONAL POLYNOMIALS AND LEAST SQUARES APPROXIMATIO

The previous sections considered the problem of least squares approximation to fit a collections of data.
This method is also applicable for continuous data.

6.17 LEAST SQUARES METHOD FOR CONTINUOUS DATA

Let y = f(x) be a continuous function on [a, b] and it is to be approximated by the nt" degree polynomial.
y=ag+ X+ a2 + - + g (654)
Here the sum of the squares of residuals Sis given by
b
S='fa W)LY — (8gX+ ayX2 + -+ a,x")] 2 dx (6.55)

where w(X) is a suitable weight function.
The necessary conditions for minimum S are given by

s _9s_ s
e = o2, == oa, = (6.56)
Equation (6.56) gives the normal equations as
—2_|.:W(x)[y— (ap + ayx+ a2x2 ++a,x")]dx=0
b 2
—2_[a W(X)[y—(ay + X+ a X" + -+ a,Xx")] xdx=0
—Zj:w(x)[y— (8 + &y X+ a,x> +-+a,x")] x> dx=0
b 2 n n
—2_[a W)LY —(ag + X+ aX“+-+a,x )] x dx=0 (657

After simplification these equations reduce to
b b b (b
ao_[a wW(X) dx + aifa XW(X) dX+ .-+ anfa X 'W(X) dx —fa wW(X)y dx

ao_[: XW(X) dx + al_f: XPW(X) dX + -+ anf: X" w(x) dx =f:w(x)xydx
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aoj: X2W(X) dx + aij: XCW(X) dX + -+ anj: X" 2W(x) dx =_[: W(X) Xy dx

b b b b
aofa X"W(X) dx + ai_[a X" w(x) dx + -+ anfa x2"W(x) dx :fa w(x)x"y dx (658

Since w(x) and y = f(x) are known, Eq. (6.58) forms a system of linear equations with (n + 1) unknowns ay,
ay, ...., 8, This system of equations possesses a unique solution. If

=8y, u=a,...a= a,
is the solution for ag, &y, ..., a, then the approximate polynomial is given by

y = ag+a X+ apX> + -t X"
Example E6.8
Construct a least-sguares quadrate approximation to the function f(x) = sin mx on [0, 1].

Solution:
The normal equations for P,(X) = a,x2 + a;x + ag are

aof;1dx+ alf;xdx+ azf;xzdx = _[:si nmxdx (ED)
1 1, 14 1.
aofoxdx+ aifox dx+ az_[ox dx:joxsnn xdx (E2
15 14 14 15 .
aofox ax+ al_fox dx+ azfox dx=fox sinm xdx (E3

Performing the integration gives

+1a +la _2 E4
) St ®R = (EH
1, 1,1, 1 c
Zao 331 227 (E9
} +l +la _7'[2—4 (EG)
380 481 5 2 7'53
Equations (E.4), (E.5) and (E.6)in three unknowns can be solved to obtain
2_
ap =2~ 120 _ o 050465
s
_ 2
and a =-a,= m ~ 412251
n

Consequently, the least squares polynomial approximation of degree 2 for f(x) = sin mx on [0, 1] is
P,(X) = —4.12251x2 + 4.12251x — 0.050465.



220 /I Numerical Methods //

6.18 APPROXIMATION USING ORTHOGONAL POLYNOMIALS

In section 6.19, afunction is approximated as a polynomial containing theterms 1, x, X2, ...., X". These terms
are called base functions, since, any function or even discrete data are approximated based on these functions.

Here, we assume that the base functions are some orthogona polynomials f o(x), f1(X), ...., f,(X). Let the
given function be approximated as

y=aofo(X) +afy(x) + - +a, f1(X) (6.59)
where f;(X) is a polynomial in x of degreei. Then the residue is given by
b
S= [ WOy —{a0 fo(x)+a fr () + -+ & i (}]2cx (660)
For minimum S the conditions are given by
S oS oS
—=0,—=0,....—=0
da, o 2, (6.61)

Equations (6.61) yields the following normal equations:

~2f "WOLY ~{80 o (9 + Ty (X)+ -+ 8, Ty (9] o (X) e = 0

—ZI:W(X)[Y—{ao fo(¥) +a fi () +-+a, f, (0} f () dx=0

2] WOy ~{0 o)+ 2 (X ++ 8 Ty (OH £ () = O (662

After simplification, the it equation can be written as
b b
8] W00 To (0 T 0 det @y w(x) 00 f; () e

+a, [ w00 209 a2, [ W00 £, 00, (09 dx = [ Wy £ (x) dix 663)

i=0,12 .....,n

A set of polynomial {fy(X), f1(X), ...., f,(X)} is said to be orthogonal with respect to the weight function w(x)
if
b 0, if i #]j

.00 f: (X)W(X)dx =
fa 09T 0w j: f2O)W(x)dx, if i = 664)
Using Eq. (6.64), Eq. (6.63) can be written as

aif:W(x) fﬁ(x)dx:j:w(x) f, (%) dx i=0,1,2 ... n
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[Pwigy fioax
Hence, ai:ab—, i=0,1,2 ....,n (6.65)
ja W(x) f.2(X) dx

From Eg. (6.65), we can find the values of ag, a4, ...., @, and the least squares approximation is obtained by
substituting these values in Eq. (6.59). However, the functions fo(X), f1(X), ...., f,(X) are unknown. Several
orthogonal functions are available in literature. A few of them are given in Table 6.3.

Any one of the orthogonal functions can be selected to fit a function dependent on the given problem.

Table 6.3: Some standard orthogonal polynomials

Name fi(x) | Interva w(X)
Legendre | Py(x) |[-1,1] |1
X

Leguerre La(X) | [0, =] €
Hermite Ha(X) | (—o0,0) | ¥

Chebyshev | To(x) | [-1.1] | @1 —x)™?

6.19 GRAM-SCHMIDT ORTHOGONALISATION PROCESS

Let f;(xX) be a polynomial in x of degreei and {f;(X)} be a given sequence of polynomials. Then the sequence

of orthogonal polynomials [fi* (X)]over the interval [a, b] with respect to the weight function w(x) can be
generated by the following equation

i-1
fr=x-Yaf (x i=1,2 ..,n (6.66)
r=0

where the constants are a,, and f, (X) = 1.

To obtain &, we multiply Eq. (6.75) with w(x) f; (X), 0<k<i—1andintegrating over [a, b], we obtain

b ox, s b i« bl L .
[ 100 fa O ax =[x 1 (wx) ax=[ 3 3, T, () fy (9w(x) dx (667)
r=0
Using the property of orthogonal polynomial, Eq.(6.67) becomes
b i * b *2
[ X £ (we ax— [ &, o ? (w(x) dx =0

2% 15 00 w(x) o

or 0<n<i-1 (6.68)

=t ,
ja 72 (%) W(x) dx

Hence, the set of orthogonal polynomials { fi* (X)} are given by

fo (X) =1
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R
fi (X):XI_Zairfr (X), i=12 ....Nn
r=0

2% 15 () wix) dx

where a, (6.69)

- b *2
ja 2 () W(x) dx
For the discrete data, the integral is replaced by summation.

Example E6.9

Use Gram-Schmidt orthogonalisation process to find the first two orthogonal polynomials on [-1, 1] with
respect to the weight function w(x) = 1.

Solution:
Let fo (X) =1
Hence f, (X) = x—ay oy (X)
1
I X dx
where 8o =" =0
f dx
-1
or f, (X) =X

The second orthogonal polynomial is given by

fy (X) = X% =8y fo (X) — @ f; (X)

1.2
'f x“dx 1
where ay="t—=21,
3
'[ dx
-1
f X% . xdx
a21: - =
fl x2dx
-1
* 1 1
Hence, f, (X) = X2 -3° §(3x2 -1

Thus, the first two orthogonal polynomials are

(=L f00=x and (=3¢~
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6.20 ADDITIONAL EXAMPLE PROBLEMS AND SOLUTIONS

Example E6.10

Determine the equation to the best fitting exponential curve of the form y = ae™ for the data given in Table
E6.10.

Table E6.10

x| 1 3 |5]7]9
y | 115]|105| 95| 85| 80

Solution:
Refer to Table E6.10(a).
Table E6.10(a)

x|y | logyi | x2 | xilogy;
1| 1115 | 2.0607 1| 2.0607
2| 3| 105 | 20212 9| 6.0636
3| 5| 9519777 | 25| 9.8886
4| 7| 8519294 | 49 | 13.5059
5| 9| 8019031 | 81| 17.1278
> | 25| 480 | 9.8921 | 165 | 48.6466
Given y=ae™
The normal equations are
Tlogy; =5A+BZXx (ED)
X X; Iogyi:Ain+BZ>q2 (E2

where A=logaand B=blog e.
Solving the two normal Egs.(E.1) and (E.2), we get

A = 20802 and B = —-0.0203
Hence a = antilog of A = 1029802 = 120.2818

-0.0203

and b=B/loge= =-0.0075

Hence, the fitted equation isy = 120.2818 e0-0075x,

Example E6.11

For the data given in Table E6.11, find the equation to b est fitting curve of the form y = abX.
Table E6.11

X 1 2 3 4 5
y | 130 | 150 | 175 | 190 | 240
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Solution:
The calculations are shown in Table E6.11(a).
Table E6.11(a)

y logy | x°| xlogy | ¥ (estimated)
130 | 21139 | 1| 21139 | 129.2062
150 | 21761 | 4| 43522 | 149.5433
175 | 22430 | 9| 6.7291 | 173.0814
190 | 22788 | 16 | 9.1150 | 200.3144

240 | 2.3802 | 25| 11.9011 | 231.8555
> 115|885 | 11192 | 55| 34.2113 | 884.0108

garwnN R X

The normal eguations are obtained as follows:

y = abX (ED

Taking logarithms (base 10) on both sides of the above Eq.(E.1), we get
logy =loga+xloghb (E2
or Y = A+ BX (E3

where  Y=logy,A=logaandB=logh.
Hence, the normal equations are

2Y = nA + BXx (EH
IXY = AZX + BIx2 (E5)
Substituting the values from Table E6.9(a) into Egs.(E.4) and (E.5), we have
111920 = 5A+ 158 (E6)
342113 = 15A + 55B E7)

Solving Egs.(E.6) and (E.7), we obtain
A=20478 and B=0.0635
Hence a=antilog of A= 1029478 = 111.6349

b = antilog of B = 1009635 = 11574

Hence the fitted equation isy = 111.6349(1.1574)%. The estimated values of y (denoted by ) are shown in
the last column of Table E6.9(a).

Example E6.12
For the data given in Table E6.12, find the equation to best fitting curve of the form xy? = b.
Table E6.12

X |200|150]| 100 | 60 | 40 | 10
y| 1 15|18 ]24]41|65
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Solution:
See Table E6.12(3).
Table E6.12(a)
X y logx | logy | (logx)” | (logx)(logy) | ¥ (estimated)
200 1| 23010 |0 5.2947 0 1.1762
150 | 15| 21761 | 0.1761 | 4.7354 0.3832 1.4040
100 | 1.8 | 2.0000 | 0.2553 | 4.0000 0.5105 1.8019
60 | 24| 1.7782 | 0.3802 | 3.1618 0.6761 2.4675
40| 41| 1.6021 | 0.6128 | 2.5666 0.9817 3.1668
10| 65| 1.0000| 0.8129 | 1.0000 0.8129 7.4322
> | 560 | 17.3 | 10.8573 | 2.2373 | 20.7585 3.3644 17.4485
Given Xy2 =b (ED
Taking logarithms (to the base 10) on both sides of the above Eq.(E.1), we get
logx+alogy =logb (E2
1 logb
“logx+logy-—— EJ
a a
The normal equations are given by
TY = 6A + BXX (EH
XY = AZX + BEX? (E5H

1
where  Y=logy, X=logx, A= ElogbandB:—lla

Solving Egs. (E.4) and (E.5), we obtain
A = 14865 and B = - 0.6154
Therefore a=-1/B = -1/-0.6154 = 1.6250
and b = antilog of (aA) = 10(1-6250)(1.4865) = 260,3529

Hence, the fitted equation is xy1-6250 = 260.3529.

Example E6.13
Fit the following data:

to a straight line by considering that the data (2, 16) and (4, 19) are more significant or reliable with weights
6 and 11 respectively.

Solution:

Weighted Least Squares Method.

Let the straight line bey = a + bx. The normal eguations are
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aw; + bEwix = Zwy; (E1)
and azwix + bIWxZ = Swixy; (E2
The valuesin Egs. (E.1) and (E.2) are calculated as shown in Table E6.13.
Table E6.13

x|y [w [wx]wx®| Wy ]| Wxy
0j11| 1 0 0| 11 0
2116 6| 12| 24| 9% | 192
4119|111 | 44| 176 | 209 | 836
6

T

26| 1| 6| 36| 26| 156
otal | 19| 62| 236 | 342 | 1184

The normal equations are
19a+62b = 342 E3
and 62a + 236b = 1184 (EH
The solution of Egs. (E.3) and (E.4) gives
a=114125and b = 2.0188

Hence, y = 114125 + 2,0188x
Estimation of Error
x|y |w | Predictedy | Absoluteerror | (Absolute error)®
011 1| 114125 0.4125 0.1702
2116| 6| 15.4500 0.5500 0.3025
4119 |11 | 194875 0.4875 0.2377
626 1| 235250 2.4750 6.1256
Sum of squares of errors 6.8329
Example E6.14
Consider the Example E6.14 with the modified weights 300 and 50 instead of 6 and 11.
Solution:
The modified calculations are shown in Table E6.14

Table E6.14

y |w [wx [w®[wy | wxy

1] 1 0 0 11 0
16| 30| 60| 120 | 480 | 960
19 | 50| 200 | 800 | 950 | 3800
26| 1 6| 36 26 | 156
Total | 82 | 266 | 956 | 1467 | 4916

OB NOIX

The normal equations are
82a + 266b = 1467 (ED)
and 266a + 956b = 4916 (E2
The solution of Egs. (E.1) and (E.2) gives
a=124144 and b = 1.6881
Hence, y=124144 + 1.6881x
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Estimation of Error

x|y |w | Predictedy | Absolute error | (Absolute error)®
0|11 | 1| 124144 1.4144 2.0004
2|16 |30 | 15.7905 0.2096 0.0439
4|19 |50 | 19.1666 0.1666 0.0277
6|26| 1| 225427 3.4573 11.9530
Sum of squares of errors 14.0250

It is noted that when the weights on x = 2 and x = 4 are increased then the absolute error in y are reduced
at these points, but, the sum of squares of errors is increased due to the less importance of the data (0, 11)
and (6, 26).

6.21 SUMMARY

In this chapter, we have reviewed the relationship between two variables in two ways: (1) by using the
regression analysis and (2) by computing the correlation coefficient. It was shown that the regression model
can be used to evaluate the magnitude of change in one variable due to a certain change in another variable.
The regression model also helps to predict the value of one variable for a given value of another variable.
The correlation coefficient shows how strongly two variables are related. It does not, however, provide any
information about the size of change in one variable as a result of a certain change in the other variable.

Problems

6.1 Table P6.1 gives information on the monthly incomes (in hundreds of dollars) and monthly telephone
bills (in dollars) for a random sample of 10 households.
Table P6.1

Income 16| 45| 35(31|30(14| 40| 15| 36 | 40
Telephonebill | 36 | 140 | 171 | 70 | 94 | 25| 159 | 41 | 78 | 98

Use least-squares regression to determine the coefficients a and b in the function y = a + bx that best
fits the data.

6.2 Thefollowing Table P6.2 lists the annua incomes (in thousands of dollars) and amounts of life insurance
(in thousands of dollars) of life insurance policies for six persons:
Table P6.2

Annual income | 47| 54| 26| 38| 62| 20
Lifeinsurance | 250 | 300 | 100 | 150 | 500 | 75

(@) find the regression liney = a + bx with annual income as an independent variable and amount of
life insurance policy as a dependent variable.

(b) determine the estimated value of life insurance of a person with an annua income of $50,000.
6.3 Find the least squares regression line for the data on annual incomes and food expenditures of seven

households given in Table P6.3. Use income as an independent variable and food expenditure as a
dependent variable. All data is given in thousands of dollars.
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6.4

6.5

6.6

Table P6.3

Income: x 35|50(22(40| 16|30 | 25
Expenditure:y | 9115 6|11| 5| 8| 9

Table P6.4 gives data on age and crown-rump length for the foetuses. Use least-squares regression to
determine the coefficients a and b in the function y = a + bx that best fits the data:

Table P6.4

Xx|10|10| 13| 13| 18| 19| 19| 23| 25| 28
y | 66| 66| 108 | 106 | 160 | 165 | 176 | 227 | 234 | 279

The following data in Table P6.5 refers to the number of hours that 10 students studied for a math test
and their scores on the test:

Table P6.5
Hours studied 1171 22|12 7| 4|14 10 9| 4
Test score 21183|90(60|45|38| 74|66 |59 | 32

(@) find the equation of the least squares line that approximates the regression of the test scores on
the number of hours studied.

(b) determine the average test score of a person who studied 15 hours for the test.

The following Table P6.6 shows the first two grades, denoted by x and y respectively, of 10 students
on two mid-term examinations in applied statistics. Find the least squares regression line of y on x.

Table P6.6

Grade on first mid-term examination (x) 60| 50|80|80| 70| 60| 10040 | 90| 70

Grade on second mid-term examination (y) | 80| 70| 70| 90| 50| 80| 95| 60 | 80 | 60

6.7 Thefollowing Table P6.7 shows ages x and systolic blood pressure y of 12 men.
(a) determine the least squares regression equation of y on x
(b) estimate the blood pressure of a man whose age is 45 years.
Table P6.7
Age (x) 56| 42| 72| 36| 63| 47| 55| 49| 38| 42| 68| 60
Blood pressure (y) | 147 | 125 | 160 | 118 | 149 | 128 | 150 | 145 | 115 | 140 | 152 | 155

6.8

6.9

Table P6.8 shows the respective weight x and y of a sample of 12 fathers and their oldest sons. Find
the least sguares regression line of y on x.

Table P6.8

Weight of father, x (kg) | 65 ] 63 | 67 | 64 | 68 | 62| 70| 66 | 68 | 67 | 69 | 71
Weightof son,y (kg) | 68| 66 | 68 | 65 | 69 | 66 | 67 | 65| 70 | 67 | 68 | 70

Find the least squares regression line for the data on annual incomes and food-expenditures of seven
households given in Table P6.9. Use income as independent variable and food expenditure as a
dependent variable. The income and food-expenditures are in thousands of rupees.

Table P6.9

Income x 35149|121|129|15|28| 25
Food expenditurey | 9| 15| 7|10| 5| 8| 85
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6.10 A car manufacturing company wanted to investigate how the price of one of its car models depreciates

with age. The company took a sample of eight cars of this model and collected the following information
on the ages (in years) and prices (in hundreds of dollars) of these cars as shown in Table P6.10.

Table P6.10

Age 8| 3] 6] 9 2| 5] 6| 3
Price | 16 | 7414019120 | 36| 33| 86

(@) find the regression line ¥ = a + bxwith price as a dependent variable and age as independent variable
(b) give a brief interpretation of the values of a and b calculated in part (a)

(c) predict the price of a 7-year old car of this model
(d) estimate the price of an 4-year old car of this model.

For problems P6.11 to P6.20 do the following:

Fit a least-squares regression line of the form y = a+bx for the data given in Tables P6.1 to P6.10

respectively. Assume X as the independent variable and y as the dependent variable.

6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25

(a) give a brief interpretation of the values of a and b calculated in ¥ = a+bx.
(b) compute the standard deviation of the sample errors, S.

(c) compute the error sum of squares, SSE.

(d) compute the total sum of squares, SST.

(€) compute the regression sum of sguares, SSR.

(f) compute the coefficient of determination, r2.

(9) compute the correlation coefficient, r.

For the data given in Table P6.1.

For the data given in Table P6.2.

For the data given in Table P6.3.

For the data given in Table P6.4.

For the data given in Table P6.5.

For the data given in Table P6.6.

For the data given in Table P6.7.

For the data given in Table P6.8.

For the data given in Table P6.9.

For the data given in Table P6.10.

Fit y = bx™ (power function) in Problem 6.1 using a logarithmic transformation.

Fit y = bx™ (power function) to the data in Problem 6.2 using a logarithmic transformation.
Fit y = bx™ (power function) to the data in Problem 6.3 using a logarithmic transformation.
Fit y = bx™ (power function) to the data in Problem 6.4 using a logarithmic transformation.
Fit y = bx™ (power function) to the data in Problem 6.5 using a logarithmic transformation.
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6.26 Determine the coefficient of the polynomia y = a + bx + cx? that best fit the data given in the following
table.

x|1 |3 |5 I 10
y|21]51|545|6.12| 6.62

Determine the standard error of the estimate and correlation coefficient.

6.27 The following data were collected in an experiment to study the relationship between shear strength
in kPa (y) and curing temperature in °C (X).

X138 | 140 |146 |148 |152 | 153
y | 5392 | 5612 | 5.671 | 5.142 | 4.481 | 4.129

(@ fit aleast-sguares quadratic model of the form y = a + bx + cx? to the above data
(b) using the equation, compute the residuals.

(c) compute the error sum of squares and total sum of squares.

(d) compute the error variance estimate.

(e) compute the coefficient of determination.

6.28 The following data were collected in an experiment to study the relationship between the number of
kilograms of fertiliser (x) and the yield of tomatoes in bushels (y).

x| 5/10|30| 40|50
y|32]|42 |54 |50 ] 42

(a) fit a least-squares quadratic model of the form y = a + bx + cx2 to the above data.

n
(b) using this equation, compute the regression sum of sguares Z()A/. - )7)2.
i=1

n n
(c) compute the error sum of squares Z(yi - 37i)2 and total sum of squaresZ(yi -y)2
i=1 i=1

(d) compute the error variance estimate (b) + (c).
(e) compute the coefficient of determination, r2.
6.29  Fit aleast-sguare parabolay = a + bx + 2 to the following data:

Xx|/0 |1 |2 |3 |4 |5 6
y|24|121|32]56|93]|146] 219

Determine the coefficient of determination.

6.30 The following table gives the data collected in an experiment to study the relationship between the
stopping distance d(m)_ of an automobile travelling at speeds v(km/hr) at the instant the danger is
sighted.

(a) fit a least-squares parabola of the form d = a + bv + ¢v2 to the data
(b) determine the coefficient of determination.
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Speed v(km/hr) 32 |48 |64 |80 |96 |112
Stopping distance d(m) | 16,5 | 27.5 | 19.5 | 24.5 | 29.3 | 34.2

6.31 Use multiple linear regression fit of the form y = a + bx; + cx, for the following data:

X110 |1 |1 2 2 3 |3 |4 4
X2 |0 |1 |2 1 2 1 12 |1 2
y |15]18[128|257)|204|35]|30]453]|401

Compute the coefficients, the standard error of the estimate, and the correlation coefficient.
6.32 Use multiple linear regression fit of the form y = a + bx; + cx, for the following data:

xx|0]0J1] 2|1 15| 3 3 |1
X010 1] 2 1 2 3 |1
y |[1|6|4|4|—2|-15|-12]|-15]|17

Compute the coefficients, the standard error of estimate and the correlation coefficient.
6.33 Use multiple linear regression fit of the form y = a + bx, + cx, for the following data:

X [0]0]1] 1] 2] 3 0] 2] 1] 4
X2/0[21]0] 1| 2] 05| 2| 3| 4| 1
y [3]8|7]12]21|15 13126 |27 | 24

Compute the coefficients, the standard error of estimate and the correlation coefficient.

6.34 Use multiple linear regression fit of the form y = a + bx, + cx, for the following data:

x| 0] O] 1) 1] 2]0]1|2 1)1
X2 0] 1] 0] 1] 0]2]2]1 3|1
y [23]15|19]|10]15|5]|]0|5]-10]0

Compute the coefficients, the standard error of estimate and the correlation coefficient.
6.35 Use multiple linear regression fit of the form y = a + bx, + ¢x, for the following data:

Xx| 0] 0] 1]1] 2 0 1] 2 1] 3
X2| 0] 1] 0]1| O 2 21 1 3] 1
y 29110234 |19|-10|-16|-2|-36|-8

Compute the coefficients, the standard error of estimate and the correlation coefficient.
6.36 For the data given in Table P6.36, find the equation to the best fitting exponentia curve of the form
y = aegh,
Table P6.36

x| 1] 2] 3] 4] 5
y | 10090 | 80| 75|70
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6.37 For the data given in Table P6.37, find the equation to the best fitting exponentia curve of the form
y = ae™.
Table P6.37
x|2 |3 |4 |5 |6
y | 38|58|78]88]|98
6.38 For the data given in Table P6.38, find the equation to the best fitting exponentia curve of the form
y = ag™.
Table P6.38
X 22| 3| 4| 6| 7
y| 31 [38|45|68)|84
6.39 For the data given in Table P6.39, find the equation to the best fitting exponentia curve of the form
y = abX.
Table P6.39
x| 1]2[3]4]5
y|22[8]3]|1]|035
6.40 For the data given in Table P6.40, find the equation to the best fitting exponentia curve of the form
y = abX.
Table P6.40
x|2| 4] 6] 8|10
y[3]13]32]|57]91
6.41 For the data given in Table P6.41, find the equation to the best fitting exponentia curve of the form
y = abX.
Table P6.41
x|1|3|5 |7 9
y|3]2]13]0.72|043
6.42 For the data given in Table P6.42, find the equation to the best fitting exponentia curve of the form
y=xy2=h.
Table P6.42
x | 190 134 89 55 37 8.9
y 0.97 114 132| 163| 192]|35
6.43 For the data given in Table P6.43, find the equation to the best fitting exponentia curve of the form

y=xy2=h
Table P6.43

X |2 3 5 7 9 11
y|125|121|116|114|111| 110
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6.44 For the data given in Table P6.44, find the equation to the best fitting exponentia curve of the form
y=x2=bh
Table P6.44

X|[232]178] 99 | 66 | 51
y|11]13|18]22]|25

6.45 Find anon-linear relationship of the formy = a + b log x for the data given in Table P6.45. Determine
the linear correlation coefficient.

Table P6.45

x| 1.2] 47]83] 209
y | 06516910

6.46 Fit the following data to a straight line y = a + bx by considering the weights as given in the table.
Compute the sum of squares of errors.

X 1117122 ]12| 7] 4[14]10| 9] 4
y [21]83[90]|60|45|38|74|66|59 |32
w| 5] 1] 7] 1| 1] 8] 1|11 1| 4

6.47 Fit the following data to a straight line y = a + bx by considering the weights as given in the table.
Compute the sum of squares of errors.

X |16 45| 35|31|30|14| 40|15] 36| 40
y |50]134]1107 95|90 |44 |120| 47110 120
w| 1 6 1] 3] 1] 7 111 1| 16

6.48 Fit the following data to a straight line y = a + bx by considering the weights as given in the table.
Compute the sum of squares of errors.

X | 47| 54| 26| 38| 62|20
y | 250 | 300 | 100 | 150 | 500 | 75
w 1 5 1 3 1] 7

6.49 Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

X | 35]50(22]40|16|30|25
y| 9]15] 6|11 5| 8] 9
w| 1] 2] 1| 2] 1] 3] 4

6.50 Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

X |10]10| 13| 13| 18| 19| 19| 23| 25| 28
y | 66|66 | 108 | 106 | 160 | 165 | 176 | 227 | 234 | 279
w| 2] 1 3 1 4 1 5 1 6 1

6.51 Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

X 11712212 7| 4|14(10] 9| 4
y [21[83][90|60|45[38|74|66|59| 32
w| 1] 2] 1] 3] 1] 2] 1| 4] 1] 5
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6.52

6.53

6.54

6.55

6.56

6.57

6.58
6.59
6.60

6.61

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

X | 1117122112 7| 4
y [21 83|90 |60|45]| 38
w|l 5] 1] 7] 1] 1] 8

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x |16] 45| 35]31]30
y | 50| 134 | 107 | 95 | 90
w| 1| 6] 1] 3] 1

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

X | 47| 54| 26| 38| 62|20
y | 250 | 300 | 100 | 150 | 500 | 75
w 1 4 1 2 1] 7

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

X | 35| 50 | 22 | 40
y | 9/15] 6|11
w| 2| 3] 4] 2

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x|10[10] 13| 13| 18
y | 66 | 66 | 108 | 106 | 160
w| 5] 2 3 7 4

Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x| 1]17|22]12] 7
y | 21| 75|96 | 60| 45
w| 1] 2] 1| 3] 1

Construct a least-squares quadratic approximation to the functiony = €< on [0, 1].
Construct a least-squares quadratic approximation to the functiony = x In x on [1, 3].
Construct a least-sgquares quadratic approximation to the function y = x3 on [0, 2].

1
Construct a least-squares quadratic approximation to the function y = ” on |1, 3].
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6.62
6.63

6.64

6.65

Construct a least-sguares quadratic approximation to the function y = x2 + 3x + 2 on [0, 1].

Use the Gram-Schmidt orthogonalisation process to construct ¢g(x), 01(X), 02(X) and ¢3(x) for the
interval [0, 1].

Use the Gram-Schmidt orthogonalisation process to construct ¢g(x), 01(X), 02(X) and ¢3(x) for the
interval [0, 2].

Use the Gram-Schmidt orthogonalisation process to construct ¢g(x), 01(X), 02(X) and ¢3(x) for the
interval [1, 3].
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CHAPTER

Numerical Integration

7.1 INTRODUCTION

If F(x) is a differentiable function whose derivative is f (x), then we can evaluate the definite integral | as

l =f:f(><) dx=F (b) —F (a), F(x) = (X (7.2)

Equation (7.1) is known as the fundamental theorem of calculus. Most integrals can be evaluated by the
formula given by Eqg. (7.1) and there exists many techniques for making such evaluations. However, in many
applications in science and engineering, most integrals cannot be evaluated because most integrals do not
have anti-derivatives F(x) expressible in terms of elementary functions.

In other circumferences, the integrands could be empirical functions given by certain measured values.
In al these instances, we need to resort to numerical methods of integration. It should be noted here that,
sometimes, it is difficult to evaluate the integral by analytical methods. Numerical integration (or numerical
guadrature, asit is sometimes called) is an dternative approach to solve such problems. Asin other numerica
techniques, it often results in approximate solution. The integration can be performed on a continuous
function or a set of data.

The integration given by Eq. (7.1) is shown in Fig. 7.1. The integration shown in Fig. 7.1 is called
closed since the function values at the two points (a, b) where the limits of integration are located are used
to find the integral. In open integration, information on the function at one or both limits of integration is
not required.

)4

Fig. 7.1
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The range of integration (b — a) is divided into a finite number of intervals in numerical integration. The
integration techniques consisting of equal intervals are based on formulas known as Newton-Cotes closed
guadrature formulas.

In this chapter, we present the following methods of integration with illustrative examples:

1  Trapezoidd rule.

2 Simpson’s /3 rule.

3 Simpson's 3/8 rule.

4. Boole's and Weddle's rules.

7.1.1 Relative Error
Suppose we are required to evaluate the definite integral

I:_[:f(x)dx

In numerical integration, we approximate f (X) by a polynomia f (x) of suitable degree. Then, we integrate f (X)
within the limits (a, b). That is,

j:f(x) dxzj:q>(x)dx

Here the exact value if
b
| = ja f(x) dx
) b
Approximate value = _[a O(x) dx

The difference D: Fax— [ 0(x) dx}

is called the error of approximation and

Uab f(x) dx—j:q)(x) dx}
j:f(x)dx

is called the relative error of approximation.

exact values — approximate value
exact value

Hence, relative error of approximation =

7.2 NEWTON-COTES CLOSED QUADRATURE FORMULA

The genera form of the problem of numerical integration may be stated as follows:

Given a set of data points (x, ¥;),1 =0, 1, 2, ...., n of afunction y = f (x), where f (x) is not explicitly
known. Here, we are required to evaluate the definite integral
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=]y (72)

Here, we replace y = f (X) by an interpolating polynomia ¢(x) in order to obtain an approximate value of the
definite integral of Eq.(7.2).

In what follows, we derive a general formula for numerical integration by using Newton's forward
difference formula. Here, we assume the interval (a, b) is divided into n-equal subintervals such that

h:b—a
n
A=X<X<Xg<X=b (7.3
with X=X +nh

where h = the internal size
n = the number of subintervals
a and b = the limits of integration with b > a.

Hence, the integral in Eq.(7.2) can be written as
%
| = ax
f 5 Y (74)

Using Newton’s forward interpolation formula, we have

%,

_ p(p-1) p(p-1)(p-2)

| —LO [YO*' PAy, +TA2yO +TA3yO+"" dx (75

where X=X+ ph
n 2 3 2
- -3p°+2

= J {yo"‘ PAY, + P 5 pA2y0+ P 2 pAsyo*"“}dp (7.6)

0

Hence, after simplification, we get

X, 2
_ _ 2n-3) n(n-2)° 3
I = ydn—nh{ LNV A%y, + A +}
JXO Yo 5 Yo 1 Yo o Yo 7.7

The formula given by Eq.(7.7) is known as Newton-Cotes closed quadrature formula. From the genera formula
(Eq.(7.7)), we can derive or deduce different integration formulae by substitutingn =1, 2, 3, ..., etc.

7.3 TRAPEZOIDAL RULE

In this method, the known function values are joined by straight lines. The area enclosed by these lines
between the given end points is computed to approximate the integral as shown in Fig. 7.2.
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Ya

o
x
S

X1
Fig. 7.2

Each subinterval with the line approximation for the function forms a trapezoid as shown in Fig. 7.2. The area
of each trapezoid is computed by multiplying the interval size h by the average value of the function value
in that subinterval. After the individual trapezoidal aress are obtained, they are al added to obtain the overall
approximation to the integral.

Substituting n = 1 in Eq.(7.7) and considering the curve y = f(X) through the points (xq, Yo) and (X1, Y1)
as a dtraight line (a polynomia of first degree so that the differences of order higher than first become zero),
we get

6 1 h 1 h
I = xode:h YO+§Ay0 5 YO+§(y1_YO) :E(yo"‘)ﬁ) (7.8
Similarly, we have

% h

b= [ yd= S+ )
X,
% h

5= [ yo=S+ 3
X

and so on. (see Fig.7.3)
In general, we have

% h
I = de:E(yn—l+yn) (79
X
y A
Yn
Yn-1
Yn+1
» X
0 Xn-1 Xn Xn+1

Fig. 7.3
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Adding al the integrals (Eq.(7.8), Eq.(7.9)) and using the interval additive property of the definite integrals,
we obtain

n

X, h h
I=Y1 =f ydx:;[yo+2(y1+ Yo+ Y3+t Yno) + Yl :E[X +21] (7.10)
i=1 X

where X = sum of the end points

| = sum of the intermediate ordinates.
Equation (7.10) is known as the trapezoidal rule.
Summarising, the trapezoidal rule signifies that the curve y = f (X) is replaced by n-straight lines joining the
points (X, Yn), 1 =0, 1, 2, 3, ..., n. The area bounded by the curve y = f (), the ordinates x = Xg, X = X, and
the x-axis is then approximately equivalent to the sum of the areas of the n-trapezoids so obtained.
7.3.1 Error Estimate in Trapezoidal Rule

Lety =f (X) be a continuous function with continuous derivatives in the interval [Xq, X,]. Expanding y in a
Taylor’s series around X = Xg, We get

% X ’ X_X() 2 ”
Lo defoo yo+(x—xo)yo+(—) Yo+ [OX

2!
., h , h
hyo +7y0 +?YO +£Yo+"" (7.12)

- h h h 2
Likewise, E(Yo +y) = E(Yo +Y(% +h) = E[YO +y+hy, +h7>/o+---}

h> , h* , h?
=hy,+—Yys+— VYo +-—VY5+ 7.12
Yo 2Yo 4YO 12Yo (712
Hence, the error e; in (X, X1) is obtained from Egs. (7.11) and (7.12) as

A h -1.3 .,
e Lﬁy 5 Yo+ Y1) = n*Y6

In a similar way, we can write

% h -1.3,
= dX—— + =_h + -
€ L y 2(Y1 Y2) e Y1

1.5,
=—h Foene
€ 10 Y2

-1 3.7
e, =—nh + e g
“ =15 Y3 (713

and so on.
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In general, we can write

-1 ,
& = Ehsyml o
Hence, the total error E in the interval (Xg, X,) can be written as

4 _h3 ” ” ” ”
E=Y & =— ot yityz+—tyil (7.14)
n=1

If y”(X) isthe largest value of the n quantities in the right hand side of Eq.(7.14), then we have

___13 //—__MZ//—
E=omny"(x) =-—>—hy"(X) (715

Now, since h= b-a , the total error in the evaluation of the integral of Eq.(7.2) by the trapezoidal rule
n

is of the order of h2.
Example E7.1

12
Evaluate the integral _fo e*dx, taking six intervals by using trapezoidal rule up to three significant figures.

Solution:
a=0,b=12,n=6
_b-a 12-0_

h — =02
n 6

X 0]0.2 04 0.6 0.8 1.0 1.2
0 1221|1492 | 1822 | 2226 | 2.718 | 3.320

y=1(x) Yo Y1 Y2 VS Ya Ys Ye

The trapezoidal rule can be written as

h
I = E[(yo +Ye)+2(Y1+ Yo+ Y3+ YatYs)]

| = %[(H 3.320) + 2(1.221+1.492+1.822 + 2.226 + 2.718)]
| =2.3278 = 2.328
] 12
The exact value is = -I.o e"dx=2.320.

Example E7.2

dx
1+ x?

12
Evauate -‘.0 by using trapezoidal rule, taking n = 6, correct to give significant figures.
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Solution:
1
f(x)=
9 1+ x?
a=0,b=12
he b—a= 12—0=2
n 6
X 0 2 4 6 8 10 12
y= f(x) 1 E i i i i i
5 17 37 65 101 145
y 1.00000 | 0.20000 | 0.05882 | 0.02703 | 0.01538 | 0.00990 | 0.00690
Yo Y1 Y2 Y3 Vs Y5 Ye

The trapezoidal rule can be written as
h
I = E[(Yo +Ye)+2(Yi+ Yo+ Yzt Yat Ys)l

| = %[(1+ 0.00690) + 2(0.2 + 0.05882+ 0.02703+ 0.01538 + 0.00990)]

| = 1.62916.

The exact value is

12

[ dx=tantx = 148766
0 1+x 0

Example E7.3

6
Evauate .[2 log;o X dx by using trapezoidal rule, taking n = 8, correct to five decimal places.

Solution:
f(X) = logiox
a=2,b=6,n=8
hoP-a_6-2_1_,¢
n 8 2
X |2 25 3.0 35 4.0 45 5.0 55 6.0
f(x) | 0.30103 | 0.39794 | 0.47712 | 0.54407 | 0.60206 | 0.65321 | 0.69897 | 0.74036 | 0.77815
Yo Y1 Y2 Y3 Ya Y5 Ye Y7 Ys

The trapzoidal rule is

h
| :E[(YO"'Y8)+2(Y1+Y2+Y3+Y4+Y5+Y6+Y7)]
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05
| ==-[(0:30103 + 0.7815) + 2(0.39794 + 047712 + 054407 + 0.60206 + 0.65321

+ 0.69897 + 0.74036 + 0.77815)]
| = 2.32666
The exact value is given by

6
jz logy, X dx =[xlog x— X]3 = 6.06685

7.4 SIMPSON’S 1/3 RULE

In Simpson’s rule, the function is approximated by a second degree polynomial between successive points.
Since a second degree polynomia contains three constants, it is necessary to know three consecutive function
values forming two intervals as shown in Fig. 7.4.

Ya
Y1
Yo
Y2 Ya
Y3
0 Xo X1 Xo X3 X4 >X
Fig. 7.4

Consider three equally spaced points xg, X; and X,. Since the data are equally spaced, let h = X1 — X
(see Fig.7.5).
Ya

Yo Y2
Y1

0 Xo X1 X2

Fig. 7.5

Substituting n = 2 in Eq. (7.7) and taking the curve through the points (Xg, Yo), (X1, Y1) and (X, ) as a
polynomia of second degree (parabola) so that the differences of order higher than two vanish, we obtain

% 1 h
Iy = fxo de=2h[yo +4Yo +EA2yo} =3[ 4%+ Y, (7.16)

o % h
Similarly, P =J-X2 yox= [y, +4Y3+Yal
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% h
lg=[ " yak=1yy +4ys + el (7.17)

and so on.
In general, we can write

%n h
n= .fxz . ydx = §[y2n72 +4Yon-1+ Yon] (7.18)

Summing up all the above integrals, we obtain

X, h
| = Jxﬁ yOx=2[Yo +4(y1+ Y3+ Y5+t Yona) + 2(V2 + Ya+ Yo + -+ Yan-2) + Yan]

= g[x +40+ 2E] (7.19)

where X = sum of end ordinates

O = sum of odd ordinates

E = sum of even ordinates
Equation (7.19) is known as Smpson’s 1/3 rule. Simpson’s 1/3 rule requires the whole range (the given interval)
must be divided into even number of equal subintervals.

7.4.1 Error Estimate in Simpson’s 1/3 Rule
Expanding y = f(x) around x = X by Taylor’s series, we obtain

I::de=LZ°+2h[yo+(x—xo)yé X XO) Yo + }dx

2 3 4 5
=2hyo+ 4h yﬁﬂyb' 16h Yo't 32h

YO

.4 2h? 4
=2hy, +2h?yh+—h3yl + =yl 4 = :
Yo Yo 3 Yo 3 Yo 15 yo (7.20)

In addition, we have

i 4h2 8hd i
—[yo+4y1+y2] yo+4 y0+hy'0+—y'0 ~ [+ (Yo+hyo + yo+—yo

h® 2h* 5h°
=2h YO+2h2yo 4— yo +_y(|;)” +_y0 (7.20)

Hence, from Egs. (7.20) and (7.21), the error in the subinterval (Xo, X,) is given by

€ = '[ ydx——(y +4y,+Y,) 4_5 h5yiv+....=__hsyiv+....=__hsyiv 7.22)
R R E TR Y g0 0 T Egg o (7
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Likewise, the errors in the subsequent intervals are given by

_ _hs v
€ %0 Y2
-h° .
_ iv 7.23
€; 9 Y4 (7.23)

and so on.
Hence, the total error E is given by

—nh®

—h° - . , . : i
E=Ye, =E[y8’ +yy Yy et y'2"n_2] =50 hg' (X)
—(b-a) 2 v e
or E=——>h X
0 Y X)
where y"(x) = largest value of the fourth-order derivatives (7.24)
h=(b-a)/n
The error in Simpson’s 1/3 rule can be written as
-nh® _; —-(b-a)° ,,
e: f v — f v
180 © 2880n* ©

where a = x5 < < x, = b (for n subintervals of length h).
Example E7.4

Evaluate the integral f ;'Zexdx, taking n = 6 using Simpson’'s 1/3 rule.

Solution:
f(x) = e
a=0,b=12,n=6
hoP-a_12-0 _
n 6
X 0 0.2 0.4 0.6 0.8 1.0 1.2
_ 1.0 | 1.22140 | 1.49182 | 1.82212 | 2.22554 | 2.71828 | 3.32012
=gy Yo Y1 Y2 Y3 Ya Ys Ye

The Simpson’srule is
h
I = E[(YO +Ye) +A(Yi+ Y3+ Y5) +2(Y2 + Ya)l
0.2
| = 3 [(1+3.32012) + 4(1.22140 + 1.82212 + 2.71828) + 2(1.49182 + 2.22554)]

| = 0;32[(4.32012) + 4(5.7618) + 2(3.71736)]

| =2.320136 = 2.32014
The exact value is = 2.3201
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Example E7.5
Evaluate |, 102 by using Simpson’s 1/3 rule, taking n = 6.
Solution:
1
f(x)=
) 1+ X2
a=0,b=12,n=6
he b—a= 12—0=2
n 6
X 0|2 |4 6 8 10 12
_¢ 1|02 0.05882 | 0.02703 | 0.01538 | 0.0099 | 0.0069
y =109 Yo | Y1 Y2 Y3 Ya Ys Yo

The Simpson’s /3 rule is

h
I = E[(YO +Yp) +A(Y1 + Y3+ Y5) + 2(Y2 + Ya)l

2
| =3 [(1+0.0069) + 4(0.2 + 002703 +0.0099) + 2(0.05882 + 0.01533)]

| =1.40201
Example E7.6

6
Evaluate .[z log,, X dx by using Simpson’s 1/3 rule, taking n = 6.

Solution:
f(x) = logyox
a=2,b=6,n=6

X 2=6/3 8/3 10/3 | 12/3=4| 14/3 16/3 | 18/3=6
0.30103 | 0.42597 | 0.52288 | 0.60206 | 0.66901 | 0.72700 | 0.77815

y=1(x) Yo Y1 Y2 Vs Ya Ys Ye

The Simpson’s /3 rule is

h
I = E[(YO +Yp) +A(Y1 + Y3+ Y5) + 2(Y2 + Ya)l
2/3
| = 3 [(0.30103 + 0.77815) + 4(0.42597 + 0.60206 + 0.72700) + 2(0.52288 + 0.66901)]

| =2.32957
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7.5 SIMPSON’S 3/8 RULE

Putting n = 3in Eq. (7.7) and taking the curve through (X, ), N =0, 1, 2, 3 as a polynomial of degree three
such that the differences higher than the third order vanish, we obtain

%
3 3 1 3
I, =J ydx = 3h[y0+§Ayo+§A2yo+§A3yo}=§h[ho+3yl+3y2+ Vsl (7.25)
%o

Similarly, we get

% 3
I2=f Y= =y, +3Y, + 35 + Yo
X3

% 3
5= | " ya=2Hys + 3y, + 35+ %l (729
%
and so on.
Finaly, we have
X:!n 3
I = J ydx= 3 h[Y3n_3 +3Yan-2 +3Yan-1+ Yanl (7.27)
X3n73

Summing up all the expressions above, we obtain
an h
| =J ydx = g[)’o +3(V1+ Yo+ Yat Y5+ Y7+ Ye+ ot Yano + Yano1)
%

+2(Y3+ Yo+ Yo+ + Yan_3) + Yanl (7.28)
Equation (7.28) is called the Smpson’s 3/8 rule. Here, the number of subintervals should be taken as multiples
of 3. Simpson’s 3/8 rule is not as accurate as Simpson’'s 1/3 rule. The dominant term in the error of this
formulais g—s y5y“’ (X). Simpson’s 3/8 rule can be applied when the range (a, b) is (?]ir\]/éded into a number of
subintervals, which must be a multiple of 3. The error in Simpson’s 3/8 rule is e = 0 fY(€) , where xg, &,

X, (for n subintervals of length h).

Example E7.7

12
Evaluate the integral -[o e”dx, by using Simpson’s 3/8 rule and taking seven ordinates.

Solution:
n+1=7 =n=6

The points of division are

16161616161
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X 0 1/6 2/6 3/6 4/6 5/6 1
_¢ 1 | 1.18136 | 1.39561 | 1.64872 | 1.94773 | 2.30098 | 2.71828
=gy Yo Y1 Y2 Y3 Vs Ys Ye

The Simpson's three-eighth’'s rule is
3h
I = g[(YO +Ye) +3(Yo+ Yot Vat ¥s5)+2(y3)]

3(1/6
| = % [(1+2.71828) + 3(1.18136 + 1.39561 + 1.94773 + 2.30008) + 2(1.64872)]

| =1.71830
Example E7.8

12 dx
Evaluate _[0 m by using Simpson’s 3/8 rule and taking seven ordinates.

Solution:

n+1=7 =n=6h=2
The points of division are

0,246,810, 12

x Jo0]2 |2 6 8 10 12
g | L |02 005882 | 0.02703 | 0.01538 | 0.008%0 | 0.00690
Y=I vl v | v Ys Ya Ys Yo

The Simpson’s three-eighth’s rule is
3
I = gh[(YO +Ye) +3(Yo+ Yot Vat ¥s5)+2(Y3)]

3
I = 8 2[(1 + 0.00690) + 3(0.2 + 0.05882 + 0.01538 + 0.00990) + 2(0.02703)]

| =1.43495

Example E7.9
Repeat Example E7.6 by using Simpson’'s 3/8 rule, taking n = 6, correct to five decimal places.

Solution:
The points of division are

8 10 12 14 16 18
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X 6/3 8/3 10/3 12/3 14/3 16/3 18/3
_¢ 0.30103 | 0.42597 | 0.52288 | 0.60206 | 0.66901 | 0.727 | 0.77815
=gy Yo Y1 Y2 Y3 Vs Ys Ye
Here h= E
3

The Simpson’s three-eighth’s rule is

3h
I = ?[(YO +¥6) +3(Y1+ Yo+ Yot ¥s)+2(Y3)]
3(2/3)
| = —8 [(0.30103 + 0.77815) + 3(0.42597 + 0.52288 + 0.66901 + 0.72700) + 2(0.60206)]

| = 232947

7.6 BOOLE’S AND WEDDLE’S RULES
7.6.1 Boole’s Rule

Substituting n = 4 in Eq.(7.7) and taking the curve through (x,, y), N =0, 1, 2, 3, 4 as a polynomial of degree
4, so that the difference of order higher than four vanish (or neglected), we obtain

X 5, 2.5 7
J ydx=4h[yo+2Ay0+§A Yo+—=A yo+%A4yo}

% 3
2h
oo % 2h
Likewise ydx=E(7y4+32y5+12y6+32y7 +7Yg)
Xy

and so on.
Adding all the above integrals from xg to x,,, where n is a multiple of 4, we obtain

% 2h
| =j ydx = E[Wo +32(Yy+ Y3+ Y5 + Y7 +) +12(Y, + Vg + Yoo ++7)
X

+14(Y, + Yo + Yip + ) + 7Yi] (7.30)

Equation (7.30) is known as Bool€e's rule. It should be noted here that the number of subintervals should be
taken as a multiple of 4.

The leading term in the error of formula can be shown as

-8 T N (o
—nh X
945 y ()
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7.6.2 Weddle’s Rule

Substituting n = 6 in Eq.(7.7) and taking the curve y = f (X) through the point (X,, ¥), N =0, 1, 2, 3,4, 5, 6 as

a polynomial of degree 6 so that the differences of order higher than 6 are neglected, we obtain

%
9 123 11 41
dx = 6h| yy +3Ayp + =A%y +4A3Yo + == Aty + == A%y +——A° }
Jxoy [YO Yo 5 Yo Yo 60 Yo 20 Yo 140 Yo
3h
=—[Yo+5Y1+ Yo +6Y3+ Vs +5Y5+ Yel
10
N 41 ¢ 3 .6 - .
Approximating EA Yo as EA Yo, we have, similarly, we can write

X 3h
ydx = E[Ye +5Y7 + Yg + 6Yg + Y10 +5¥11 + Y12l
%

and so on.
Adding all the above integrals from xg to X, where x is a multiple of 6, we obtain

% 3h
J de:E[YO +5(Y1+ Y5+ Y7+ Y +) (Yo + Yat+ Vg + Yao + )
X9

+6(Y3+ Yo+ Yis +-+) + 2(Ye + Yio + Yig + ) + Vil

(7.31)

7.32)

7.39)

Equation (7.33) is known as Weddl€e's rule. Weddl€'s rule was found to be more accurate than most of the

7

-h" i _ .
other rules. The error estimate is given by 120 vy (X) . In Weddl€e's rule, the number of subintervals should

be taken as multiple of 6.

A summary of the Newton-Cotes formulas and their errors is presented in Table 7.1.

Table 7.1: Summary of Newton-Cotes Formula

No. | Integral Name Integration formula Error
X1 . h —h®
1. | [,'yox | Trapezoidal Rule | “[¥o+Yi] —y'(®)
° 2 12
X2 ] h —h® .
2. -[Xo de S|mpson’sl/3 Rule E[yo +4y1+y2] Ey"’(i)
X —_ 5 .
3. _[X:y dX | Simpson’s3/8 Rule %[yO +3y, +3y,+V,] 38 yY(X)
Xa , 2h -8, 7 i
4. | |,y | BoolesRule eIy 432y, 12y, 432,47y | Y ()
Xg d 3h -h"
5. IXO ydX | weddle'sRule ToYo tOYiFY, T6Ys Y, +5Y, +yl 10) ®
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Example E7.10

12
Evaluate the integral -[o €*dx by using Bool€e's rule using exactly five functional evaluations and correct to
five significant figures.

Solution:
. 12 .
Taking h = 2 and applying Bool€'s rule, we have

[ f g ax= j—E[?yo +32y; +12y, + 32y, + 7y,]

2x0.3
45

[Fteodx= [7f (0) + 32f (0.3) + 12f (0.6) + 32f(0.9) + 7f(L2)]

X 0 |03 0.6 0.9 1.2
y =f(x) 1 | 1.34986 | 1.82212 | 2.45960 | 3.32012

Yo Y1 Y2 Y3 Y4

12
-[0 f(x) dx=0.01333[7x1 + 32 x 1.34986 + 12 x 1.82212 + 32 x 2.45960 + 7 x 3.32012]

[ ;'2 £ (%) dx = 2.31954

Example E7.11

dx

1+ x?
to five significant figures.

Solution:

12
Evaluate the integral IO by using Bool€'s rule using exactly five functional evaluations and correct

o
w

X 6 9 12
y=f(x) | 1| 0.1 | 0.02703 | 0.01220 | 0.00690

The Boole'sruleis

12 2h
fo f(x) dx= 5 [7(0) + 32f(3) + 12f(6) + 32f(9) + 7f(12)]
| = % [7% (1) +32x (0.1) + 12x (0.02703) + 32 (0.01220) + 7 x (0.00690)]

| = 146174
Example E7.12

12
Evaluate the integral .[o €*dx by using Weddle's rule and taking n = 6, correct to five significant figures.
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Solution:
f(X)=€ea=x=0b=x,=12,n=6
1.2-0
h=—"—"—=
5 0.2

The Weddle'srule is

3h
|:E[YO+5Y1+Y2+GY3+Y4+5Y5+YG]

X 0 |02 0.4 0.6 0.8 1 1.2
y=1f(x) | 1 | 1.2214 | 1.4918 | 1.8221 | 2.2255 | 2.7183 | 3.3201
Yo Y1 Y2 Y3 Ya Ys Ye

3(0.2
(02) [1+ 5(1.2214) + 1.4918 + 6(1.8221) + 2.2255) + 5(2.7183) + 3.3201]

| =22
10
| =2.32011 = 2.3201.

Example E7.13
12 dx
Evduate the integral fo 1—2by using Weddl€'s rule and taking n = 6, correct up to five significant figures.

Solution:
a=0b=12n=6
_b-a 12-0
n 6
X 0|2 4 6 8 10 12
y=f(x) | 1 | 0.2 | 0.05882 | 0.02703 | 0.01538 | 0.00990 | 0.00690
Yo | Y1 Y2 Ys Ya Ys Ye

The Weddle'sruleis | = i—g [Yo + 5y1 + Yo + 6y + Y4 + Sy5 + Vgl

3x2
| = 0 [1+5x 0.2+ 0.05882 + 6 x 0.02703+ 0.01538 + 5 x 0.00990 + 0.00690]

| = 1.37567

Example E7.14
Repeat Example E7.6 by using Weddl€'s rule, taking n = 6, correct to five decimal places.

Solution:
a=2b=6,n=6
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phop-a_6-2_2
n 6 3
X 6/3 8/3 10/3 12/3 14/3 16/3 18/3
y =f(x) | 0.30103 | 0.42597 | 0.52288 | 0.60206 | 0.66901 | 0.727 | 0.77815
Yo Y1 Y2 Y3 2 Ys Ve

The Weddle's rule is

3h
':E[YO+5Y1+Y2+GY3+Y4+5Y5+Y6]

3(2/3
I = % [0.30103 + 5 x 042597 + 052283 + 6 x 0.60206 + 0.66901 + 5 x 0.727 + 0.77815]
| =2.32966
Example E7.15
Repeat Example E7.6 by Bool€'s rule, using exactly five functional evaluations and correct to five significant
figures.
Solution:
We use five functional evaluations here.

Taking h = 1 and applying Bool€'s rule, we have

| = h% [7f (2) + 32f (3) + 12f (4) + 32f (5) + 7f (6)]

2
I = 5 [7 x 0.30103 + 32 x 0.47712 + 12 x 0.60206 + 32 x 0.69897 + 7 x 0.77815]

X 2 3 4 5 6
y =f(x) | 0.30103 | 0.47712 | 0.60206 | 0.69897 | 0.77815
| =2.32950

7.7 ROMBERG’S INTEGRATION

Romberg's integration employs a successive error reduction technique. It applies the trapezoidal rule with
different interval sizes in order to obtain some preliminary approximations to the integral to start with. The
method starts with the preliminary approximations obtained by the trapezoidal rule and then applies the
Richardson extrapolation procedure which refines these values successfully to a single more accurate
approximation.

7.7.1 Richardson’s Extrapolation

Richardson extrapolation is a simple method for improving the accuracy of certain numerical procedures,
including the finite difference approximations and in numerical integration.
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Assume that we have an approximate means of computing some quantity G. In addition, assume that
the result depends on a parameter h. Let us denote the approximation by g(h), then we have
G = g(h) + E(h), where E(h) denotes the error.

Richardson extrapolation can remove the error, provided that it has the form E(h) = ch®, where c and p
are constants.

We begin by computing g(h) with some value of h, say h = h;. In this case, we have

G =g(h)+oh (739
Repeating the calculations with h = h,, such that
G=g(h,) +ch) (7.35)

Now, eliminating ¢ and solving for G from Eqgs.(7.34) and (7.35), we get

h p
[hlj g(h,) - g(hy
2

G= (7.36)
BE
h,

Equation (7.36) is called the Richardson extrapolation formula.

It is general practiceto use h, = % and in this case Eq.(7.36) becomes

2"9(2) -g(h)
2P 1

7.7.2 Romberg Integration Formula

As mentioned earlier, Romberg's integration provides a simple modification to the approximate quadrature
formula obtained with the aid of finite difference method in order to obtain their better approximations.

Consider as an example to improve the value of the integral

= yax= "1 dx (739)

by the trapezoidal rule.
We can evaluate Eq.(7.38) by means of the trapezoidal rule, namely

n

X, h h
! =§;'i =IX0 yadx="Tyo+ 200+ Yo+ Yat -t Yoa) + Yal =S [X +21] - (7.39)
1=

where X = sum of end ordinates
and | = sum of intermediate ordinates.



256 /I Numerical Methods //

Equation (7.39) signifies that the curvey = f (X) is replaced by n straight lines joining the points (X, Vi),
i=0,1,23,....,n The area bounded by the curve y = f(X) the ordinates x = X,, X = X, and the x-axis is then
approximated equivalent to the sum of the areas of the n-trapeziums so obtained.

Now, we evaluate Eq.(7.38) by means of two different widths h; and h, in order to obtain the approximate
values |1 and |, respectively. The corresponding errors E; and E, are given by

_ (b-a)hf

E
! 12

y“(X)

() (7.40)

—-(b-a) ,
E,=——2
2 B y

Noting that y”(X) is also the largest value of y"'(x), we can assume that the quantities y”(X) and y”(X) are

nearly equal.
Hence, we can write
EN_E R (7.41)
E, W E-E h-h ’
Noting, now that | = 1; — E; = |, — E,, we have
EZ—E1=|1—|2 (742)
From Egs.(7.41) and (7.42), we have
h h
E, === (E-E)=—"—=(1-1,)
hg —h h —h
1,h2 —1,h?
|=1,-E, =2~ 743)

h —h?
Equation (7.43) gives a better approximation for I.
In order to compute I, we let hy = h and h, = h/2 such that Eq.(7.43) gives

2
|- 4 _4|2—|1_|2+|2—|l

h
4] (j—l(h)
or I (h D) N2 (7.44)



/[ Numerical Integration // 257

If we apply the trapezoidal rule several times successively halving h, every time the error is reduced by a
factor 1/4. The above computation is continued with two successive values are very close to each other.
This refinement of Richardson’s method is known as the Romberg integration. The values of the integral in
Romberg integration can be tabulated in the following scheme:

Romberg Integration Scheme

I(h)

——
=
N
N e

o=
N—

h
Where, I (hE

h hh) 1 h h h h h
I hl_!_!_ == 4| T~ _I hl_l_
( 2 48) 3{ (2 48) ( 2 4}} (7.45)
The computations are continued until the successive values are close to each other. The general extrapolation
formula used in this scheme is

i>1,)=23, ...1 (7.46)
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A pictoria representation of Eq.(7.46) is shown below:

o
o]

where the multipliers oe and § depend on j in the following manner:

i 2 3 4 5 6
o | -1/3 | —1/15 | -1/63 | —1/255 | —1/1023
B | 4/3 | 16/15 | 64/63 | 256/255 | 1024/1023

Example E7.16
Apply Romberg's integration to find _[: f(x) dx, where f (x) = sin x.

Solution:
From the recursive trapezoidal rule in Eq. (7.9), we have

Ry =1(n)=2[1(0)+ f(m) =

Rm:l(g:% (n)+—f( ) 1.5708

(5= (33 1) (5] aoom
(G2 () () o) e

Using the extrapolation formulain Eq.(7.46), we obtain the following table:

R 0
Ro1 Rez _|1.5708 2.0944
Ra Rso Res [1.8961 2.0046 1.9986

Rii Rz Riz Rig 1.9742 2.0003 2.0000 2.0000

The above table shows that the procedure has converged. Hence, J.;I f(x) dx = R,,, =2.0000which is of

course, the exact result.
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Example E7.17
Apply Romberg's integration method to find f;z(rl)() dx correct to five decimal places.
Solution:

f(x) = ﬁ

Let h=0.6,0.3and 0.15 or h=0.6, W2 = 0.3 and h/4 = 0.15.

X 01]0.15 0.30 0.40 0.60 0.75 0.90 1.05 1.20
y=1f(x) | 1] 0.86957 | 0.76923 | 0.71429 | 0.62500 | 0.57143 | 0.52632 | 0.48780 | 0.45455

Applying trapezoida rule for h = 0.6, we obtain

I(h) =106) = I, 0;26 (1 + 0.45455) + 2(0.6250)] = 0.81132

0.6 i
For h = > = 0.3, we obtain

! (gj =103 =1,= %[(H 0.45455) + 2(0.76923+ 0.6250 + 0.52632)] = 0.79435

6
For h= vy = 0.15, we have

| GJ =1(0.15) =1, = 0‘—215[(1+ 0.45455) + 2(0.86957 + 0.76923+ 0.71429)

+—O'215 [2(0.6250+ 0.57143+ 0.52632 + 0.48780)] = 0.78992

Now | (hgj =1(0.6,0.3)

Therefore,  1(0.6,0.3) = %[m (0.3)-1(0.6)] = %[4(0.79435) ~0.81132] = 0.78864

In asimilar manner, we obtain

| (gg) =1(0.3,0.15) = é[m (0.15) - 1(0.3)] = %[4(0.78992 —0.79435)] = 0.78846

Hence, | (hgg) =1(0.6,0.3,0.15)

o 1(0.6,0.30.15) = %[4| (0.15,0.3)- 1(0.3,0.6)] = %[4(0.78846) —0.78864] = 0.78832
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The computations are summarised in the table below:

0.81132

0.7864
0.79435 0.78832
0.78846

0.78992

Hence flzi dx = 0.78832 correct to five decimal places.
0 1+x

Example E7.18

1 dx
Apply Romberg’s integration method to find '[Om correct to four decimal places. Take h = 0.5, 0.25 and

0.125.
Solution:
Applying the trapezoidal rule, for h = 0.25, we obtain

X 0|05|1
1
=f(x) =
y =f(x) ) 10805
1 1 0.5
Hence | = j01+ 5= [1+2(08)+05 = 0775
For h = 0.25, we have
X 0[025 [o5[075]1
1
y=f(x)=——-11|09412| 08| 064 | 05
1+x7)
Hence 1= X _ 025, 509412+ 0.8+ 0.64)+ 0.5 = 0.7848
01+x2 2

Similarly, when h = 0.125, wefind | = 0.7848.
Applying Eq.(7.46), we obtain the table as follows:

0.5 0.775
025 | 0.7828 | 0.7854
0.125 | 0.7848 | 0.7855 | 0.7855

Hence, | = _[1 &

0172 - 0.7855 correct to four decimal places.
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7.8 SUMMARY

In this chapter we have presented the various techniques on numerical integration. Integration methods
such as the trapezoidal rule, Simpson’s one-third rule, Simpson’s three-eight’s rule, and Bool€'s and Weddl€e's
rules and their composite versions, Romberg's integration were presented with illustrative examples. These
methods use uniformly spaced based points.

Problems

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9
7.10

711

7.12

7.13

Evauate f;cos x?dx by taking eight subintervals using trapezoidal rule.

Use trapezoidal rule to evaluate _[:XBdX, corresponding five subintervals.

Compute the following integral numerically using the trapezoidd rule:
— 1 X
| = J.Oe dx

Use(@n=1,(b)n=2 (c) n=kand (d) n=8. The exact value of | = 1.7183. Compare your computed
results in each case with the exact result.

1 dx
01+ x?

Determine the area bounded by the curve f (x) = xe* and the x-axis between x = 0 and x = 1 using the
trapezoidal rule with an interval size of (a) h = 0.5, (b) h = 0.1. Determine the relative error in each case
given that the exact value of the integral | = 2.09726.

Evaluate using trapezoidal rule. Take h = 0.25.

Evaluate _[floglo x dx, taking eight subintervals correct to four decimal places by trapezoidal rule.
7
Evauate _[1 sinx? dxby taking seven ordinates using the trapezoidal rule.

Evaluate J.:t sint dt using trapezoidal rule.

Repeat Problem P7.9 using Simpson’s 1/3 rule.
Repeat Problem P7.2 using Simpson’s 1/3 rule taking h = 0.25.

Computetheintegra | = f:exdx using Simpson’s rule with n = 8 intervals rounding off the resultsto

4 digits.

0.6
Evaduate _[0 e*dx , taking n = 6, correct to five significant figures by Simpson’s 1/3 rule.

12
Evauate _[; r/cosx dx by Simpson’s 1/3 rule taking n = 6.
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7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26
7.27
7.28

7.29

7.30

7.31

7.32

Evaluate _[jzlog xdx by taking seven grid points and using the Simpson’s 1/3 rule.

Repeat Problem P7.15 using Simpson’s 1/3 rule.

1

dx
Evaluate 5
ol+x

by taking six equal parts using Simpson’s 1/3 rule.

6

Evauate J by using Simpson’s 3/8 rule.

ol+ X2
Repeat Problem P7.24 using Simpson’s 3/8 rule taking h = 1/6.

1

Evaluate J dx, by taking seven ordinates, using the Simpson’s 3/8 rule.

ol+x?

1= . . .
Evaluate -[o A/sSinx+ cosx dx correct to two decimal places using Simpson’s 3/8 rule.

6

Evaluate J dx by using Simpson’s 3/8 rule.

5 loge”

52
Evaluate _[4 logxdx by taking seven grid points. Use Simpson’s 3/8 rule.

2
Evaluate _[: e”"*dx correct to four decimal places using Simpson’s 3/8 rule.

Repeat Problem P7.24 using Simpson’s 3/8 rule.

Evaluate the integra J.:1+ e *sin4x dx using Bool€e's rule with h = 1/4.

Repeat Problem P7.25 using Boole's rule.
Repeat Problem P7.2 using Weddl€'s rule taking h = 1/6.
Repeat Problem P7.25 using Weddle's rule.

Evaluate fj'zloge xdx using Weddle's rule. Take n = 6.

5.2
Evaluate _[4 log xdx by taking seven grid points. Use Bool€'s and Weddl€'s rule.

12
dx
Evaluate J ———= using Weddl€'s rule.
0 V1-x

2

dx by using Weddl€'s rule taking twelve intervals.

Evauate J >

ol+X
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7.33 Use Romberg's integration method to evaluate .ff'zlog xdx, given that

X |4 4.2 4.4 4.6 4.8 5.0 5.2
log? | 1.3863 | 1.4351 | 1.4816 | 1.5260 | 1.5686 | 1.6094 | 1.4684

7.34 Use Romberg’s integration method to Computej';li dx with h = 0.5, 0.25 and 0.125. Hence, finds
+X

logZ correct to four decimal places.

1
7.35 Approximatetheintegra f(X) = .[o xe *dxusing Romberg's integration with accuracy of n = 8 intervals.

Round off results to 6 digits.
o ; Vi, 2 2
7.36  Use Romberg's integration to evaluate -‘.o 2Xx“ cosx“dx .
2
7.37  Evaduate J.o (x® +3x% - 2) dx by Romberg's integration.

7.38  Estimate I: f (X) dx as accurately as possible, where f(x) is defined by the data:

X |0| m4a 2 | 34 | &
f(x) | 103431 025]|0.3431 | 1

7.39 Use Romberg's integration method to compute Rs 3 for the following integrals:
©) f: x%e *dx (b) Lls x?In xdx
© J.;IM (cosx)?dx  (d) J.;I/4e3x sin2x dx

7.40 Use Romberg's integration method to find R 3 for the integral J.:M x?sinx dx.

7.41 Apply Romberg integration method to find _[15 f (X) dx for the following data:

X 1 2 3 4 5
y=1(x) | 24142 | 2.6734 | 2.8974 | 3.0976 | 3.2804

7.42 Apply Romberg's integration method to find .f;x” 3ax.

ONORO)
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CHAPTER

Numerical Solution of Ordinary
Differential Equations

8.1 INTRODUCTION

Numerical methods are becoming more and more important in engineering applications, simply because of
the difficulties encountered in finding exact analytical solutions but also, because of the ease with which
numerica techniques can be used in conjunction with modern high-speed digital computers. Several numerical
procedures for solving initia value problems involving first-order ordinary differential equations are discussed
in this chapter.

In spite of the fact that the error analysis is an important part of any numerical procedure, the discussion
in this chapter is limited primarily to the use of the procedure itself. The theory of errors and error analysis
is sometimes fairly complex and goes beyond the intended scope of this chapter.

An ordinary differential equation is one in which an ordinary derivative of a dependent variable y with
respect to an independent variable x is related in a prescribed manner to X, y and lower derivatives. The most
general form of an ordinary differential equation of nt" order is given by

dy _ f(x Y d?y d”'lyJ
] ’dx’ dx2 gy dxn71

(8.1)

The Eq.(8.1) is termed as ordinary because there is only one independent variable.

To solve an equation of the type (Eq.(8.1)), we also require a set of conditions. When al the conditions
are given at one value x and the solution proceeds from that value of x, we have an initial-value problem.
When the conditions are given at different values of x, we have a boundary-value problem.

A general solution of an ordinary differential equation (Eq.(8.1)) would be a relation between y, x and n
arbitrary constants which is of form

f(x,y,¢, 0, ..., C) =0 (82

If particular values are given to the constants c, in Eq.(8.2), then the resulting solution is called a
particular solution. There are many analytical methods available for finding the solution of the Eq.(8.1).
However, there exist a large number of ordinary differential equations in science and engineering, whose
solutions cannot easily be obtained by the well-known analytical methods. For such ordinary differential
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equations, we can obtain an approximate solution of a given ordinary differential equations using numerical
methods under the given initial conditions.

Any ordinary differentia equation can be replaced by a system of first-order differentia equations (which
involve only first derivatives). The single first-order ordinary differential equation with an initial valueis a
special case of EQ.(8.1). It is described by

;ﬂ=f(x,y) y=VYoa X=X (83
X

The description in Eq.(8.3) consists of the differentia equation itself and a given solution y; at initial location
Xo- We then obtain the solution y as x ranges from its initial value to some other value.

The general solution of Eq.(8.3) can be obtained in two forms:

1 thevalues of y as a power series in independent variable x

2. asaset of tabulated values of x and y.

There are two categories of methods to solve ordinary differential equations:

1 Onestep methods or single-step methods.

2. Step-by-step methods or marching methods.

In one-step methods or single-step methods, the information about the curve represented by an ordinary
differential equation at one point is utilised and the solution is not iterated. In step-by-step methods or the
marching methods, the next point on the curve is evaluated in short steps ahead, for equal intervals of width
h of the independent variable, by performing iterations till the desired level of accuracy is obtained.

In generd, we divide the interva (a, b) on which the solution is derived into a finite number of subintervas
by the points a = Xg < X1 < X, ... < X, = b, called the mesh points. This is done by setting up x, = Xg + nh.

The exigtence of the uniqueness of the solution to an initial value problem in (xo, b) is based on Lipschitz
theorem. Lipschitz theorem states that:

(@ Iff(x y)isared function defined and continuous in (xo, b), ye (—o, +0), where x, and b are finite.

(b) There exists a constant k > 0 called Lipschitz constant such that for any two valuesy = y; and

y=Y2
If (%, y2) = (f (%, y2)| < klky — kol
where xe (xo, b), then for any y(Xg) = Yo, the initial value problem [Eq. (8.3)], has unique solution for
Xe (Xo, b).

Also, there are two types of methods, explicit and implicit, can be used to compute the solution at
each step. Explicit methods are those methods that use an explicit formula for calculating the value of the
dependent variable at the next value of the independent variable. In an explicit method, the right-hand side

of the equation only has al known quantities. Therefore, the next unknown value of the dependent variable,
Yn+1, IS calculated by evaluating an expression of the form:

Yn+1 = F(Xn, Xa 41, Yn) 84
where X, Yn and X, +1 are al known quantities.
In implicit methods, the equation used for computing Y, +1 from the known X, y, and y;, +1 has the form:

Yn+1 = F(Xna Xn+1 Yn +1) (85)

Here, the unknown y,, .1 appears on both sides of the equation. Generally speaking, the right-hand side
of Eq.(8.3c) is non-linear. Therefore, the equation (8.5) must be solved for y,.1 using suitable numerical
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methods. In general, implicit methods give better accuracy over explicit methods at the expense of additional
effort.

In this chapter, we present among the one-step or single-step methods, Picard’s method of successive
approximations, Taylor series methods were presented. Euler’s method, modified Euler’s method, and Runge-
Kutta methods of order two and four, the Adam-Moulton predictor-corrector method and Milne's predictor-
corrector methods were presented among the step-by-step methods or the marching methods. All these
methods will be illustrated with worked examples.

8.2 ONE-STEP METHODS OR SINGLE-STEP METHODS

In single-step explicit method, the approximate solution (X, +1, Yn +1) iS computed from the known solution
at point (x,, yn) using
Xn+1 =Xyt h (86)
Yn+1 = Yo + (slope) h 87)

Thisisillustrated in Fig.8.1. Here in Eq.(8.6), h is the step size and the slope is a constant that estimates the

value of % in the interval from x, to X,+1. The numerical solution starts at the point where the initial value

is known corresponding to n = 1 and point (X;, y4). Then, nisincreased to n = 2, and the solution at the next
point, (X, Y») is computed using Egs. (8.6) and (8.7). This procedure is repeated for n = 3 and so on until the
points cover the whole domain of the solution.

Ya

y(X) \

N e el

N\

1

[]

]

! .

: Numerical
1 solution
]

]

[}

]

]

]

[}
[}
1
' f > X

Xn l: h #lxnﬂ

Fig. 8.1: Single-step explicit methods

8.2.1 Picard’s Method of Successive Approximation

Congider the differential equation given by Eq.(8.3), namely, % =f(x, y) with the initia condition y(Xg) = Yo.
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Integrating this Eq. (8.3) between X, and x, we obtain
X X
dy=| f(xy)d
[ dv=] foxyd
X
or y—yO:'[XOf(x,y)dx

or Y=Y+ J:: f(x,y)dx (88

Equation (8.8) is called the integral equation since the dependent variable y in the function f (X, y) on the
right-hand side occurs under the sign of integration.

Here, the problem of solving the differential equation (8.3) has been reduced to solving the integral
Eq.(8.8). Thefirst approximation y; of y can be obtained by replacing y by y, in f (X, Yo) in EQ. (8.8).

Therefore y; =y, +.[; (X Yp) dx (89

Similarly, the second approximation is obtained as

X
Y2 = Yo+ [, f(x ) dx (810)
X
Likewise Ya=Yo+ [ fxy,)d
X
Ya= Yo+ [, f(x ys)d (811)
and so on.
Continuing this process, we obtain ys, Vg, ..., Yn+1, O
X
Yoer = Yo'+ [, F(XYna) o ©12)

The sequence of {y,}, n =1, 2, 3, ... converges to the exact solution provided that the function f(x, y) is
bounded in some region in the neighbourhood of (X, Yo) and satisfies the Lipschitz condition. That is, there

exists a constant k such that | f (x,y)— f (X, ¥) Kk|y-¥]| for al x. The process of iteration is concluded
when the values of y,,_; and y,, are approximately equal.

Example E8.1

Use Picard’s method of successive approximation to find the value of y when x = 0.1, given that y = 1 when
x=0and %:3x+y2.
Solution:

dy
Here&:f(x,y):3x+y2,x0:0,y0:1.
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From Eq. (8.9)

X X X 3
Yi=Yo +j'x0 f (X Yo)dx =y, +j'0 (Bx+ yg)dx =1+ _[0 (3x+1)dx = EXZ +x+1 (ED)
From Eq. (8.10)
X X
Yo = Yo+ [, {06 y)dk=yo+ [ (Bx+ yi)ax

=1+'|.X 9 4334 4x% +5x+1 | dx= —xF x4+ 28 22 ks (E2)
ol 4 20 4 3 2

From Eq. (8.11)

4200 18l e 1T 15T 6

X x| 81
Y3=y°+fxof(X’YZ)dxz“fo{ﬁxm 20" 80" T4 180

#1305 125 e 23 s 6k 4 Bx 1|k
15 12 3
(S T 61 BT ST
4400 400 240 32 1260
R N N T | (E3
45 12 12 2
When x = 0.1, Egs. (E.1), (E.2) and (E.3) respectively give
Yo=1
v = 1.1150
Y3 = 11272

Example E.8.2
Use Picard’s method of successive approximation to find the value of y for the following:

@ L=zy©=1

0 2=2-y.y0=1

Solution:
(8 The stated initial value problem is equivalent to the integral equation

y() =1+ [ 2y(+)

X
Hence Yj(X) =1+_f0 2y, (t)dt
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Using yo(X) = 1, we find
Va(¥) =1+ [ 20t =1+ 2x

Y, (X) =1+ _fox2(1+ 2t)dt = 1+ 2x+ 2x°

3
Ya(x) =1+ [ 200+ 2+ 22)clt = 1+ 2%+ 2 +4%
In general, we have

4)(3 2x i i 2(X 4
yj(x):1+2X+2X2+?+...+%:Z (gg)
) (=0

These are the partial sums for the power series expansion of y = €2x. Hence, the solution of our initial value
problemisy = e,
(b) The equivalent integral equation is
X
y(x) = 1+j0 [2t - y(t)]dt
X

Hence, yjﬂ(x) =1+.|'0 [Zt— Yj (t)]dt
Taking yo(X) = 1, we have

V(0 =1+ [ (2 =Dt =14+ X2 - x

2 3
¥2(¥) =1+ [ 7] 2t [ 1482 ) [ =1+3%—x_x_j

3
X 2 3 3x? x> xt
Ya() =1+ [ | 2t=[1+3%/2-t -t%/3) |t = 1+ =Xt

V() =1+ [ | 2t-[1+ 3272 t-1%2+t4.3) Jdt = 1+3%_ XX

2 3
3 3 4t (1)] R s 2xi+

() =1+ Xt ———+——
Therefore y; () SRR TIT oD

— _ +1 N 2X _ ( +1 2X
- [2x 2]+3L20( 1y } o 2 [ox 2]+3{2 } &Y —(J+1)'

The iterates y;(x) converge to the solution y(x) = [2x — 2] + 3e™ for the initial value problem.
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8.2.2 Taylor’s Series Method
Consider the differential equation

Doty with y06)= Yo 813

Let y = y(X) be a continuoudly differentiable function satisfying the Eq.(8.13). Expanding y in terms of Taylor’s
series around the point X = Xg, we obtain

(X_ ) ’ (X_ )2 ” (X_ )3 "
Y=VYot 1!XO Yo t+ 2)!(0 Yo t+ 3)!(0 Yot (814
Now, substituting x = x; = X = h, in Eq. (8.14), we get
h,. h , h,
f(X1)=y1=yo+EYO+EYO+§yo+"' (815)
Finally, we obtain
h,. b, h,
Yni1 = yn"'iyn‘l'ayn"'ayn_""' (8.16)
Equation (8.16) can be written as
h ’ h2 ” 3
Ynur = Ynt 5 Yot E yn +0(h%) (8.17)

where O(h?) represents dl the terms containing the third and higher power of h. The loca truncation error in
the solution is kh3 where k is a constant when the terms containing the third and higher powers of h are
ignored. It should be noted here that the Taylor’s series method is applicable only when the derivatives of
f (X y) exist and the value of (x —Xg) in the expansion of y = f (X) near X, must be very small so that the series
converges. Taylor's series method is a single-step method and works well as long as the successive derivatives
can be calculated easily.

The truncation error, due to the terms neglected in the series is given by

1

=il yM @M y<g<x+h (817a)

Using the finite difference approximation

yoa©) = y" (x+h) - y"(x)

: (8.17b)

n

or E=
(n+1)!

[y" (x+h) - y"(x)] (8.170)

Equation (8.17c¢) is in more usable form and could be incorporated in the algorithm to monitor the error in
each integration step.
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If the series in Eq.(8.17) is truncated after the term hK, then the truncation error can be written as

hk+l (k+D)
To=— X <pP<X+h 8.17d)
e~ k11! (p) k<P <X (
Example E8.3

d
Use the second-order Taylor series method on (2, 3) for the initial value problem d—i = —xy2, y(2) = 1. Take

h = 0.1. Compare the results obtained with the exact solution of y=— 5
X —

Solution:
For f (x, y) = —xy?, the first partia derivatives are f, = —y? and f, = —2xy.
Hence, the second-order Taylor’s series method [Eq.(8.17)] becomes

h h
Ynet = Yo+ h{—xnyﬁ +5lYa (—2xnyn)(xnyﬁ)} = Yo +hy; {—Xn 51 2><§yn}
Taking h = 0.1 and starting with x5 = 2, yp = 1, we get
h
n=0 Y04)=y2D =y, = yo+hx§{—to+5[—1+ 2x§y01}

y(x) = 1+ 0.1(1)% 2 + 0.05[-1 + 2(2)21]} = 0.8350

h
n=1 Y(X)=Yy(22) =y, =y, + h)(12 {_X:L +E[_1+ 2X1ZY1]}

y(%) = 0.8350 + 0.1(0.8350)% ~2.1 + 0.05[~1 + 2(2.1)%(0.8350)]} = 0.71077

The resulting approximations of y(2.0), y(2.1), ...., y(3.0) are shown in Table E8.3 along with the exact values
and the relative error, Ep,.

d
Table E8.3: Second-order Taylor’'s series method for % =xy3,y() =1

Exact | Usingh=0.1
y(xq) | yo[0.1] | EJO.1]
X0=20]|1 1 0
2.1 ] 0.8299 | 0.835 | —0.0051
2.2 | 0.7042 | 0.7108 | —0.0065
2.3 | 0.6079 | 0.6145 | —0.0066
2.4 | 0.5319 | 0.5380 | —0.0061
2.5 | 0.4706 | 0.4761 | —0.0055
2.6 | 0.4202 | 0.4250 | —0.0049
2.7 | 0.3781 | 0.3823 | —0.0043
2.8 | 0.3425 | 0.3462 | —0.0037
2.9 | 0.3120 | 0.3153 | —0.0033
Xg=3.0 | 0.2857 | 0.2886 | —0.0029

Xn
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Example E8.4

d
Use Taylor’s series method to solve the equation d_i = 3x + y2 to approximate y when x = 0.1, given that y
=1whenx=0.

Solution:

dy 2
Here (X0 Yo) = (0, 1) and yl=&=3x+h
From Eq. (8.17)

h i h2 ji h3 iii h4 iv
yn+1=yn+£yn+5yn+§yn +Zyn o

yl=3x+y? ya(x)=ya(@=1

yil = 3+ 2yyi yiax =3+2(D)(1) =5

yill = 2(y1)2 + 2yyil yilat X = 2(1)2 + 2(1)(5) = 12
yiv = Byiyil + 2yyjiil YV at X = 6(1)(5) + 2(1)(12) = 54

Hence, the required Taylor seriesin Eq.(8.17) becomes

5 12 54 5 9
Y=l X+ — X+ o+ X = L X+ = P+ 2+ =X 4
2! 3! 41 2 4

When x = 0.1, we have
y=1+0.1+ g(o.l)2 +2(0.1)° +%(o.1)4 4o

=1+01+0.025+0.002+ 000022 + --- = 1.12722

Example E8.5
Use the fourth order Taylor series method with a single integration step to determine y(0.2). Given that

dy 2
—+4y= =
o T yO =1

The analytical solution of the differential equation is

Compute also the estimated error and compare it with the actual error.

Solution:

The Taylor series solution up to and including the term with h* is given by
2 3 4

h, h? . h h*
yn+1=yn+iyh+5yh'+§yn +Iy'nv (E1)
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or y(h) = y(0)+ hy (0)+ y“(O)+h y"'(0)+ y'V(O)

The given differential equation is

dy
4 4y=x°
dx y=

or y = —dy + X2
Differentiating the above equation gives
yi = 4y + 2x = 16y — 4x2 + 2X
yil = 16y —8x + 2 = — 64y + 16x2 — 8x + 2
yV=—64y + 32x—8 = 256y — 64x2 + 32x— 8
Hence, y(0) =41 =4
y'(0) = 16(1) =16
yil(0) = —64(1) +2=-62
yY(0) = 256(1) —8 =248
For h = 0.2, Eq. (E.1) becomes

y (0.2) = 1+ (-4)(0.2) + % (16)(0.2)% + %(—62)(0.2)3 + %(248)(0.2)4 =0.4539

According to Eq.(8.17¢), the approximate truncation error is given by

R A A

4

or E= Y -y ) forn=4

h* 4 4
=§[y< )(0.2) -y (0)]

where y4(0) = 248
y49(0.2) = 256(0.4539) — 64(0.2)2 + 32(0.2) — 8 = 112.04

(O 2) - 0.0018

Hence, E=

The analytical solution gives

1 1 1
02)=Lg02  Lgnz Lo, 14515
y(02)=— (02°-502+5,

Hence, the actud error is 0.4515 — 0.4539 = — 0.0024.
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8.3 STEP-BY-STEP METHODS OR MARCHING METHODS

In explicit multi-step methods, the solution v, +1, a the next point is calculated from an explicit formula. For
instance, if three prior points are used, the next unknown value of the dependent variable, y;, +1, is computed
by evaluating an expression of the form:

Yn+1 = F(X-2, Yn-20 Xn-1, Yn—-1, X Yns X +1) (8.18)

Equation (8.18) is of explicit form since the right-hand side of the equation has only al known quantities. In
implicit multi-step methods, the unknown y,, .1 appears on both sides of the equation, which needs to be
solved using numerical methods.

8.3.1 Euler’'s Method

Euler’s explicit method (also called the forward Euler method) is a single-step, explicit method for solving a
first-order ordinary differential equation. The method uses Egs.(8.6) and (8.7), where the value of the slope
in Eq. (8.7) isthe slope of y(x) at point (X,, ¥,,). This slope is computed from the differential equation:

S|0pe=ﬂ = (%, ¥n) (8.19)
Xy,

Euler’s explicit method isillustrated schematically in Fig. 8.2. Euler’s method assumes that for a short distance
h near (x,, y,), the function y(x) has a constant slope equal to the slope at (X, Yr). Based on this assumption,
the next point of the numerical solution (X, +1, Yn+1) 1S Obtained by:

Xn+1 = Xy + h (8.20)
Yn+1 = Yo+ F (% YD (821)
The error in this method depends on the value of h and is smaller for smaller h.
Equation (8.21) can be derived in several ways.
Consider the differential equation
Yo txy) 622
with the initial condition y(Xg) = Yo.
Integrating Eq.(8.22), we obtain

y=Yo+ f:) f (x, y) dx 82

Suppose we want to obtain an approximate value of y say y, when x = x,,. We divide the interval [X,, X,] into
n subintervals of equal length, say, h, with the division point Xg, X1, X,..., Xn, Where X = X, = Xg = rh,
r=1,23, ..
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yA
I
yo)—, /

/
/

Exact solution /

\ /
/Numerical solution
[}
\
b~ 1 > Slope: f(Xy, Yn)

Xn Iq— h—}l Xn+1

Fig. 8.2: Euler’s explicit method

Then, from Eq.(8.23), we have

X
=Y+ [, fxy)dx
Assuming that f (X, y) = f (Xg, Yo) in %o < X < Xy, the Eq.(8.24) leads to

Y1 =Yo + hf(Xo, Yo)

Equation (8.25) is called the Euler’s formula.
Similarly, for the range x; < X < %o, we have

%
Yo=yot [, FOy) =y +hf(g,y)

and for the range x, < X < X3, we get
Ya3=Y2+hf(x,yo)
and so on.
Finally, we obtain
Vor1 =Ynt+thf(X, V), n=0,1,23, ...

(8.24)

829

(8.26)

Euler's method accumulates large error as the process proceeds. The process is known to be very slow and
in order to obtain reasonable accuracy, the value of h needs to be smaller. It can be shown that the error in
Euler’'s method is O(h) i.e., the error tends to zero ash — 0, for x = x,, fixed. The local truncation error of
Euler’s explicit method is O(h?). The global truncation error O(h). The total numerical error is the sum of the
global truncation error and the round-off error. The truncation error can be reduced by using smaller
h (step size). However, if h becomes too small such that round-off errors become significant, the total error

might increase.

Example E8.6
Use Euler's method to solve the following differential equation
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%=—tyz,y(2)=1and2<x<3withh =0.1
X

Compare the results with exact solution from y = — 5
X p—

Solution:
Euler’s formula given by Eq.(8.26) is
VYn+r = Ynt hf (6, V), N=0,1,223, ....

or Yoot = Yo+ h[ =ty Y2 ] = Y1), Xau1 = 2+ (N + D

Starting with xg = 2 and yy = 1 and taking h = 0.1, we get

n=0.  yi=yo—h[xy5]=1-012(1)2 =08=y(21)

S5
1
[N

¥>=y1—h[ % y2 |=08-0.1[2.1(0.8)7] = 0.6656 = y(2.2)

>
1l
N

]
Y3 =Y>—h| %, y3 | = 0.6656 — 0.1[2.2(0.6656)2] = 0.5681 ~ y(2.3)
;]

Nn=3  y,=y3—h[x yZ]=05681-0.1[2.3(0.5681) = 0.4939 ~ y(2.4)

The results are tabulated for x, = 2, 2.1, 2.2, ...., 3inthe h = 0.1 in Table E8.6. The exact values of y(x,) were
2
X2 -2

obtained from the solution of y(n) were also shown in the table. That is, Y(X,) =

d
Table E8.6: Euler's method values for d_i =—xy?,y(2) =1

Exact | Usingh=0.1
y(%0) | yo[0.1] | Ej[0.1]
Xp=20|1 1 0
2.1 | 0.8299 | 0.8000 | 0.0299
2.2 | 0.7042 | 0.6656 | 0.0386
2.3 | 0.6079 | 0.5681 | 0.0398
2.4 | 0.5319 | 0.4939 | 0.0380
2.5 | 0.4706 | 0.4354 | 0.0352
2.6 | 0.4202 | 0.3880 | 0.0322
2.7 | 0.3781 | 0.3488 | 0.0292
2.8 | 0.3425 | 0.3160 | 0.0265
2.9 | 0.3120 | 0.2880 | 0.0240
Xg=3.0 | 0.2857 | 0.2640 | 0.0217

Xn

In the above table the error, E, = y(X,) — Yn.
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Example E8.7
Apply Euler’'s method to approximate the solution of the initid value problem % =-2ty?2 with y(0) = 1 in the
interval 0 <t < 0.5, using h = 0.1 and compute the error and the percentage error. The exact solution is
y= 1

t*+1 -
Solution:

Here, Eq.(8.26) becomes
Yoer = Yo+ D (X, yo)

Since h=0.1andf (X, Y, = —2t, yﬁ, we have

Yos1 =¥a—2ht, Yo, N=0,1,2 ...
For h = 0.1, we set n = 0 and compute

n=0: v = Yo —2(0.1) to Yo = 1 - 2(0.1)(0)(1)2 = 1

which will be our estimate to the value y(0.1). Continuing, we obtain

n=1 yo =y — 2(0.1) t; 2= 1 - 2(0.1)(0.1)(1)2 = 0.98
n=2: va = ¥ — 2(0.1) t, Y3= 0.98 — 2(0.1)(0.2)(0.98)2 = 0.9416
and so on.

The exact valueisgivenby y=——-.
t°+1

Table E8.7 gives a summary of the results computed for 0 <t < 0.5.

Error = exact value —y, (from Euler’'s method)

| error |

——————x100
exact value

Percentage error =

From Table E8.7, we note that Euler’s method works quite well and the errors are acceptable in many practical
applications.

Table E8.7
¢ Yo Exact Error Percentage
value error
0 1 1 0 0
011 0.9901 | 0.0099 | 0.9998

0.2 | 0.98 0.9615 | 0.0185 | 1.9241
0.3 | 0.9416 | 0.9174 | 0.0242 | 2.6379
0.4 | 0.8884 | 0.8621 | 0.0263 | 3.0507
0.5 0.8253 | 0.8 0.0253 | 3.1625

arwWNEFLO| S
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Example E8.8

d
Apply the Euler’s method to the ordinary differential equation d_i = X+, ¥(0) =1 using increments of size

h = 0.2. The exact solution isy = —1 — x + 2eX. Determine the error and the percentage error at each step.

Solution:
d
d—i=x+y
when x=0and y(0) = 1.
Hence %:x+y =0+1=1or yp=1
Now, h = 0.2 and y; = yo + hf (X, Vi)
or Y1 = Yo+ hf(x, yo) =1+02(10) =12

The process is continued as shown in Table E8.8.

Exact value at x, = 0.2 is
Yoo = -1-02+2eP2=1.2428

Table E8.8 gives the summary of the computations.
Error = exact value — value from Euler’s method.

Percentage error = ﬂ
exact value
Table E8.8
nl ot Yo Exact Efror Percentage
value error
0|0 1 1 0 0
1{02|12 1.2428 | 0.0428 | 3.4438
2104|148 15836 | 0.1036 | 6.5421
3106|1856 | 20442 | 0.1832 | 9.2065
410.8| 23472 | 2.6511 | 0.3039 | 11.4632
5110 | 29766 | 3.4366 | 0.46 13.3853
Example E8.9

Use Euler’'s method to solve the initial value problem % =1-t+4y,y0) =1, intheinterval 0<t< 0.5

with h=0.1. The exact value is

Compute the error and the percentage error.
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Solution:

Here, f (t,, Yn) = 1 —t, + 4y, and thus

Yne1 = Yo + (0.1)(1 -ty + 4yp)
Vi=Yo+ (01)(1-tg+4yy) =1+(01)(1-0+4)=15
Yo=Yy +01(1—t; +4y;) =15+ (0.1)(1-0.1+6) =219

The exact value are computed from

For n=0:
n=1

Error = exact value — value from Euler’s method

Percentage error =

_9. 1.
=16 "2

| error |
exact value

19

—€

16

Table E8.9 summarises the computed results.

Example E8.10

Use Euler’'s method to solve the following differential equation —

Solution:
Using Eq.(8.26)

Hence

Forn=1.

where

Therefore, at

Table E8.9

n| t Yn 2% Error AEMEEIETS

value error
0|0 1 1 0 0
1/01]|15 1.6090 | 0.109 6.7768
2102|219 2.5053 | 0.3153 | 12.5864
3103|3146 | 3.8301 | 0.6841 | 17.8620
4104 |44744 | 57942 | 1.3192 | 22.7783
5105 6.3242 | 8.7120 | 2.3878 | 27.4082

dy
dx

Y1 =Yo+hf(x,Yo) =1+01f(0, 1)

1 1
f(0,1) =f(x Yo) = 5 Yo =E(1)=1/2
y1 =1+01(1/2) =105
Yo =yp +hf(x,y) =105+0.1f(0.1, 1.05)

1
f(01,10) = - (1.05)=052%

X, =2h=2(01) =02y, is

y> = 105+ 0.1(0525) = 1.1025

1
Ey,y(0)=1andOSxS 1. Ussh=01
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The exact values of y = €92 (from direct integration).
This procedure is repeated for n = 2, ..., 5 and a summary of the results obtained is given in Table E8.10.

Table E8.10: Euler's method versus exact solution

Yn+1 Yne1 = e”
X | Yoo | T Y0 | ey | (exact)
0 1 0.5 1.05 1.0513
0.1] 105 0.525 1.1025 | 1.1052
0.2 | 1.1025 | 0.5513 | 1.1576 | 1.1619
0.3 | 1.1576 | 0.5788 | 1.2155 | 1.2214
0.4 | 1.2155 | 0.6077 | 1.2763 | 1.2840
0.5 | 1.2763 | 0.6381 | 1.3401 | 1.3499

O wWNEFELO| O

8.3.2 Modified Euler’s Method

The modified Euler’s method (also called Heun's method) is a single-step, explicit, numerical technique for
solving afirst-order ordinary differential equation. The method is a modification of Euler’s explicit method. In
Section 8.3.1 on Euler's method, we stated the assumption in that method is that in each subinterval or step,
the derivative or the slope between points (X,, ¥,,) and (X,+1, Yn+1) 1S constant and equal to the slope of y(X)
at point (X,, Y. This assumption causes error. In the modified Euler’s method, the slope used for computing
the vaue of y,.1 is modified to include the effect of that the slope changes within the subinterval. This sope
is the average of the slope at the beginning of the interval and an estimate of the lope at the end of the
interval.

Hence, the slope at the beginning of the interval is given by

ax e, slope at X = Xy = f (Xq, Yn) (827)
The slope at the end of the interval is estimated by finding first an approximate value for y,.q, written as
yni, using Euler’s explicit method.

That is Y™ = Yin + f O Yol (829

The estimation of the slope at the end of interval is obtained by substituting the point (X,.1, yn,,) in the

o
equation for I
dy

dx|y=vyiu
X Xy

or = f (X412, Yni1) (829

Yn+1 1S then estimated using the average of the two slopes.

F O Yn) + f s o)
2

That is Ynir = Ynt (8.30)
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The modified Euler’s method is illustrated in Fig. 8.3. The dope at the beginning of the interval (given by Eq.

(8.27)) and the value of y[\; as per Eq. (8.28) are shown in Fig. 8.3(a). Figure 8.3(b) shows the estimated

dope at the end of the interval as per Eg. (8.29). The value of y,,., obtained using Eq. (8.30) is shown in
Fig. 8.3(c).

Ya ' VA yA
o,/ yo)— o/ yo__ /1
—
// \/7 ynm+1 \7 Yn+1
Exact m Exact Exact
solution % /ym solution\,x’/ solution
. . Slope: Slope:
Yol _ Slope: z f(Xn,Yn)f(Xnt, Y.,
= \:k fXn ¥n) D= ] N 0o Vi Int-. ] : 2 -
Xnle— p —pl Xne1 X Xnle—h —] X1 X Xnle—h —»] Xne1 X
(a) Slope at the beginning of (b) Estimate of the slope (c) Using the average of the
the interval at the end of the interval two slopes

Fig. 8.3: The modified Euler’s method

In modified Euler's method, instead of approximating (x, y) by f (X, Vo) in EQ.(8.22), the integra in Eq.(8.23)
is approximated using the trapezoidal rule.

h
Therefore W = Yo+ S 106, ¥o) + f (4, %) (831)

where y(9 =y, + h f (xo, yo) obtained using Euler’s formula.

Similarly, we obtain

h
W = Yo+ 5[ 106, 0) + 0, )

h
W= Yo+ 5[ 106, 0)+ 00 )]
h
Y = Yo+ 5[ 106 %0) + 04, )| o
and so on.
Therefore, we have
h
W = yot o[ F00.¥0)+ F00 Y™ L n=02,2.3, ... o

where (" is the n' approximation to y,.

The iteration formula given by Eq.(8.33) can be started by selecting y{® from the Euler’s formula. The formula

given by Eq.(8.33) is terminated at each step if the condition |yr(1") —y(Di < e, where eis avery small
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arbitrary value selected depending on the level of accuracy to be accomplished is satisfied. If this happens

for sa, n =k, then we consider y, = yr(]k) and continue to compute the value of y at the next point by repeating
the procedure described above. Equation (8.33) can aso be written as

1
Vs = Yo + 5 (Ky+ K) +(O)h? (8:339)
where Ky =hf X, Vo) (8.33h)
Ko = h+ (Xhs1, Yn + Kg) (833¢)

Example E8.11

d
Use the modified Euler’s method to solve the differential equation d—i = x + y2 with y(0) = 1. Take the step
szeh=0.1.

Solution:
From Eq.(8.31), we have

h
W = Yot 5[ £ 0, y0) + £ 0, %)
where YO = yo +hf(x, o)
h
Therefore W =14 2[(0+1%) + 01+ (14 0.0+ 7))

=1+0051+(0.1+119] =1.1155
is the improved Euler’s estimate.

. h
Similarly v = y0+§[f(x0,y0)+ f(xl,yl(l))]
where yY = 11155
h
W2 =01+ 5[ 100 ) + £ 0y +h 0, y)
= 11155+ 21 [(0.14+1.11552) + (0.2+ (1.1155+ 0.1(0.1+ 1.1155%)))] = 1.2499

2
is the Euler’s method estimate starting from (x, yl(l)) . Now, starting from [xy, Yo + h f(Xo, Y0)], we have

y? = 1.1155 + 0.05[(0.1 + 1.1155?) + (0.2 + 1.2499?)] = 1.2708

is the improved Euler’s estimate.
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Example E8.12

Use the modified Euler’s method to obtain an approximate solution of % =-2ty?, y(0) = 1, in the interval
0<t< 8.5 using h = 0.1. Compute the error and the percentage error. Given the exact solution is given by
YT )

Solution:

Forn=0: yO=yo—2htoyd=1-2(0.1) (0) (1)2=1

Now v =yt D[—2t0 y3 - 2t,y92 ] = 1-(00)[(0) (12 + (0.1) (1 = 0.99

2

Table E8.12 shows the remaining calculations. Table E8.12 also shows the values obtained from the Euler’s
method, the modified Euler's method, the exact values, and the percentage error for the modified Euler’s
method.

Table E8.12
n| t, | Euler | Modified | Exact | Error | Percentage
Yn Eulery, | value Error

00 |1 1 1 0 0
11011 0.9900 | 0.9901 | 0.0001 | 0.0101
2(0.2|09800| 09614 | 0.9615 | 0.0001 | 0.0104
310309416 | 09173 | 0.9174 | 0.0001 | 0.0109
4104|0888 | 08620 | 0.8621 | 0.0001 | 0.0116
5(105) 08253 | 0.8001 | 0.8000 | 0.0001 | 0.0125

In the Table E8.12,
Error = exact value — value from modified Euler’'s method

| error |
exact value

Percentage error =
Example E8.13
Use the modified Euler’s method to find the approximate value of y(1.5) for the solution of the initial value
d 2 . .
problem d_i = 2xy, (1) = 1. Take h = 0.1. The exact solution is given by y = e* ~.. Determine the relative error

and the percentage error.

Solution:

With X9 =1, Yo = 1, f (X0, Yn) = 2y, N = 0 and h = 0.1, we first compute y{% =y, + h f (o, o) from Eq.(8.31).

Y9 = yo +(0.1) 2%, Yo) = 1+ (0.1) 2(1)(1) = 1.2
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We use this value in Eq.(8.33) along with
Xy =1+h=1+01=11

V=Y +(0—21j 2% Yo + 2%, Yy = 1+(0—é1) 2(D)(D) + 2(1.1)(1.2) =1.232

Table E8.13 gives the values computed for the modified Euler’s method, exact value, relative error and the

percentage error. Exact value is calculated from y = et

Error = exact value — value from the modified Euler’s method

Percentage relative error = _leror| _
exact value
Table E8.13
n| X Yn Exact | Absolute Percentage
value error Relative error
o1 |1 1 0 0
1]|11|1.2320|1.2337 | 0.0017 0.14
21215479 | 1.5527 | 0.0048 0.31
3131983219937 | 0.0106 0.53
4] 14| 15908 | 2.6117 | 0.0209 0.80
5|15 | 34509 | 3.4904 | 0.0394 1.13
Example E8.14
Repeat Example E8.10 using the Modified Euler’s method.
Solution:

From Egs.(8.333) to (8.33c), we have

&:hfmy%%ﬂ{le:Q%EJ:Q%
2 2
and Ky = 104, Yo+ Ky) = h[%ﬂ - 0.1[“ 0-05} _ 00525

The functional approximate at x; = 0.1 (n = 1) is given by
1 1
Vi=VYo+ > (Ki+Ky)=1+ > (0.05+ 0.0525) = 1.05125 =~ 1.0513

Hence, at x, = 0.2, we have

0.05125

m:a{ }:a%%

=0.0552

K, = 0_1[1.0513+ 0.0526}
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y, =1.0513+ % (0.0526+ 0.0552) = 1.1051

This procedure is repeated for n = 2, 3, 4 and 5 to give the functional approximations shown in Table E8.14.

Table E8.14

n Xn Yn Kl K2 Yn+1 Yn+1

(modified Euler) | (exact)
00 1 0.05 0.0525 1.0513 1.0513
1]01|1.0513 | 0.0526 | 0.0552 1.1051 1.1052
2| 0.2 ] 11051 | 0.0526 | 0.0581 1.1618 1.1619
3]03]| 11618 | 0.0581 | 0.0699 1.2213 1.2214
4104 | 12213 | 0.0611 | 0.0641 1.2839 1.2840
5105 1.2839 | 0.0642 | 0.0674 1.3513 1.3499

Table E8.14 clearly shows that the modified Euler’s method gives better accuracy for the same h interval
when compared with the basic Euler’s method.

8.3.3 Runge-Kutta Methods

Runge-Kutta methods are a family of single-step, explicit, numerical techniques for solving a first-order
ordinary differential equation. Various types of Runge-Kutta methods are classified according to their order.
The order identifies the number of points within the subinterval that are utilised for finding the value of the
dopein Eq.(8.7). For instance, second-order Runge-Kutta methods use the slope at two points, third-order
methods use three-points, and so on. The classical Runge-Kutta method is of order four and uses four points.
Runge-K utta methods give a more accurate solution compared to the simpler Euler’s explicit method. The
accuracy increases with increasing order of Runge-Kutta method.

8.3.3.1 Runge-Kutta Method of Order Two

In the Runge-Kutta method of order two, we consider up to the second derivative term in the Taylor series
expansion and then substitute the derivative terms with the appropriate function values in the interval.

Consider the Taylor series expansion of the function about vy,

h2
Yre1 = Yo + Yy (X0, Vo) + > Y (X0, Yn)

h2
Yne1 = Yn + NO(%n, Yn) + B g (X0, Yn)
h _,
Y1 =Yn t h [g(xn,yn)+§g (Xn,yn)} 834
Now, substituting

/ _99,99
90 Yn) =5, 5, 906 o)

h dy _
where ax 9, Yn)
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From the differential equation, we obtain

hog hag
Y = yn+h{g(xn,yn)+§§+§a—yg(xn,yn)} (8:39)

It should be noted here that the factor inside the square brackets consisting of the derivatives may be
substituted with a function of the type ag(x + o, y + B) in a Taylor series expansion, such that from Eq.
(8.34), we have

Yne1 = Yn + h[ag(xa + o, Yo+ )] (8.36)
Now, expanding the function g(x, + o, y, + B) in Eq.(8.36) in a Taylor series expansion with two variables
about (X, yn) and considering only the first derivative terms, we obtain

og ,0
Yni1 = yn+ha[g(xn,yn)+oca—?(+ﬁa—ﬂ (837)

Now, equating the coefficients of the respective terms on the right hand side of Egs.(8.35) and (8.37), we
obtain

a=1
o = h/2 (833
and B = h2g(Xn, yn)
Therefore, Eq.(8.36) becomes
h h
Y1 = Yo+ hg Xn+§iyn+§g(xniyn) (839)
Equation (8.39) can also be rewritten as
Y1 = Yo + hK; (840)
where K, = hg{xn +g, Yn +%} (841)
in which K1 = hg(Xn, Yn) (842

Runge-Kutta method of order two is also known as the Midpoint method because the derivative is replaced
by functions evaluated at the midpoint x, + h/2.

The midpoint method is illustrated schematically in Fig. 8.4. The determination of the midpoint with
Euler's explicit method using Y, = Y, + f (X, Y)h/2 is shown in Fig. 8.4(a). Figure 8.4(b) shows the estimated
dlope that is computed with the equation

d

:f y Ym
™ (Xms Ym)

X=X,
Figure 8.4(c) shows the value of y,.; obtained using
Yner = Yo+ F (X Ymdh.
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yA ' VA , yA '
Exact h Exact h Exact h
solution solution solution

YOG

N,

Yhiz—p

Yol - ' Slope: ! Yol o= ' Slope: Yob==
1 VX Yt x b (X2 Vi) 1+ Slope: f(Xp2 Yh2) 1 X
1 t 1 1 1 t X 1 t
Xn l— h/Z—PI Xhr2 Xn+1 Xn Xhi2 Xn+1 Xn | h | Xn+1
[———h——>|
(a) Euler's method to (b) Calculation of the slope at (c) Calculation of the numerical
calculate y,, (Xtvz2s Yhi2) solution y,,;

Fig. 8.4: The midpoint method

The local truncation error in the Runge-Kutta method of order two is O(h®), and the global truncation error
is O(h?). Note that this is smaller by a factor of h than the truncation errors in Euler’s explicit method. In
other words, for the same accuracy, a larger step size can be used. However, in each step, the function
f(x, y) in the Runge-Kutta method of order two is computed twice.

Example E8.15

Use the second-order Runge-Kutta method with h = 0.1, find y; and y, for % =—xy2, y(2) = 1.
Solution:
For f (X, y) = —xy?, the modified Euler’s method, Eq.(8.40) is
Yns1 = Yo — 0.1(X, + 0.05)[y, + 0.05f ]2,

where fo=—%y2.

n=0:
Here Xp=2andyy=1, hencefy=-2(1)2=-2

y1 = 1-0.1(2 + 0.05)[1 + 0.05(-2)]2 = 0.83395

n=1:
Now x =21andy; =0.83395 hence f; = —x; y> = —1.46049
Hence, vy, =0.83395-0.1(2.1 + 0.05)[0.83395 + 0.05 (—1.46049)] = 0.70946
Relative error whenn=01is

E;(0.1) = 0.8299 — 0.83395 — 0.00405
and E,(0.1) = 0.7042 — 0.70946 — 0.00526
Comparing these values (y; and y,) with the exact values obtained in Table E8.1, we see that the second-

order Runge-Kutta method do indeed give accuracy comparable to the second-order Taylor’s series method
without requiring partial derivatives.
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Example E8.16

d .
Use Runge-Kutta method of order two to integrate d_i =sinywith y(0) = 1 from x = 0 to 0.5 in steps of
h = 0.1. Keep four decimal places in the calculations.
Solution:
Here g(x,y) =siny
Hence, the integration formulae in Egs.(8.41) to (8.42) are
Ky =hg(x,y)=01sny

h 1 . K
K, = hf —, y+=K;|=01sin —1j
2 (X+2 y+2 1) (y+ 5
y(x+h) = y(x) +K;

Given that y(0) = 1, we can carry out the integration as follows:
K; = 01dn(1) =0.0841

0'0841) — 00863

K, = O.lsin(1+

y(0.1) = 1+ 00863 = 10863
K, = 0.1 sin(1.0863) = 0.0835

0.0885

K, = O.lsin(1.0863+ j = 0.0905

y(0.2) = 1.0863 + 0.0905 = 1.1768
and so on.
The computations are summarised in Table E8.16 to four decimal places.

Table E8.16
X Yy Ky K,
0 1 0.0841 | 0.0863

0.1 | 1.0863 | 0.0885 | 0.0905
0.2 | 1.1768 | 0.0925 | 0.0940
0.3 | 1.2708 | 0.0955 | 0.0968
0.4 | 1.3676 | 0.0979 | 0.0988
0.5 | 1.4664

8.3.3.2 Runge-Kutta Method of Order Four

In the classical Runge-Kutta method of order four, the derivatives are evaluated at four points, once at each
end and twice at the interval midpoint as given below:



290 /I Numerical Methods //

where

and

h
Y0 +1) = Y(%) + 5 (Ky + 2Ky + 2Kz + Ky)
K1 = 0[%n Yn(X)]

h 1
Ky = Q[Xn 5 y(Xn)+§K1h}

h 1
Ks= g|:xn +§, y(xn)+§K2h:|

Ka = g%, + h, y(x,) + Ksh]

(843)

(844)

The classical Runge-Kutta method of order four is illustrated schematically in Fig. 8.5, Figs. 8.5(a) to (c)
show the determination of the slopes in Eq. (8.4). Figure 8.5(a) shows the slope K; and how it is used to
compute slope Ks. Figure 8.5(b) shows how slope K, is used to find the slope Ks. Figure 8.5(c) shows how
slope K3 is used to find the dlope K. Figure 8.5(d) shows the application of Eq. (8.43) where the dope used
for evaluating y, +1 is a weighted average of the slopes Ky, K,, K3 and K.

Ya Y4
yOO—
| T~Exact
: solution
]
]
!
Slope: K,
Yol
1
» X
Xn+1

Ya

vA

'K _Exact
1 solution

y(x)\‘/wumerical
solution
Slope: %(K1+2K2+2K3+K4) i

Exact
solution

(d)

Fig. 8.5: The classical fourth-order Runge-Kutta method

The loca truncation error in the classical Runge-Kutta method of order four is O(h?), and the global truncation
error is O(h?). This method gives the most accurate solution compared to the other methods. Equation (8.44)
is the most accurate formula available without extending outside the interval [X,, X, +1]-
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Equations (8.43) and (8.44) can also be written as

1
Ye1 = Yot g [Ky + 2K; + 2K3 + Ky (8449
where Ky = hf (Xn, Yno)

h h
K, = hf +—, +—)
2 (Xn 5 Yn >

h K
K3=hf(xn+§, yn+72j

and Ka = hf (% + h, Yo+ K) (8.44b)

Example E8.17
Use the Runge-K utta method of order four with h = 0.1 to obtain an approximation to y(1.5) for the solution

d 2
of d_i = 2xy, y(1) = 1. The exact solution is given by y = e* . Determine the relative error and the percentage
relaive error.

Solution:
For n =0, from Eq. (8.44), we have

K1 =90, Yo) = 2% Yo = 2

K, = g[x0 +%(O.l), Yo +%(0.1)(2)} = 2|:XO +%(0.1)}[y0 +%(O.2)} =231

Ky = g{x0 +%(0.1), Yo +%(O.1)2.31} = 2[)(0 +%(0.1)}[y0 + %(0.231)} =2.3426
K4 =g[X + 0.1, yp + 0.1(2.3426) = 2(x + 0.1)(yp + 0.2343) = 2.7154
Hence Vi=VYot E[K1 + 2K, +2K;+ K, =1+ O—('31[2+ 2(2.31) + 2(2.3426) + 2.7154] = 1.2337

Table E8.17 summarises the computations. In Table E8.17, exact value is computed from y = e,
The absolute error = exact value minus the value from the Runge-Kutta method. Percentage relative
error = |error|/exact value.

Table E8.17

n| X, Yn Exact | Absolute | Percentage
value error relative error
1 1 1

1.1 | 1.2337 | 1.2337
1.2 | 1.5527 | 1.5527
1.3 | 1.9937 | 1.9937
14| 2.6116 | 2.6117 | 0.0001
15| 3.4902 | 3.4904 | 0.0001

cNeoNoNe]
[cNeoNoNoNoNe]

gabhwWwNEFE O
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Example E8.18

Use the Runge-Kutta method of order four with h = 0.1 on (2, 3) for the initial problem

y(2) = 1. Compute the results obtained with the exact solution y(x) =
X

Solution:
Starting with tg = 2, yp = 1, Eq. (8.44) gives

Ki =f(20,1) =—(2) (12=-2

Kz = (205, 1+005(-2) =-(205)(0.9)* = -1.6605
Ks = f (205, 1 + 0.05 (-1.6605)) = — (2.05)(0.916975)% = ~1.72373
Kq = (21, 1+0.1(-1.72373)) = - (2.1)(0.82763)2 = ~1.43843

0.1
Yi=Yo~ ?{2 + 2(1.6605 + 1.72373) + 1.43843} = 0.829885

dt

= _Xyz,

Table E8.18 shows both the Runge-Kutta method of order 4 values and the exact values of y(2.0), y(2.2), ...,

y(3.0) rounded to six decimal places. The exact valuesin Table E8.18, y,, were computed from y(X) =

Table E8.18

Xn

Yn

Y(Xn)

20
21
2.2
2.3
24
25
2.6
2.7
2.8
29
3.0

1.000000
0.829885
0.704237
0.607914
0.531924
0.470596
0.420175
0.378078
0.342471
0.312017
0.285718

1.000000
0.829876
0.704225
0.607903
0.531915
0.470588
0.420168
0.378072
0.342466
0.312012
0.285714

x2-2

The reasons for the popularity of Runge-Kutta method of order 4 are evident from Table E8.18. Clearly the
method is more accurate. However, four dope values must be computed at each step. This is a short coming

of the method.
Example E8.19

Using the Runge-Kutta method of order four and with h = 0.2 to obtain an approximate solution of

dy
dt

the relative error and the percentage relative error.

—=-2t72,y(0) = 1, intheinitid 0<t<1withh=0.2. Theexact vdueof yisgivenby y= ﬁ - Compute
+
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Solution:

Here Ky =—2t, Y7
Ky = = 2(t, + 0.2), (Y, + 0.1 K)2
Ks = —2(t, + 0.2), (y, + 0.1K,)?
Ky = = 2th+1)(Yn + 0.2K3)?

For n=0:

Ki=0, Ky=—02, Kg=—0.192 and K, = —0.37.
0.2
Therefore, i =1-=12(02) +2(0.192) + 0.37) = 0.9615.

Table E8.19 gives the summary of the calculations. In the Table E8.19, the exact values are calculated using

y= 1 1t2 . The absolute error = exact value minus the value from the Runge-Kutta method. Percentage
+

relative error = |error]/exact value.

Table E8.19
n| X Yn Exact | Absolute | Percentage
value error relative error
0|0 |10 1.0 0 0
1| 0.2 0.9615 | 0.9615 0 0
2|04 08621 | 0.8621 0 0
3106 | 0.7353 | 0.7353 0 0
41 0.8 | 0.6098 | 0.6098 0 0
5]110]|05 0.5 0 0
Example E8.20
d
Find an approximate solution to the initial value problem d_?[/ =1-t+4y,y0) =1, intheinitid 0<t<1usng
-9 1 19
Runge-Kutta method of order four with h = 0.1. Compute the exact value given by y = 16 + Zt +Ee‘“,

Compute the absolute error and the percentage relative error.

Solution:

For n =0, from Eq.(8.44), we have
K1 =f(X, Yo) =5
K, =f(0+005 1+0.25) =595
K3 =f(0+0.05,1+0.2975) = 6.14
K, = (0.1, 1+ 0.614) = 7.356

0.1
Hence Y= 1+ =" [5+ 2(5.95) + 2(6.14) + 7.356] = 16089
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Table E8.20 gives a summary of all the calculations for y,, exact value, absolute error and the percentage
relaive error.

Table E8.20

n| t, | Runge-Kutta | Exact | Absolute | Percentage

Yn value error relative error
0|0 1 1
1|01 1.6089 1.6090 | 0.0001 0.0062
2102 | 25050 25053 | 0.0002 0.0119
3|03]|382% 3.8301 | 0.0007 0.07
4104 | 57928 5.7942 | 0.0014 0.14
5|05 | 8.7093 8.7120 | 0.0027 0.27

The superiority of the Runge-Kutta method of order four is clearly demonstrated in this Table E8.20 in
comparison with the Euler’'s method [Table E8.9].

Example E8.21

Use the Runge-Kutta method of order four and with h = 0.1 to find an approximate solution of % =x2+y

at x=0.1, 0.2 and 0.4. Given that y = -1 when x = 0.

Solution:

Equation (8.44) can be written as
K1 = 9(Xo, Yooh =[0?-1]0.1=-0.1

K, = g[xo +g, Yo + % Kl}h = [(0.05)2 — 1.05]0.1 = —0.1047

Ks= Q{XO +g, Yo +% Kz}h = [(0.05)2 — 1.0524]0.1 = — 0.1050
Ks=g[% + h, yp + K3l h=[(0.1)2 - 1.105]0.1 = — 0.1095

Let Ay, = %[Kl +2K, + 2K5+ Ky = %[—o.1+ 2(~0.1047) + 2(~0.1050) + (~0.1095)] = —0.1048

Hence vy, =yp+ Ay, =-1.1048
For the second increment, we have

Ky = —0.1095, K, = —0.1137, K5 = —0.1139 and K4 = —0.1179
Ay, =—0.1138

Therefore y, =y, + Ay, =—1.2186
For the third increment, we have
K; =-0.1179, K, =—0.1215, K3 = —0.1217 and K4 = —0.1250
and Aysz = -01215
Hence Y3 = Yo + Ay, = -1.3401.



/[ Numerical Solution of Ordinary Differential Equations // 295

Example E8.22

Repeat Example E8.10 using the Runge-Kutta method of order four. Use h = 1.
Solution:

Here fixy) =y

From Eq. (8.44b), we have

N |

Ki=Hf (.30 = 110, 1) = 1@ -

N o

h K 15 5

K, = hf +—, +—1):1f(—,—): =
2 (XO 2 N0 2" 4 8
21

h K 121y 15 21

Ky=hf| x, +—, +—2j:1f(—,—):—:—

3 (XO 2 Yot 2'16) 2 32
53

53j=3_2=5_3

Ki=hf(Xp+h, yog+Kg) =1 f|1 =
4 (%0 Yo + Ka) (132 > o

From Eq.(8.449), we have

1
y=y1)=yo+ E[K1+2K2+2K3+ K4l

y@) =1+ 3(1) + 2(5) + 2(£) + §: 16484
6\ 2 8 32) 64

The exact value
y(1) = e¥2 = gl2 = 16487

8.3.4 Predictor-Corrector Methods

Predictor-corrector methods refer to a family of schemes for solving ordinary differential equations using
two formulae: predictor and corrector formulae. In predictor-corrector methods, four prior values are required
to find the value of y at x,. Predictor-corrector methods have the advantage of giving an estimate of error
from successive approximations to y,,. The predictor is an explicit formula and is used first to determine an
estimate of the solution y,, .. The valuey, .1 is calculated from the known solution at the previous point
(X, Yn) Using single-step method or several previous points (multi-step methods). If x, and x, ., are two
consecutive mesh points such that x,.+; = X, + h, then in Euler’s method we have

Yn+1 =Ya t hf(x +nh,y,), n=0123,... (845)

Once an estimate of y,,+1 is found, the corrector is applied. The corrector uses the estimated value of y,,+; on
the right-hand side of an otherwise implicit formula for computing a new, more accurate value for y,,.1 on the
left-hand side.

The modified Euler’s method gives as

h
Ynir=Yn t E[ f (Xn! yn) +f (Xn+1- yn+l) (8.46)
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The value of v, 41 isfirst estimated by Eq.(8.45) and then utilised in the right-hand side of Eq.(8.46) resulting
in a better approximation of y,.1. The value of y, 1 thus obtained is again substituted in Eq.(8.46) to find a
still better approximation of y,.q. This procedure is repeated until two consecutive iterated values of y,, .+ are
very close. Here, the corrector equation (8.46) which is an implicit equation is being used in an explicit
manner since no solution of a non-linear equation is required.

In addition, the application of corrector can be repeated severa times such that the new value of yp1
is substituted back on the right-hand side of the corrector formula to obtain a more refined value for yp.1.
The technique of refining an initialy crude estimate of y,.1 by means of a more accurate formula is known
as predictor-corrector method. Equation (8.45) is called the predictor and Eq. (8.46) is called the corrector
of yn+1. In what follows, we describe two such predictor-corrector methods:

1 Adams-Moulton method.
2. Milne's predictor-corrector method.

8.3.4.1 Adams-Moulton Predictor-Corrector Method

The Adams-Moulton method is an implicit multi-step method for solving first-order ordinary differential
equations. There are several versions of Adams-Moulton formulas available for computing the value of v, 41
by using the previously obtained solution at two or more points. These formulas are classified based on
their order, that is, based on the number of points used in the formula and the order of the global truncation
error. For instance, in the second-order formula, two points (X, V) and (X,+1, Yn+1) @e used. In the third-
order formula, three points (X,, ¥n), (Xn-1, Yn-1) @and (X2, ¥no) a@re used and so on.

Consider the differential equation

dy

_—= f y y = .
oo ) y(%) = Yo 847)
Integrating Eq. (8.47), we obtain
y=yo+ [, f(xy)d (848)
or Vi=Yo +J:: f(x, y)dx, Xg S X< X (849

Applying the Newton's backward difference formula, we have

n(n+1)

f(x,y) = f0+ano+Tv2fo+Wv3fo+--- (850)
where n= % and fo=Tf (X, Yo)
Now, substituting f (x, y) from Eq.(8.50) into the right-hand side of Eq.(8.49), we obtain
Y1 = yor{fl +nvf, + n(n+1) Vi, + o }dx
V= Yo+ hj-;{ fo +NVfy + n(n2+ D g2 fo+ } dx
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1 5 3 251
or y= yo+h{1+ EV+ 12V2+ V34 }fo (851)

8 720

We note here that the right hand side of Eq.(8.51) depends on o, Y_1, Y-, ... al of which are known.
Hence, we can write Eq.(8.51) as

5

1 3
P=yy+hl1+=V+—
Yi =Y { AT

251,
Vi4Ivie = f
g’ t75" } 0 (852)

Equation (8.52) is called the Adams-Bashforth formula and is used as a predictor formula.
A corrector formula is derived by applying the Newton's backward difference formula at f;. Therefore,

n(n+1) n(n+1)(n+2)

f(xy)= f,+nVf + V2 + V3, 4+ (853)

Now, substituting f (x, y) from Eq.(8.53) into the right-hand side of Eq.(8.49), we obtain

n(n+1) n(n+1)
2 2

Y, = yo+fle[fl+ nvf, + V2f1+---}dx= y0+hffl[fl+ nvf, + V2f1+--}dx

o Y= yoJrh{l—EV—ivz Lvi-Dy :|fl

2V 1Y T2 7207 (859)

Equetion (8.54) shows that the right-hand side depends on v, Yo, Y-1, Y-z, --., Where yP is used for y;. Hence,
the new value of y, is given by

C 1-5 2 3 3 251 4 p
=Yy+h|1-=—V " —=V°——V" |f
Yi =Y [ 212 8 720 1 (855)

flp = fl(xl’ylp)

the formula, Eq.(8.55) is called the Adams-Moulton corrector formula. Now expressing the remaining difference
operators in their functional values and neglecting the fourth and higher order differences, Eqgs.(8.51) and
(8.55) become respectively,

c h o gep
and V= yo+z[9f1 +19f, - 5f_; —9f_,] (857)

Equation (8.57), known as the corrector formula is repeatedly applied by computing an improved vaue of f4
at each stage, to obtain a better value of y; unless it becomes stable and remains unchanged and then we
proceed to calculate ys.

251

The approximate errors in Eqs.(8.56) and (8.57) are === h5 £ and —19 h5 f{4 respectively.
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It should be noted here that in order to apply Adams-Moulton method, we require four starting values
of y, which can be obtained by using Picard’s method of successive approximation or Taylor series method
or Euler’'s method or Runge-K utta methods.

Summarising, the Adams-Bashforth and Adam-Moulton formulae are given by

P, = [55f ~50f, ,+37f,_,—9f, 4] (859)

and Yn+1 [9 fn+1 +19 f -5 fn—l + fn—z] (859)

respectively. The local error estimates for Egs.(8.58) and (8.59) are

by () and Y () ©60)

Let yr?+1 represent the value of y,., found using Eq.(8.58) and Yr.+1 the solution obtained with one application
of Egs.(8.58) and (8.59). If y(xn+1) represents the exact value of y at X+, and the values of f are assumed to
be exact at all points including x,, then from Eq.(8.60), we obtain the order estimates

Y(Xas1) — Y1 = ig; h°y" (&) (861)
Y(Xns1) = Yisa = 19 oY (€2) (862)

which leads to the estimate of y¥, based on the assumption that the over the interval of interest yY(x) is
approximately constant, as

720
h°y" = 270 [lewl - Yr(1)+1]-
Hence, from Eq. (8.62), we obtain
-19 -1

Y(Xn41) — yln+1 720 I:yﬁ-%—l - yr?+l:| = E[yﬁﬁ—l - yr?+l:| =Dp (863)
Hence, the error of the corrected value is approximately —1/14 of the difference between the corrected and
the predicted values.
Example E8.23

Use the Adams-Moulton method on (2, 3) with h = 0.1 for the initial value problem % =-xy2, y(2) = L

Exact solution is Y(X) = ———.
Xc=2

Solution:

We will try to obtain about four significant digits. To start the method, we use the following exact values to
seven significant digits.
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X0 ¥p = 20

—x; Y = —1.446256
—Xp y5 = —1.091053
Xs Y5 = —0.8499552

Xo = 2.0:yo= y(20) = 1.0; fo
xp =21y = y(21) = 1.8298755; f;
Xo = 2.2:¥,= y(2.2) = 0.7042254; f,
X3 = 2.3 y3= y(2.3) = 0.6079027; f;

n=3 Vi = ygqtzr;[as]‘s—&sef2 +37f,-9f, |- 05333741
h 2
=Yt H—&(yg’) +19f,~5f ,+ flﬂz 05317149
The locdl truncation error estimate is from Eq. (8.62),

191 ¢ p7_ 19 ~
Y(Xi1) = Vouy = ﬁ[y4 - Vi J = %[0.5317149 —0.5333741] = 0.0001144

Since the local truncation error estimate indicates possible inaccuracy in the 4 decimal place (4™ significant

digit) of yff , we take yff as an improved Y} to get an improved as follows:
C h 2
v$ =V, +§[9[—x4(o.5117149) ]+19f; ~5f, + f; | = 05318739
The local truncation error estimate of this yff is

-19
720 [0.5318739 — 0.5317149] = -0.0000112

indicating that yﬁf should be accurate to about 5 significant digits.
n=4 f4 =1 (X4 Va) = — (2.4)(0.5318739)2 = — 0.6789358

VS =y, ¥ %[55 f, —59f,+37f, —9f;] = 0.4712642

Y& =Y, +%[—9(—x5y§’)2 +19f, —5f,+ f,] = 0.4704654

-19
The loca truncation error estimate is %[yg -yP } = 0.0000562. As before, this estimate indicates possible
inaccuracy in the 41 significant digit of ysc . Hence, we get an improved ys as

Ve =y, + %[—9(—x5(0.4704654)2] +19f, —5f; + f,] = 0.4705358

The local truncation error estimate for this yg is

;—;g [0.4705358 - 0.4704654] = —0.0000050
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indicating this yg should be accurate to about 5 significant digits.
Table E8.23 summarises the computations and comparison with the exact solution y(x,,) and the relative error
Eq(h).

d
Table E8.23: Adams-Moulton method value for d—y =—xy? y(2) =1withh=0.1
X

Using Adams-Moulton method
X Exact y(x
n y( n) yn En(h)
Xo= 2.0 | 1.000000 | Exact —
2.1 | 0.829876 | Exact —
2.2 | 0.704225 | Exact —
2.3 | 0.607903 | Exact —
2.4 | 0531915 | 0.531874 0.00004