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Preface

INTRODUCTION

The objective of numerical analysis is to solve complex numerical problems using only the simple operations
of arithmetic, to develop and evaluate methods for computing numerical results from given data. The methods
of computation are called algorithms. An algorithm is a finite sequence of rules for performing computations
on a computer such that at each instant the rules determine exactly what the computer has to do next.
Numerical methods tend to emphasize the implementation of the algorithms. Thus, numerical methods are
methods for solving problems on computers by numerical calculations, often giving a table of numbers and
/or graphical representations or figures. The purpose of this book is to impart a basic understanding, both
physical and mathematical, of the basic theory of numerical analysis/methods and their applications. In this
book, an attempt is made to present in a simple and systematic manner the techniques that can be applied
to the study of numerical methods. Special emphasis is placed on analytical developments, algorithms and
computational solutions.

The objective of this text book is to introduce students from a variety of disciplines and backgrounds
to the vast array of problems that are amenable to numerical solution.   The emphasis is placed on application
rather than pure theory, which, although kept to a minimum and presented in a mostly heuristic and intuitive
manner. This is deemed sufficient for the student to fully understand the workings, efficiency and
shortcomings or failings of each technique. Since I intended this book as a first course on the numerical
methods, the concepts have been presented in simple terms and the solution procedures have been explained
in detail.

AUDIENCE

This book is a comprehensive text on numerical methods. It is self-contained and the subject matter is
presented in an organized and systematic manner. No previous knowledge of numerical analysis and numerical
methods is assumed. This book is quite appropriate for several groups of audience including:

— undergraduate and graduate students in mathematics, science and engineering taking the
introductory course on numerical methods.

— the book can be adapted for a short professional course on numerical methods.
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— design and research engineers will be able to draw upon the book in selecting and developing
numerical methods for analytical and design purposes.

— practicing engineers and managers who want to learn about the basic principles and concepts
involved in numerical methods and how they can be applied at their own work place concerns.

Because the book is aimed at a wider audience, the level of mathematics is kept intentionally low. All the
principles presented in the book are illustrated by numerous worked examples. The book draws a balance
between theory and practice.

CONTENTS

Books differ in content and organization. I have striven hard in the organization and presentation of the
material in order to introduce the student gradually the concepts and in their use to solve problems in numerical
methods. The subject of numerical methods deals with the methods and means of formulation of mathematical
models of physical systems and discusses the methods of solution. In this book, I have concentrated on
both of these aspects: the tools for formulating the mathematical equations and also the methods of solving
them.

The study of numerical methods is a formidable task. Each chapter in this book consists of a concise
but thorough fundamental statement of the theory; principles and methods, followed by a selected number
of illustrative worked examples. There are ample unsolved exercise problems for student’s practice, to amplify
and extend the theory, and methods are also included. The bibliography provided at the end of the book
serves as helpful source for further study and research by interested readers.

In chapter 1, Taylor’s theorem, a few basic ideas and concepts regarding numerical computations, number
representation, including binary, decimal, and hexadecimal numbers, errors considerations, absolute and relative
errors, inherent errors, round-off errors and truncation errors, machine epsilon, error propagation, error
estimation, general error formulae including approximation of a function, stability and condition, uncertainty
in data or noise, sequences: linear convergence, quadratic convergence, and Aitken’s acceleration formulae
are described.

Chapter 2 deals with the solution of linear system of equations. The topics covered are the methods of
solution, the inverse of a matrix, matrix inversion method, augmented matrix, Gauss elimination method, Gauss
Jordan method, Cholesky’s triangularization method, Crout’s method, Thomas algorithm for triangular system,
Jacobi’s iteration method, and Gauss-Seidal iteration method.

Chapter 3 deals with the solution of algebraic and transcendental equations. Here, we cover the topics
such as the bisection method, method of false position, Newtonian-Raphson method, successive
approximation method, secant method, Muller’s method, Chebyshev method, Aitken’s method, and comparison
of iterative methods.

In Chapter 4, we cover the topics on numerical differentiation. The topics covered include the derivatives
based on Newton’s forward interpolation formula, the derivatives based on Newton’s backward interpolation
formula, the derivatives based on Stirling’s interpolation formula, maxima and minima of a tabulated function,
and cubic spline method.

Chapter 5 deals with finite differences and interpolation. It includes topics on finite differences, forward
differences, backward differences, central differences, error propagation in a difference table, properties of
operator delta, difference operators, relations among the operators, representation of a polynomial using
factorial notation, interpolation with equal intervals, missing values, Newton’s binomial expansion formula,



// Preface // ix

Newton’s forward interpolation formula, Newton’s backward  interpolation formula, error in interpolation
formula, interpolation with unequal intervals, Lagrange’s formula for unequal intervals, inverse interpolation,
Lagrange’s formula for inverse interpolation, central difference interpolation formulae, Gauss’s forward
interpolation formula,  Gauss’s backward interpolation formula, Bessel’s formula, Stirling’s formula, Laplace-
Everett’s  formula, divided differences. Newton’s divided differences, interpolation formula, selection of an
interpolation formula, and cubic spline interpolation.

In Chapter 6, we present the curve fitting, regression, and correlation. we discuss here the topics on
linear equation, curve fitting with a linear equation, criteria for a “best” fit, linear least-squares regression,
linear regression analysis, interpretation of a and b, standard deviation of random errors, coefficient of
determination, linearization of nonlinear relationship, polynomial regression, quantification of error of linear
regression,  multiple linear regression, weighted least squares method, orthogonal polynomials and least
squares approximation, least squares method for continuous data, approximation using orthogonal
polynomials, and Gram-Schmidt orthogonalization process.

Chapter 7 presents numerical integration. Here, we cover the topics on Newton-Cotes closed quadrature
formula, trapezoidal rule, error estimate in trapezoidal rule, Simpson’s 1/3 rule, error estimate in Simpson’s 1/
3 rule, Simpson’s 3/8 rule, Boole’s and Weddle’s rules, Romberg’s integration, Richardson’s extrapolation,
and Romberg’s integration formula.

In Chapter 8, we discuss the numerical solution of ordinary differential equations. The methods covered
include one-step methods or single-step methods, Picard’s method of successive approximations, Taylor’s
series method, step-by-step methods or marching methods, Euler’s method, modified Euler’s method, Runge-
Kutta methods, Runge-Kutta method of order two and four, predictor-corrector methods, Adam-Moulton
predictor-corrector method, and Milne’s predictor-corrector method.

An important requirement for effective use and application of numerical methods is ease and proficiency
in partial fraction expansion, engineering mathematics, and Cramer’s rule. A basic review of partial fraction
expansions, basic engineering mathematics, and Cramer’s rule are outlined in Appendices A, B, and C
respectively.

Bibliography provided at the end of the book serves as helpful sources for further study and research
by interested readers. Answers to all end-of-chapter problems are given in the book. Most of the end-of
chapter problems are being fully solved in the companion book titled:  Numerical Methods through Solved
Problems, New Age International Publishers (P) Ltd., New Delhi, India. 2009.

I sincerely hope that the final outcome of this book will help the students in developing an appreciation
for the topic of numerical methods.

Rao V. Dukkipati
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Numerical methods are methods for solving problems on computers by numerical calculations, often giving
a table of numbers and/or graphical representations or figures. Numerical methods tend to emphasize the
implementation of algorithms. The aim of numerical methods is therefore to provide systematic methods for
solving problems in a numerical form. The process of solving problems generally involves starting from an
initial data, using high precision digital computers, following the steps in the algorithms, and finally obtaining
the results. Often the numerical data and the methods used are approximate ones. Hence, the error in a
computed result may be caused by the errors in the data, or the errors in the method or both.

In this chapter, we will describe Taylor’s theorem, a few basic ideas and concepts regarding numerical
computations, number representation, including binary, decimal, and hexadecimal numbers, errors
considerations, absolute and relative errors, inherent errors, round-off errors and truncation errors, error
estimation, general error formulae including approximation of a function, stability and condition, uncertainty
in data, linear convergence, quadratic convergence, and Aitken’s acceleration formulae.

1.1 TAYLOR’S THEOREM

Taylor’s theorem allows us to represent, exactly, and fairly general functions in terms of polynomials with a
known, specified, and boundable error. Taylor’s theorem is stated as follows:

Let f(x) have n + 1 continuous derivatives on [a, b] for some n ≥ 0, and let x, x0 ∈[a, b]. Then
f (x) = pn(x) + Rn(x) (1.1)
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where Rn(x) is the remainder. Taylor’s series is an associated formula of Taylor’s theorem.
Taylor’s series gives us a means to predict a function value at one point in terms of the function value

and its derivatives at another point.
Taylor’s series expansion is defined by

2
1 1 1

( )
( ) ( ) ( )( ) ( )

2!+ + +
′′

= + − + −′ i
i i i i i i i

f x
f x f x f x x x x x

             3
1 1

( ) ( )
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3! !+ ++ − + + − +�
n

ni i
i i i i n

f x f x
x x x x R

n
'''

(1.5)

We note that Eq. (1.5) represents an infinite series. The remainder term Rn is included to account for all terms
from (n + 1) to infinity:
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where the subscript n connotes that this is the remainder for the nth order approximation and ξ is a value
of x that lies somewhere between xi and xi + 1.

We can rewrite the Taylor’s series in Eq. (1.6) by defining a step size h = xi +1 – xi as

2 3
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where the remainder term Rn is given by
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The estimation of function at a point b which is fairly close to a is desired, then the Taylor’s series is written
as an infinite series:

     f (b) = f (a) + (b – a) f ' (a) + 
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If b is very close to a, then only a few terms can give good estimation. The Taylor’s series expansion for ex,
sin x and cos x are given below:
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2
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The error in Taylor’s series when the series is terminated after the term containing (x – a)n will not
exceed

[ ] 1
( 1)

max ( 1)!

−
− −

+

n
n x af

n
(1.13)

where max corresponds to the maximum magnitude of the derivative in the interval a to x. When the Taylor’s
series is truncated after n terms, then f (x) will be accurate to O(x – a)n.

Example E1.1
Use Taylor series expansion to approximate f (x) = cos x at xi +1 = π/3 with n = 0 to 6 on the basis of the

value of f (x) and its derivatives at xi = π/4 which implies that h = 
3 4
π π

− = π/12.

Solution:
The zero approximation is given by

( ) ( ) ( )( )1 1+ ++ −′�i i i i if x f x f x x x

( )/3 cos 0.70710678; cos 0.5
4 3
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with ∈t = 0.449%.
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Table E1.1 shows the Taylor series approximation for n = 0 to 6.

Table E1.1

Order n f(n)(x) F(π/3) ∈t 
0 
1 
2 
3 
4 
5 
6 

cos x 
–sin x 
–cos x 
sin x 
cos x 
–sin x 
–cos x 

0.70710678 
0.52198666 
0.49775449 
0.49986915 
0.50000755 
0.50000030 
0.49999999 

–41.4 
–4.4 
0.449 
2.62 × 10–2 

–1.51 × 10–3 

–6.08 × 10–5 

2.40 × 10–6 

1.2 NUMBER REPRESENTATION

A base-b number is made up of individual digits. In positional numbering system, the position of a digit in
the number determine that digit’s contribution to the total value of the number.

For decimal numbers, the base (radix) is 10. Hence (an an–1 … a2 a1 a0)b = an bn + an –1 bn–1 + … +
a2b2 + a1b + a0 . an contributes to the number’s magnitude and is called the most significant digit (MSD).
Similarly, the right most digit, a0, contributes the least and is known as the least significant digit (LSD).
Conversion of base-b fractions to base-10 is done by (0.a1 a2 … am)b = a1b–1 + a2b–2 + … + amb–m. This
is known as the expansion method.

There are two binary digits (bits) in the binary number system: zero and one. The left most bit is called
the most significant bit (MSB) and the right most bit is the least significant bit (LSB). The rules of bit
additions are: 0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 0 carry 1. The first ten digits 1, 2, 3, …, 10 in base 10 and
their representation in base-2 are shown in Fig.1.1.

Base 2 Base 10 
23 22 21 20 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 

0 
0 
0 
0 
0 
0 
0 
1 
1 
1 

0 
0 
0 
1 
1 
1 
1 
0 
0 
0 

0 
1 
1 
0 
0 
1 
1 
0 
0 
1 

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

Fig. 1.1: Representation of numbers in decimal and binary forms

Most computer languages use floating-point arithmetic. Every number is represented using a (fixed, finite)
number of binary digits, called bits. Each binary digit is referred to as a bit. In this method, the computer
representation a number in the following form:

Number = σ mbt–p (1.14)
where σ = sign of the number (±), denoted by a single bit.

m = mantissa or a fraction (a value which lies between 0.1 and 1).
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b = the base of the internal number system (b = 2 for binary, b = 10 for decimal or b = 16 for
hexadecimal computers).

t = shifted exponent (the value that is actually stored).
p = shift required to recover the actual exponent. Shifting in the exponent is normally done to

avoid the need for a sign bit in the exponent itself.
The number is then stored by storing only the values of σ, m and t. The normal way to represent and store
numbers is to use a binary or base 2 number system which contains the following two digits.

binary digits = {0 1} (1.15)
For positive integers the binary form is

dn2n + dn–12n–1 + ... + d121 + d020 (1.16)
while for positive numbers less than one it is

d–1 2–1 + d–2 2–2 + d–3 2–3 + ... (1.17)
with all binary digits di either 0 or 1. Such representations are unique.

Conversion between base 10 and base 2 is performed automatically by programming languages. Thus,
conversion of an n-bit binary integer b = bn–1...b0 to its decimal equivalent x is done as a sum of n powers
of 2:

1

0

2
−

=

= ∑
n

k
k

k

x b (1.18)

A positive decimal integer x, in the range 0 to 2n – 1 is converted to its n-bit binary equivalent b = bn–1 ... b0
by conducting a sequence of n divisions by decreasing powers of 2. In other words, the digits of the binary
numbers are computed starting with the most significant bit, bn–1, and ending with the least significant, b0.

Noting that the hexadecimal numbers have a larger base or radix than decimal numbers, the first six
letters of the alphabet are used to augment the decimal digits as follows:

Hexadecimal digits = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} (1.19)
The conversion between binary, decimal and hexadecimal numbers can be accomplished using Table 1.1.

Table 1.1: Binary, Decimal and Hexadecimal Numbers

Binary Decimal Hexadecimal Binary Decimal Hexadecimal 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 

00 
01 
02 
03 
04 
05 
06 
07 

0 
1 
2 
3 
4 
5 
6 
7 

1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

08 
09 
10 
11 
12 
13 
14 
15 

8 
9 
A 
B 
C 
D 
E 
F 

Example E1.2
Determine the decimal values of the following numbers:

(a) x = (10010110)2

(b) x = (777)8
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Solution:

(a)
7

0

2
=

= ∑ k
k

k

x b using equation (1.18)

= 21 + 22 + 24 + 27

= 2 + 4 + 16 + 128 = 150
(b) x = (777)8

x = 
2

0

8
=

∑ k
k

k
b = 7(8)0 + 7(8)1 + 7(8)2 = 7 + 56 + 448 = 511

Example E1.3
Convert (1011)2 to base-10.

Solution:
(1) (2)3 + (0) (2)2 + (1) (2)1 + 1 = 11

The remainder method is used to convert base-10 numbers to base-b numbers. Converting a base-10
fraction to base-b requires multiplication of the base-10 fraction and subsequent fractional parts by the base.
The base-b fraction is formed from the integer parts of the products taken into same order in which they
were determined.

The octal (base-8) numbering system is one of the alternatives to working with long binary numbers.
Only the digits 0 to 7 are employed. For instance,

7 + 1 = 6 + 2 = 5 + 3 = (10)8

7 + 2 = 6 + 3 = 5 + 4 = (11)8

7 + 3 = 6 + 4 = 5 + 5 = (12)8

Example E1.4
Perform the following operations:

(a) (7)8 + (6)8

(b) Convert (0.14)10 to base-8
(c) Convert (27.52)8 to base-10.

Solution:
(a) The sum of 7 and 6 in base-10 is 13. This is greater than 8. Using the remainder method, we have

13/8 = 1 remainder 5
1/8 = 0 remainder 1

The answer is (15)8.
(b) 0.14 × 8 = 1.12

0.12 × 8 = 0.96
0.96 × 8 = 7.68
0.68 × 8 = 5.44
0.44 × 8 = etc.



// Numerical Computations // 7

The answer is (0.1075….)8 which is obtained from the integer parts of the products above.

(c) (2) (8)1 + (7) (8)0 + (5) (8)–1 + (2) (8)–2 = 16 + 7 + 
5 2
8 64

+ = (23.656)10

The hexadecimal (base-16) system is a shorthand way of representing the value of four binary digits at a
time.

Example E1.5
(a) Convert (1475)10 to base-16.
(b) Convert (0.8)10 to base-16.

Solution:
(a) Using the remainder method

1475
92

16
=  remainder 3

92
5

16
= remainder 12

5
0

16
= remainder 5

Now, (12)10 is (C)16 or (hex C).
Hence, the answer is (5C3)16.

(b) 0.8 × 16 = 12.8
0.8 × 16 = 12.8
0.8 × 16 = etc.
Since (12)10 = (C)16, we have the answer as (0.CCCCC…)16.

Example E1.6
(a) Convert (5431)8 to base-2.
(b) Convert (1011111101111001)2 to base-16.

Solution:
(a) First convert each octal digit to binary digits.

(5)8 = (101)2

(4)8 = (100)2

(3)8 = (011)2

(1)8 = (001)2

Hence, the answer is (101100011001)2.
(b) Grouping the bits into fours starting at right-hand-bit, we have 1011  1111  0111 and 1001. Converting

these groups into their hexadecimal equivalents, we get
(1011)2 = (B)16
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(1111)2 = (F)16

(0111)2 = (7)16

(1001)2 = (9)16

Therefore, the answer is (BF79)16.

Example E1.7
(a) Convert the following base-2 numbers to base-10: 1011001 and 110.00101
(b) Convert the following base-8 numbers to base 10: 71563 and 3.14.

Solution:
(a) (1011001)2 = (1 × 26) + (0 × 25) + (1 × 24) + (1 × 23) + (0 × 22) + (0 × 21) + (1 × 20)

= 1(64) + 0(32) + 1(16) + 1(8) + 0(4) + 0(2) + 1(1) = 89
(110.00101)2 = (1 × 22) + (1 × 21) + (0 × 20) + (0 × 2–1) + (0 × 2–2) + (1 × 2–3) + (0 × 2–4) + (1 × 2–5)

= 1(4) + 1(2) + 0(1) + 0(0.5) + 0(0.25) + 1(0.125) + 0(0.0625) + .03125) = 6.15625
(b) (71563)8 = (7 × 84) + (1 × 83) + (5 × 82) + (6 × 81) + (3 × 20)

= 7(4096) + 1(512) + 5(64) + 6(8) + 3(1) = 29,555
(3.14)8 = (3 × 80) + (3 × 8–1) + (4 × 8–2) = 3(1) + 1(0.125) + 4(0.015625) = 3.1875

1.3 ERROR CONSIDERATIONS

Sources of Errors: When a computational procedure is involved in solving a scientific-mathematical problem,
errors often will be involved in the process. A rough classification of the kinds of original errors that might
occur is as follows:

Modelling Errors: Mathematical modelling is a process when mathematical equations are used to
represent a physical system. This modeling introduces errors and are called modelling errors.

Blunders and Mistakes: Blunders occur at any stage of the mathematical modeling process and consist
to all other components of error. Blunders can be avoided by sound knowledge of fundamental principles
and with taking proper care in approach and design to a solution. Mistakes are due to the programming
errors.

Machine Representation and Arithmetic Errors: These errors are inevitable when using floating-point
arithmetic when using computers or calculators. Examples are rounding and chopping errors.

Mathematical Approximation Errors: This error is also known as a truncation error or discretisation
error. These errors arise when an approximate formulation is made to a problem that otherwise cannot be
solved exactly.

Accuracy and Precision: Accuracy refers to how closely a computed or measured value agrees with
the true value. Precision refers to how closely individual computed or measured values agree with each
other. Inaccuracy (also known as bias) is the systematic deviation from the truth. Imprecision (uncertainty)
refers to the magnitude of the scatter. These concepts are illustrated graphically using an analogy from target
practice as shown in Fig.1.2.

Figure 1.2 Illustrating the concepts of accuracy and precision from marksmanship example (a) inaccurate
and imprecise, (b) accurate and imprecise, (c) inaccurate and precise and (d) accurate and precise
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(a) (b)

(c) (d)

Increasing accuracy

In
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Fig. 1.2: Concepts of accuracy and precisions

Errors are introduced by the computational process itself. Computers perform mathematical operations with
only a finite number of digits. If the number xa is an approximation to the exact result xe, then the difference
xe – xa is called error. Hence

Exact value = approximate value + error
In numerical computations, we come across the following types of errors:

(a) Absolute and relative errors
(b) Inherent errors
(c) Round-off errors
(d) Truncation errors

1.3.1 Absolute and Relative Errors
If XE is the exact or true value of a quantity and XA is its approximate value, then |XE – XA| is called the
absolute error Ea. Therefore absolute error

Ea = |XE – XA| (1.20)
and relative error is defined by

−
= E A

r
E

X X
E

X (1.21)

provided XE ≠ 0 or XE is not too close to zero. The percentage relative error is

100 100
−

= = E A
p r

E

X X
E E

X (1.22)
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Significant digits: The concept of a significant figure, or digit, has been developed to formally define the
reliability of a numerical value. The significant digits of a number are those that can be used with confidence.

If XE is the exact or true value and XA is an approximation to XE, then XA is said to approximate XE to
t significant digits if t is the largest non-negative integer for which

     5 10
| |

−−
< × tE A

E

X X
X (1.23)

Example E1.8
If XE = e (base of the natural algorithm = 2.7182818) is approximated by XA = 2.71828, what is the significant
number of digits to which XA approximates XE?

Solution:

2.71828
| |

− −
=E A

E

X X e
X e

which is  < 5 ¥ 10–6

Hence XA approximates XE to 6 significant digits.

Example E1.9
Let the exact or true value = 20/3 and the approximate value = 6.666.
The absolute error is 0.000666... = 2/3000.
The relative error is (2/3000)/ (20/3) = 1/10000.
The number of significant digits is 4.

1.3.2 Inherent Errors
Inherent errors are the errors that pre exist in the problem statement itself before its solution is obtained.
Inherent errors exist because the data being approximate or due to the limitations of the calculations using
digital computers. Inherent errors cannot be completely eliminated but can be minimised if we select better
data or by employing high precision computer computations.

1.3.3 Round-off Errors
Round-off error is due to the inaccuracies that arise due to a finite number of digits of precision used to
represent numbers. All computers represent numbers, except for integer and some fractions, with imprecision.
Digital computers use floating-point numbers of fixed word length. This type of representation will not express
the exact or true values correctly. Error introduced by the omission of significant figures due to computer
imperfection is called the round-off error.

Round-off errors are avoidable in most of the computations. When n digits are used to represent a real
number, then one method is keep the first n digits and chop off all remaining digits. Another method is to
round to the nth digit by examining the values of the remaining digits. The two steps involved in rounding
to n digits are as follows:

1. Add sgn(x) 
2
b

to digit n + 1 of x.

2. Chop x to n digits.
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where x is the nonzero real number, b is the base and sgn(x) = x/|x| denotes the sign of x with sgn (0) ≈ 0.
Thus, the effect of the add and chop method of rounding is to round digit n up (away from zero) if the first
digit to be chopped, digit n + 1, is greater than equal to b/2, otherwise digit n is left as is. Errors which result
from this process of chopping or rounding method are known as round-off errors.
Rounding to k decimal places

To round x, a positive decimal number, to k decimal places, we chop x + 0.5 × 10–5 after kth decimal digit.
Similarly, to a round a negative number, we round its absolute value and then restore the sign. Table 1.2
illustrates the rounding the numbers 234.0065792 and –234.00654983 to k decimal digits.

Table 1.2: Rounding numbers to k decimal digits

k  234.0065792 –234.00654983 
0 
1 
2 
3 
4 
5 
6 
7 
8 

234 
234.0 
234.01 
234.007 
234.0065 
234.00658 
234.006579 
234.0065792 
234.0065792 

–234 
–234.0 
–234.01 
–234.007 
–234.0065 
–234.00655 
–234.006550 
–234.0065498 
–234.00654983 

Accurate to k decimal places

When we state that Y approximates y to k decimal places provided |y – Y | < 
1
2

× 10–k and if both y and Y are

rounded to k decimal places, then the kth decimals in the rounded versions differ by no more than one unit.
Consider for instance, the two numbers y = 57.34 and Y = 57.387 differ by |y – Y| = 0.047 < 0.5 × 10–1 = 0.05
hence Y approximates y to 1 decimal place. Rounding y to Y to the k = 1 decimal place, we find yr = 57.3 and
Yr = 57.4, respectively. Therefore, yr and Yr differ in the first decimal place by no more than one unit. Also,
when Y approximates y to k decimal places, then these two numbers are said to agree to k decimal places. It
should be noted here that these two numbers are not necessarily the same when rounded to k decimal places.

The most significant figure in a decimal number is the leftmost nonzero digit and the least significant
figure is the rightmost digit. Significant figures are all the digits that lie in between the most significant and
least significant figures. However, it should be noted here that zeros on the left of the first significant figure are
not treated as significant digits. For instance, in the number Y = 0.0078560, the first significant digit is 7 and
the rightmost zero is the fifth significant digit. Table 1.3 shows the results of rounding Y to k significant figure.

Table 1.3: Significant figures

k significant digits Y = 0.0078560 
1 
2 
3 
4 
5 

0.008 
0.0078 
0.00786 
0.007856 
0.0078560 

Accurate to k significant figures

If
1

10 | |
2

−− < × kx X x
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or
1 1

10 | | 10 | |
2 2

− −− × < < + ×k kx x X x x

then we say that the floating-point number X approximates x to k significant figures. Table 1.4 shows k, the
intervals [x – d (k), x + d (k)], where d(k) = 1

2 ×  10–k |x|, interval rounded, x rounded for x = π = 3.141592654.
The last column in Table 1.3 shows the value of π rounded to k significant digits.

Table 1.4: Approximation of π to k significant figures

k Interval 
[x – d(k), x + d(k)] Interval rounded x rounded 

1 
2 
3 
4 
5 
6 
7 
8 

[2.984513021, 3.298672287] 
[3.125884691, 3.157300617] 
[3.140021858, 3.143163450] 
[3.141435574, 3.141749734] 
[3.141576946, 3.141608362] 
[3.141591083, 3.141594225] 
[3.141592497, 3.141592811] 
[3.141592638, 3.141592670] 

[3.0, 3.3] 
[3.1, 3.2] 
[3.14, 3.14] 
[3.141, 3.142] 
[3.1416, 3.1416] 
[3.14159, 3.14459] 
[3.141592, 3.141593] 
[3.1415926, 3.1415927] 

3.0 
3.1 
3.14 
3.142 
3.1416 
3.14159 
3.141593 
3.1415927 

Example E1.10
Given the number π is approximated using n = 5 decimal digits.

(a) Determine the relative error due to chopping and express it as a per cent.
(b) Determine the relative error due to rounding and express it as a per cent.

Solution:
(a) The relative error due to chopping is given by

Er(chopping) = 
3.1415 − π

π
= 2.949 × 10–5 or 0.002949%

(b) The relative error due to rounding is given by

Er(rounding) = 
3.1416 − π

π
 = 2.338 × 10–6 or 0.0002338%.

Example E1.11
If the number π = 4 tan–1(1) is approximated using 5 decimal digits, find the percentage relative error due to,

(a) chopping (b)   rounding.

Solution:
(a) Percentage relative error due to chopping

        ( )53.1415 100 2.949 10 100−− π = = − ×  π
 or – 0.002949%.

(b) Percentage relative error due to rounding

    ( )63.1416 100 2.338 10 100 0.00023389%−− π = = × =  π
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Example E1.12
Use Taylor series expansions (zero through fourth order) to predict f (2) for f (x) = ln(x) with a base point at
x = 1. Determine the true percentage relative error for each approximation.

Solution:
The true value of ln (2) = 0.693147…
Zero order:

       f (2) ≅  f (1) = 0
0.693147 0 100% 100%

0.693147
−

= =tE

First order:

             
1

( ) =′f x
x

           f '(1) = 1

f (2) ≅ 0  +  1 (1) = 1

0.693147 1 100% 44.27%
0.693147

−
= =tE

Second order:

          2
1( )′′ = − ′′f x f
x

(1) =  –1

            
21(2) 1 1 0.5
2

= − =f

0.693147 0.5 100% 27.87%
0.693147

−
= =tE

Third order:

   ( )
3

2( )′′′ = ′′′f x f
x

 (1) = 2

            
31(2) 0.5 2 0.833333
6

≅ + =f

         
0.693147 0.833333 100% 20.22%

0.693147
−

= =tE

Fourth order:

  ( )
4

6( )′′′′ = −f x
x

= f (′′′′)(1) = –6

            
41(2) 0.833333 6 0.583333

24
≅ − =f

0.693147 0.583333 100% 15.84%
0.693147

−
= =tE
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The above results show that the series is converging at a slow rate. A smaller step size would be required to
obtain more rapid convergence.

Example E1.13
Given two numbers a = 8.8909 × 103 and b = 8.887 × 103. Calculate the difference between the two numbers
(a – b) using decimal floating point approximation (scientific notation) with three significant digits in the
mantissa by (a) chopping (b) rounding.

Solution:

(a) In chopping, when three significant digits are in the mantissa, then
a = 8.890 × 103 and b = 8.887 × 103

and a – b = 8.890 × 103 – 8.887 × 103 = 0.003 × 103 = 3.
(b) In rounding, we have

a = 8.890 × 103 and b = 8.887 × 103

and a – b = 8.890 × 103 – 8.887 × 103 = 0.004 × 103 = 4.
The exact (true) difference between the numbers is 3.8 which shows that the rounding gives a value much
closer to the real answer.

1.3.4 Truncation Errors
Truncation errors are defined as those errors that result from using an approximation in place of an exact
mathematical procedure. Truncation error results from terminating after a finite number of terms known as
formula truncation error or simply truncation error.

Let a function f (x) is infinitely differentiable in an interval which includes the point x = a. Then the
Taylor series expansion of f (x) about x = a is given by

( )

0

( ) ( )( )
!

∞

=

−
= ∑

k k

k

f a x af x
k (1.24)

where f (k) (a) denotes the kth derivative of f (x) evaluated at x = a

or ( )
0

( )( ) ==∆ |
k

k
xk

d f xf a
dx

(1.25)

If the series is truncated after n terms, then it is equivalent to approximating f (x) with a polynomial of degree
n–1.

( )1

0

( )( )( )
!

−

=

−∆= ∑
k kn

n
k

f a x af x
k (1.26)

The error in approximating En(x) is equal to the sum of the neglected higher order terms and is often called
the tail of the series. The tail is given by

( ) ( )( )( ) ( ) ( )
!

ξ −∆= − =
x n

n n
f x aE x f x f x

n
(1.27)

It is possible sometimes to place an upper bound on the x of En(x) depending on the nature of function f (x).
If the maximum value of | fn (x) | over the interval [a, x] is known or can be estimated, then



// Numerical Computations // 15

( )( ) max ( )
≤ξ≤

 ξ � n
n a x

M x f (1.28)

From Eqs. (1.27) and (1.28), the worst bound on the size of the truncation error can be written as

( ) | |
| ( ) |

!
−

≤
n

n
n

M x x a
E x

n
(1.29)

If h = x – a, then the truncation error En(x) is said to be of order O (hn). In other words, as h→0, En(x)→0
at the same rate as hn.

Hence O (hn) ≈ chn   |h | << 1 (1.30)
where c is a non-zero constant.

The total numerical error is the summation of the truncation and round-off errors. The best way to
minimise round-off errors is to increase the number of significant figures of the computer. It should be noted
here that round-off error increases due to subtractive cancellation or due to an increase in the number of
computations in an analysis. The truncation error can be reduced by decreasing the step size. In general, the
truncation errors are decreased as the round-off errors are increased in numerical differentiation.

There exists no systematic and general approaches in evaluating numerical errors for all problems. In
most cases, error estimates are based on experience and judgment of the engineer or scientist.

Model errors relate to bias that can be ascribed to incomplete mathematical models. Errors also enter
into the analysis due to uncertainty in the physical data on which a model is based.

Example E1.14
Given the trigonometric function f (x) = sin x,

(a) expand f (x) about x = 0 using Taylor series
(b) truncate the series to n = 6 terms
(c) find the relative error at x = π/4 due to truncation in (b)
(d) determine the upper bound on the magnitude of the relative error at x = π/4 and express it as a per

cent.

Solution:
(a) Using Eq. (1.23), the Taylor series expansion is given by

( ) 3 5 7

0

( )( )( )
! 3! 5! 7!

∞

=

−
= = − + − +∑ �

k k

k

f a x a x x xf x x
k

(b) Truncation of the Taylor series to n = 6 terms.
3 5

6 ( )
3! 5!

= − +x xf x x

(c) The relative error at x = π/4 due to truncation in (b) is given by

 6
6

( / 4) sin( / 4)
sin( / 4)

π − π=
πr

fE =
( )

3
53! /4 /5! sin( /4)

4 4
sin( /4)

π π − + π − π  
π

         = 5.129 × 10–5   or   0.005129%
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(d) Here f 6(x) = –sin x. From Eq. (1.28) using a = 0 and x = π/4, we obtain
M6(x) ≤ sin (π/4)

Now from Eq. (1.29), we have the upper bound on the truncation error given by

 
6

6
sin( / 4)( / 4)| |

6!
π π

≤E = 2.305 × 10–4   or     0.02305%

1.3.5 Machine Epsilon
Digital computers are fixed-precision devices and the number of digits the device can manipulate depends
on its hardware configuration. Machine epsilon, ∈M is the smallest positive number that the device can add
to 1 while recognising the sum as different than 1.

∈M is determined computationally by finding the smallest positive ∈ is for which 1 + ∈ ≠ 1. For instance,
if a particular computing device computes 1.000000001 for 1 + 10–9 but 1 for 1 + 10–10, then we conclude that
10–10 < ∈M < 10–9 and the device in this case would be known as a 10 significant-digit device.

1.3.6 Error Propagation
Table 1.5 summaries the errors attributed to the round-off errors due to the limited number of digits using
fixed-precision devices. In order to illustrate these errors, we consider the following numbers: a = 237.6581,
b = 238.2389, c = 0.014789, d = 137469 and A = 238.0, B = 238.2, C = 0.01480 and D = 1.375 × 105.

Table 1.5: Possible types of round-off errors on a finite-precision computing device

S.No. Error Comments 
1. 

 
2. 

 
3. 

 
4. 

Negligible addition 
 
Creeping round-off 
 
Error magnification 
 
Subtractive cancellation 

When two numbers of notable different magnitudes are added or 
subtracted, then the result rounds to the largest number. 
Repeated rounding to k significant digits will result in accumulation 
of errors. 
Occurs when an erroneous number is multiplied/divided by a number 
of large/small magnitude. 
Due to the subtraction of two nearly equal numbers where the 
difference lies in significant digits well beyond the devices capacity 
to record it. 

Tables 1.6 and 1.7 show the five exact arithmetic calculations (answers rounded-off to four significant digits)
and the same calculations performed on a device with four significant digits respectively.

Table 1.6: Exact arithmetic rounded to four significant digits

S. No. Exact arithmetic Rounded to four 
significant digits 

1. 
2. 
3. 
4. 
5. 

a – c = 237.6581 – 0.014897 = 237.643203  
b + d = 237.8389 + 137476 = 1377103.8389 
bd = (237.8389)(137476) = 32697140.62 
a/c = 237.6581/0.014897 = 15953.42015 
a – b = 237.6581 – 237.8389 = –0.1808 

237.6 
1.377 × 105 
3.270 × 107 
1.595 × 104 
–0.1808 
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Table 1.7: Calculations with a device carrying four significant digits

S. No. Calculations 
1. 
2. 
3. 
4. 
5. 

A – C = 238.0 – 0.01480 = 238.0 
B + D = 238.1 + 1.375 × 105 = 1.377 × 105 
BD = (238.1)(1.375 × 105) = 3.274 × 107 
A/C = 238.0/0.01480 = 1.608 × 104 
A – B = 238.0 – 238.1 = –0.1 

1.4 ERROR ESTIMATION

Few computer methods are available to provide error estimates. These methods are briefly mentioned here.
1. Double precision method: In this method, the problem is solved twice, once in single precision

and then in double precision. The estimate on the round-off error is then simply given by the
difference between the two results obtained.

2. Interval arithmetic method: Each number in this method is represented by two machine numbers
corresponding to the estimated maximum and minimum values. Two solutions are obtained at every
step corresponding to the maximum and minimum values. The true solution is assumed to lie in
about the centre of the range. The range here is the difference between the solutions corresponding
to the maximum and minimum values.

3. Significant digit arithmetic method: In this method, the digits lost due to the subtraction of two
nearly equal machine numbers are tracked. Only the significant digits in a number are kept and the
rest are rejected or ignored. In this way, all digits retained or kept are assumed to be significant.
The results obtained with this method are considered to be very conservative.

4. Statistical approach: This method starts with the assumption that the round-off error is independent.
A stochastic model for the propagation of round-off errors is then adapted in which the local errors
are considered as random variables. The local round-off errors are assumed to be either uniformly
or normally distributed between their extreme values. Using standard statistical analysis methods,
the standard deviation, the variance and the accumulated round-off error are estimated.

5. Backward error analysis: In this method, based on the result of a computation the possible range
of input data that could have produced it is determined. If the results found with this approach is
consistent with the input data, within the range of observational or round-off error, then there is
some confidence is placed on the result. If this does not happen, then a major source of error is
assumed to exist somewhere else, presumably within the algorithm itself.

6. Forward error analysis: The method can be illustrated by means of an example.
Suppose the value of A (B + C) is to be computed when a, b and c are the approximations to A, B
and C respectively, and the respective error amounts are e1, e2 and e3.
The true value is

A (B + C) = (a + e1) (b + e2 + c + e3) = ab + ac + error
where error = a (e2 + e3) + be1 + ce1 + e1e2 + e1e3

Now assuming the uniform bound |ei| <= e and that error products can be ignored, we get

error ≤ [2|a| + |b| + |c|] e
This procedure can be carried out for any algorithm. It is a tedious analysis. The resulting bounds
are generally very conservative.
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1.5 GENERAL ERROR FORMULA

1.5.1 Function Approximation

Consider the function
        F = f (x1, x2, x3, ..., xn) (1.31)

where x1, x2, x3, ..., xn are variables.
Suppose ∆xi represents error in each xi, so that the error in F is

F + ∆F = f (x1 + ∆x1,  x2 + ∆x2, ..., xn + ∆xn) (1.32)
Taylor’s series expansion of the right hand side of Eq. (1.31) gives

     
2

1 2
1

( , ,..., ) ( )
=

∂+ ∆ = + ∆ + ∆
∂∑

n

n i i
ii

fF F f x x x x O x
x (1.33)

If we assume the errors in xi as small, and 1
∆
�i

i

x
x

, so that the second and higher powers of ∆xi can be
ignored, Eq. (1.33) gives

1 2
1 21=

∂ ∂ ∂ ∂
∆ = ∆ = ∆ + ∆ + + ∆

∂ ∂ ∂ ∂∑ �
n

i n
i ni

f f f fF x x x x
x x x x (1.34)

The relative error Er is then given by

1 2

1 2

∂∂ ∂∆ ∂ ∂ ∂
= = + + +

∂ ∂ ∂
� n

r
n

xx xf f f fE
f x f x f x f (1.35)

Replacing the function f (h) with its approximation φ(h) and denoting the known error bound as µ (hn), where
n is a positive integer, we have

| f (h) – f (h)| ≤ µ |hn| for small h
Thus, φ(h) approximates f (h) with order of approximation O(hn) and we can write

f (h) = φ(h) + O(hn) (1.36)

Example E1.15
Determine the maximum relative error for the function

   F = 3x2y2 + 5y2z2 – 7x2z2 + 38
For x = y = z = 1 and ∆ x = – 0.05, ∆y = 0.001 and ∆z = 0.02.

Solution:
           F = 3x2y2 + 5y2z2 – 7x2z2 + 38

∂
∂
F
x

= 6xy2 – 14 xz2

∂
∂
F
y

= 6x2y + 10yz2

∂
∂
F
z

= 10y2z – 14 x2z
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(∆F) max =
∂ ∂ ∂

∆ + ∆ + ∆
∂ ∂ ∂
F F Fx y z
x y z

= |(6xy2 – 14 xz2) ∆x| + |(6x2y + 10yz2)∆y| + |(10y2z – 14x2z)∆z| = 0.496

For x = y = z = 1 and ∆x = – 0.05, ∆y = 0.001 and ∆z = 0.02, we have the maximum relative error is given by
Eq. (1.34).

             max
max

( ) 0.496
( )

39
∆

= =r
F

E
F

= 0.01272

1.5.2 Stability and Condition
A numerical computation is said to be numerically unstable if the uncertainty of the input values is grossly
magnified by numerical method employed.

Consider the first-order Taylor’s series of a function given by
f (x) = f (a) + f '(a) (x – a) (1.37)

The relative error of f (x) then becomes

      
( ) ( ) ( )( )

( ) ( )
− −′

≅
f x f a f a x a

f x f a (1.38)

The relative error of x becomes

−x a
a

(1.39)

A condition number is often defined as the ratio of the relative errors given by Eqs. (1.38) and (1.39) as

      Condition number = 
( )

( )
′a f a

f a (1.40)

The condition number given by Eq. (1.40) indicates the extent to which an uncertainty in x is magnified by
f (x).

Condition number = 1  (function’s relative error = relative error in x)
Condition number > 1  (relative error is amplified)
Condition number < 1  (relative error is attenuated) (1.41)
Condition number > very large number  (the function is ill-conditioned)

Example E1.16
Compute and interpret the condition number for

(a) f (x) = sin x for a = 0.51π
(b) f (x) = tan x for a = 1.7

Solution:
(a) The condition number is given by

Condition number = 
( )

( )
′a f a

f a
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for a = 0.51π, f ′(a) = cos(0.51 π) = –0.03141, f (a) = sin(0.51 π) = 0.99951

Condition number  = 
( ) (0.51 )(– 0.03141) – 0.05035= =( ) (0.99951)

π′a f a
f a

Since the condition number is < 1, from Eq. (1.41), we conclude that the relative error is attenuated.

(b) f (x) = tan x,  f '(a) = –7.6966 for a = 1.7
f '(x) = 1/cos2x,    f '(a) = 1/cos2(1.7) = 60.2377

Condition number = 
( ) 1.7(60.2377) –13.305= =( ) 7.6966

′
−

a f a
f a

Thus, the function is ill-conditioned.

1.5.3 Uncertainty in Data or Noise
Uncertainty or error in the physical data based on which the computation model is based can introduce
errors in the analysis. This type of error is known as noise. The data can affect the accuracy of the numerical
computations performed. The errors can exhibit both inaccuracy and imprecision. If the input data has d
significant digits of accuracy, then the results obtained from the numerical computation should be reported
in d significant digits of accuracy. For instance if a = 5.358 and b = 0.06437 both have 4 significant digits of
accuracy, then although a – b = 5.29363, we should report the correct answer as a – b = 5.293.
The following observations can be made from the results in Tables 1.6 and 1.7.

(a) Negligible addition: Round-off error has crept into the fourth significant digit when we compare
a – c (rounded) to A – C.
There is a difference in the fourth significant digit when b + d (rounded) are compared to B + D.

(b) Error magnification: Comparing a/c (rounded) to A/C we find a difference in the fourth significant
digit when bd (rounded) and BD are compared, the two answers differ substantially by –40000.

(c) Creeping round-off: In the calculations of a – c, bd, a/c and b + d we find the result of working in
four significant digits as opposed to working “exactly” and then rounding would lead to a loss of
precision in the fourth significant digit. These calculations show the creeping round-off that is the
gradual loss of precision as repeated rounding errors accumulate.

(d) Subtractive calculations: Comparing a – b = – 0.1808 to A – B = – 0.1, we find significant error
introduced by working in fixed-precision arithmetic.

1.6 SEQUENCES

A sequence may converge to a limit in a linear fashion or in a nonlinear fashion. If the sequence is convergent,
then an iterative operation produces a sequence of better and better approximate solutions.

1.6.1 Linear Convergence
Here, we consider a sequence {x0, x1, ..., xn} generated by the iteration xk+1 = g(xk). Table 1.8 lists k, xk, ∆xk
(= xk+1 – xk) and ∆xk+1/∆xk for g(x) = 1 + x/2 where the starting value is taken as 0.85.
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Table 1.8: Linear convergence of the iteration process for k
k+1

x
x = 1+

2

k xk ∆xk = xk+1 – xk 
k 1

k

x
x

+∆
∆

 

  0 
  1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
10 
11 
12 

0.850000000 
1.425000000 
1.712500000 
1.856250000 
1.928125000 
1.964062500 
1.982031250 
1.991015625 
1.995507813 
1.997753906 
1.998876953 
1.999438477 
1.999719238 

0.575 
0.2875 
0.14375 
0.071875 
0.0359375 
0.01796875 
0.008984375 
0.004492188 
0.002246094 
0.001123047 
0.000561523 
0.000280762 
0.000140381 

1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 

Notice that the ratios of successive increments in the last column of Table 1.8 are all exactly equal to 1/2
and the convergence of the sequence to x = 2 is linear. We call this sequence exactly linear since ∆xk + 1
= c� ∆xk for all k > 0. Here c� = 1/2.

The sequence {xk} is said to converge linearly provided the ratio of increments ∆xk +1/∆xk tends to a
constant c�, where 0 < | c�| < 1.

Linear Convergence Theorem

(a) X = g(X), so x = X is a fixed point of the iteration xk+1 = g(xk).
(b) g'(x) is continuous in a neighbourhood of the fixed point X. (1.42)
(c) g′(X) ≠ 0.
Therefore,
(a) {xk} converges to X linearly, with C� = g'(X) if 0 < |g'(X)| < 1.
(b) {xk} diverges linearly, with C� = g'(X) if |g'(X)| > 1. (1.43)
(c) {xk} converges or diverges slowly if g'(X) = ≠ 1.
If s0 = 0 and s1 = r, the general term in a sequence that converges exactly linearly with convergence

constant C is given by
12

0

1
1

−−

=

−
= =

−∑
kk

n
k

n

Cs r C r
C (1.44)

The increments are then given by ∆sk = sk+1 – sk = rCk. Appropriate conditions on C and r would then
guarantee convergence.

1.6.2 Quadratic Convergence
Consider a sequence {x0, x1, ..., xn} generated by the iteration

    xk+1 = g(xk),
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where
22.15 2.87( )

3.96 1.2
+

=
+

xg x
x

a function with fixed points.

Table 1.9 lists k, xk, ∆xk [= (xk+1 – xk)], and ∆xk+1/ (∆xk)2 for which the starting value is x0 = 2. We observe
that the sequence converges very rapidly to the point x = 1. The last column of Table 1.9 shows that the
ratios ∆xk+1/ (∆xk) 2 are tending towards the constant Cq = –0.4. This confirms the quadratic convergence
of the sequence {xk} to the point x = 1.

The sequence {xk} is said to converge quadratically provided the ratio of increments ∆xk+1/(∆xk)2

tends to a constant Cq ≠ 0, ≠ ∞. If ∆xk+1 = Cq(∆xk)2 for all k > 0, then the sequence is said to be exactly
quadratically convergent.

Table 1.9: Quadratic convergence of the iteration process for k+1

22.15x + 2.87
x =

3.96x + 1.2

k xk ∆xk = xk+1 – xk ∆xk+1/(∆xk)2 
0 
1 
2 
3 
4 
5 

2.000000000 
1.257675439 
1.022019537 
1.000190587 
1.000000015 
1.000000000 

–0.7423245614 
–0.2356559011 
–0.0218289508 
–0.0001905722 
–0.0000000145 

–0.4276521490 
–0.3930757235 
–0.3999390216 
–0.3999999952 

Table 1.10: The structure of a sequence which is exactly quadratically convergent

k sk ∆sk = sk+1 – sk ∆sk+1/(∆sk)2 
0 
1 
2 
3 
4 
5 
6 

0 
r 
r2C + r 
r4C3 + r2C + r 
r8C7 + r4C3 + r2C + r 
r16C15 + r8C7 + r4C3 + r2C + r 
r32C31 + r16C15 + r8C7 + r4C3 + r2C + r 

r 
r2C 
r4C3 

r8C7 

r16C15 

r32C31 

C 
C 
C 
C 
C 

Quadratic Convergence Theorem
(a) X = g(X), so x = X is a fixed point of the iteration xk+1 = g(xk).
(b) g''(x) is continuous in a neighbourhood of the fixed point X. (1.45)
(c) g'(X) = 0.

That is, {xk} converges to X quadratically, with 1
( )

2
= − ′′qC g X .

Table 1.10 lists ∆sk, ∆sk = sk + 1 – sk, and the ratios ∆sk + 1/(∆sk)2 for a sequence whose convergence is
exactly quadratic, with convergence constant C, and with starting values s0 = 0 and s1 = r.
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1.6.3 Aitken’s Acceleration Formula
Quadratic convergence or any convergence of order higher than 2 is faster than the linear convergence.
Aitken’s acceleration process is used to accelerate a linearly converging sequence to a quadratically
converging sequence. Aitken’s process will give better results in an iterative numerical technique with fewer
number of iterative operations.

Let x be the limit of the sequence. That is,
lim
→∞

=kk
x x

If {xk}, k = 1 to ∞, is a linearly convergent sequence with limit x, and en = xk – x, then

1lim and 0 1+
α→∞

= λ < λ <k

n
k

e

e (1.46)

where α, ∝ is the order of convergence and λ is the asymptotic error constant. If α = 1, convergence is
linear and if α = 2, convergence is quadratic.
Aitken’s process assumes that the limiting case in Eq. (1.46) occurs for all k ≥ 1. That is,

ek+1 = λek

Therefore, we can write
xk+2 = ek+2 + x = ek+1 + x (1.47)

or xk+2 = λ(xk+1 – x) + x  for all k ≥ 1 (1.48)
Reducing the subscript by 1, we have

xk+1 = λ(xk – x) + x (1.49)
Eliminating λ between xk+1 and xk+2 from Eqs. (1.48) and (1.49), we obtain

2 2 2 2
2 1 2 1 1 1

2 1 2 1

2 2
2 2

+ + + + + +

+ + + +

− + − + − −
= =

− + − +
k k k k k k k k k k k k

k k k k k k

x x x x x x x x x x x x
x

x x x x x x

or
2

1

2 1

( )
2

+

+ +

−
= −

− +
k k

k
k k k

x x
x x

x x x

The sequence {xk} defined by
2

1

2 1

( )
2

+

+ +

−
= −

− +
k k

k k
k k k

x x
x x

x x x

converges more rapidly to x than the original sequence {xk} for n = 1 to ∞.

Example E1.17
The sequence {xk}, n = 1 to ∞, where xk = 3x4 – 2x3 – 2x2 + 2.8 converges linearly to x = 1 with s0 = 0.75.
Using Aitken’s acceleration formula, obtain another sequence, which converges faster to x = 2.

Solution:
The results obtained using both linear convergence algorithm and Aitken’s acceleration formula are shown
in Table E1.17.
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Table E1.17: Results obtained from linear convergence and Aitken’s process

Linear convergence Aitken’s process 
k xk ∆xk = xk+1 – xk 

k 1

k

x
x

+∆
∆

 
2

k 1 k
k

k 2 k 1 k

(x x )
x

x 2x x
+

+ +

−
−

− +
 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.750000000 
1.780468750 
1.890234375 
1.945117188 
1.972558594 
1.986279297 
1.993139648 
1.996569824 
1.998284912 
1.999142456 
1.999571228 
1.999785614 

1.03046875 
0.109765625 
0.054882813 
0.027441406 
0.013720703 
0.006860352 
0.003430176 
0.001715088 
0.000857544 
0.000428772 
0.000214386 
0.000107193 

 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 

1.903320561 
2.000000000 

1.7 SUMMARY

In this chapter we described the Taylor’s theorem, number representation including binary, decimal and
hexadecimal numbers. We have defined absolute and relative errors, inherent errors, round-off errors,
truncation errors, machine epsilon and error propagation. Methods for the estimation were briefly outlined.
General error formulae for approximating a function, stability and condition, uncertainty in data, linear
convergence, quadratic convergence and Aitken’s acceleration formulae were presented.

Problems
1.1 Determine the following hyperbolic trigonometric functions to O (0.9)4.

(a) sinh (0.9)
(b) cosh (0.9)

1.2 Determine when f (x) = 0, given that f (1.7) = –1.7781 and f ' (1.7) = 4.3257.
1.3 Determine f (1.2), given the first order differential equation

2
df x
dx

=   with f (1) = 1.

1.4 (a) Convert (327)10 to binary.
(b) Convert (0.3125)10 to binary.

1.5  Represent the number 50824.6135 in the decimal system (base-10).
1.6 Find the binary and hexadecimal values of the following numbers,

(a) 329
(b) 203

1.7 Convert (75)10 to base-2.
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1.8 Perform the following operations:
(a) (2)8  +  (5)8

(b) convert (75)10 to base-8
(c) convert (13)8 to base-10.

1.9 Convert (4D3)16 to base-10.
1.10 Convert (1001011)2 to base-8.
1.11 Show that the relative error Erxy of the product where x = xe + ∆x and y = ye + ∆y is Erxy = Erx +

Ery. Assume |Erx| << 1 and |Ery| << 1.
1.12 Show that the relative error Erxy of the quotient where x = xe + ∆x and y = ye + ∆y is Erxy = Erx – Ery.

Assume |Erx| << 1 and |Ery| << 1.
1.13 Determine the absolute and relative errors involved if x = 2/3 is represented in normalised decimal

form with 6 digits by
(a) round-off
(b) truncation.

1.14 Given that 5 digit chopping is used for arithmetic calculations involving x and y where x = 1/3 and
y = 5/7. Determine the absolute and relative errors involved.

1.15 If x = 3.536, determine the absolute error and relative error when
(a) x is rounded
(b) x is truncated to two decimal digits.

1.16 If the number x = 57.46235 is rounded off to four significant figures, find the absolute error, relative
error and the percentage relative error.

1.17 If the approximate value of 22
7

 π =  
 is 3.14, determine the absolute error, relative error and relative

percentage error.
1.18 Determine the true error and true percentage relative error for each case.

(a) If the measured length of a track is approximated by 9999 cm and the true value is 10,000 cm
(b) If the measured length of a track is approximated by 9 cm and the true value is 10 cm.

1.19 The exponential function ex can be computed using the Maclaurin series expansion as
2 3

...1
2! 3! !

= + + + + +
n

x x x xe x
n

Include six terms in the series and compute the percentage relative error and approximate estimate of
the error for each term when estimating e0.5.

1.20 Find the relative maximum error in F which F =
2

3
5x y

z
. Given ∆x = ∆y = ∆z = 0.001, where ∆x, ∆y and

∆z denote the errors in x, y and z respectively such that x = y = z = 1.
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1.21 Consider the trigonometric function f (x) = cos x
(a) find the Taylor series expansion of f (x) about 0.
(b) assuming the Taylor series is truncated to n = 6 terms. Determine the relative error at x = π/4

due to truncation. Express it as a percentage.
(c) determine an upper bound on the magnitude of the relative error at x = π/4 expressed as a

percentage.
1.22 Suppose f (x) = e–x is to be expanded about the point x = 1 and truncated to n = 6 terms.

2 3 4 5
1

2 6 24 120
x x x x xe x− = − + − + −

Determine the upper bound on the magnitude of the absolute error due to truncation.
1.23 Determine the upper bound on the error for the function

f (x) = (x + 1)1/2

using a polynomial approximation with third-order Taylor series (computed about x0 = 0) for all
x∈[0, 1].

1.24 Consider the power series expansion for ex given by

2 3 1 11 ,0 < < .
2! 3! ( 1)! !

n n
x x x x xe x e x

n n

−
ξ−= + + + + + + ξ

−
�

Determine the number of terms, n such that their sum gives the value of ex correct to 8 decimal
places at x = 1.

1.25 Use Taylor’s series expansion with n = 0 to 6 to approximate f (x) = cos x at xi + 1 = π/3 on the premise
that the value of f (x) and its derivatives at xi = π/4. Assume h = π/3 – π/4 = π/12.

1.26 Compute and interpret the condition number for

(a) f (x) = tan x  for a = 0.1
2 2
π π +   

(b) f (x) = tan x  for a = 0.01
2 2
π π +   

1.27 Evaluate and interpret the condition numbers for

(a) f (x) = (x2 – 1)1/2 – x   for x = 200

(b) f (x) = 
1xe

x
+

   for x = 0.01

(c) f (x) = 
cos

1 sin
x

x+
   for x = 0.001π

(d) f (x) = e–2x  for x = 5
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1.28 Verify whether the iteration xk +1 = g (xk) starting from the given x0 converges linearly for the
following functions g(x).
(a) 7x3 + x2 – 7x – 8, x0 = – 0.75
(b) –3x3 + 5x2 – 4x + 1.5, x0 = 0.9
(c) 4x4 + 5x3 – 2x2 – 3x – 2, x0 = – 0.5
(d) 3x3 + x2 – 5x + 3, x0 = 0.5
(e) –4x3 – 8x2 – 3x + 2, x0 = –1.25

1.29 Show that the iteration xk +1 = g (xk) starting from the given x0 will not converges quadratically for the
following functions g(x).

(a) g(x) = 
3 2

2
2 3.5 6

3 5 3
x x

x x
+ −

+ −
, x0 = –4

(b) g(x) = 
3 2

2
8 4.5 3
12 8 1.5

x x
x x

+ −
+ +

, x0 = –1

(c) g(x) = 
3 26 6 1.5
(9 11)

x x
x x

+ +
+

, x0 = –2

(d) g(x) = 
4 3 2

3 2
3 4 6 1
4 5 10 1
x x x
x x x

+ + +
+ + −

, x0 = –1

(e) g(x) =
4 3 2

3 2
3 9 3 5
4 14 7 2

x x x
x x x

+ + +
+ + −

, x0 = –4

1.30 The sequence {sk}, n = 1 to ∞, where sk = 
1ln 1n
n

 +   , converges linearly to s = 1. Using Aitken’s

acceleration formula, obtain another sequence, which converges faster to s = 1.
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2.1 INTRODUCTION

In this chapter we present the solution of n linear simultaneous algebraic equations in n unknowns. Linear
systems of equations are associated with many problems in engineering and science, as well as with
applications of mathematics to the social sciences and quantitative study of business and economic problems.
A system of algebraic equations has the form

a11x1 + a12x2 + … + a1nxn = b1

a12x1 + a22x2 + … + a2nxn = b2

        �        �              �
an1x1 + an2x2 + … + annxn = bn (2.1)

where the coefficients aij and the constants bj are known and xi represents the unknowns. In matrix notation,
the equations are written as

1 111 12 1

21 22 2 2 2

1 2

n

n

n n nn n n

x ba a a
a a a x b

a a a x b

    
    
     =    
    

          

�
�

� � � � � �
�

(2.1a)

or simply Ax = b (2.1b)
A system of linear equations in n unknowns has a unique solution, provided that the determinant of the
coefficient matrix is non-singular i.e., if | A | ≠ 0. The rows and columns of a non-singular matrix are linearly
independent in the sense that no row (or column) is a linear combination of the other rows (or columns):

If the coefficient matrix is singular, the equations may have infinite number of solutions, or no solutions
at all, depending on the constant vector.

Linear algebraic equations occur in almost all branches of engineering. Their most important application
in engineering is in the analysis of linear systems (any system whose response is proportional to the input

C
H

A
P

T
E

R

2

Linear System of Equations

2
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is deemed to be linear). Linear systems include structures, elastic solids, heat flow, seepage of fluids,
electromagnetic fields and electric circuits i.e., most topics taught in an engineering curriculum. If the system
is discrete, such as a truss or an electric circuit, then its analysis leads directly to linear algebraic equations.

Summarising, the modelling of linear systems invariably gives rise to equations of the form Ax = b,
where b is the input and x represents the response of the system. The coefficient matrix A, which reflects the
characteristics of the system, is independent of the input. In other words, if the input is changed, the equations
have to be solved again with a different b, but the same A. Hence, it is desirable to have an equation solving
algorithm that can handle any number of constant vectors with minimal computational effort.

2.2 METHODS OF SOLUTION

There are two classes of methods for solving system of linear, algebraic equations: direct and iterative methods.
The common characteristics of direct methods are that they transform the original equation into equivalent
equations (equations that have the same solution) that can be solved more easily. The transformation is
carried out by applying certain operations.

The solution does not contain any truncation errors but the round off errors is introduced due to floating
point operations.

Iterative or indirect methods, start with a guess of the solution x, and then repeatedly refine the solution
until a certain convergence criterion is reached. Iterative methods are generally less efficient than direct
methods due to the large number of operations or iterations required.

Iterative procedures are self-correcting, meaning that round off errors (or even arithmetic mistakes) in
one iteration cycle are corrected in subsequent cycles. The solution contains truncation error. A serious
drawback of iterative methods is that they do not always converge to the solution. The initial guess affects
only the number of iterations that are required for convergence. The indirect solution technique (iterative) is
more useful to solve a set of ill-conditioned equations.

In this chapter, we will present six direct methods and two indirect (iterative) methods.
Direct Methods:

1. Matrix Inverse Method
2. Gauss Elimination Method
3. Gauss-Jordan Method
4. Cholesky’s Triangularisation Method
5. Crout’s Method
6. Thomas Algorithm for Tridiagonal System

Indirect or Iterative Methods:
1. Jacobi’s Iteration Method
2. Gauss-Seidal Iteration Method

2.3 THE INVERSE OF A MATRIX

If A and B are m × n matrices such that
AB = BA = I (2.2)

then B is said to be the inverse of A and is denoted by
B = A–1 (2.2a)
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In order to find the inverse A–1, provided the matrix A is given, let us consider the product,

1
11 21 111 12 1

2
21 22 2 12 22 2

1 2
1 2 1 2

| | | | ( 1) | |

| | | | ( 1) | |

( 1) | | ( 1) | | | |

n
nn

n
n n

n n
n n nn n n nn

M M Ma a a
adj a a a M M M

a a a M M M

+

+

+ +

 − − 
  

= × − −  
   − −    

A A

��
� �
� �

1
( 1) | |

n
i j

kj ij
j

a M+

=

 
= − 
  
∑ (2.3)

An element of the matrix on the right side of Eq. (2.3) has the value

    
11 12 1

21 22 2
1

1 2

( 1) | | | |
nn

i j
kj ij n

j
n n nn

a a a
a M a a a a

a a a

+

=
− = =∑

�
�
�

 if i = k (2.4)

If i ≠ k the determinant possesses two identical rows, since the determinant corresponding to i ≠ k is obtained
from the matrix [a] by replacing the i th row by the kth row and keeping the k th row intact. Therefore, if i ≠ k
the value of the element is zero.

Equation (2.3) can be written as
A Adj A = |A| I (2.5)

Premultiplying Eq. (2.5) throughout by A–1 and dividing the result by |A|, we get

1

det
− =

adj AA
A (2.6)

so that the inverse of a matrix A is obtained by dividing its adjoint matrix by its determinant |A|.
If det A is equal to zero, then the elements of A–1 approach infinity (or are indeterminant at best), in

which case the inverse A–1 is said not to exist, and the matrix A is said to be singular. The inverse of a matrix
exists only if determinant is not zero, that is, the matrix must be non-singular.

There is no direct division of matrices. The operation of division is performed by inversion; if
AB = C

then   B = A–1C
where A–1 is called the inverse of matrix A.

The requirements for obtaining a unique inverse of a matrix are:
1. The matrix is a square matrix
2. The determinant of the matrix is not zero (the matrix is non-singular)

The inverse of a matrix is also defined by the relationship:
A–1A = I
The following are the properties of an inverted matrix:
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1. The inverse of a matrix is unique.
2. The inverse of the product of two matrices is equal to the product of the inverse of the two matrices

in reverse order:
(AB)–1 = B–1A–1

3. The inverse of a triangular matrix is itself a triangular matrix of the same type.
4. The inverse of a symmetrical matrix is itself a symmetrical matrix.
5. The negative powers of a non-singular matrix are obtained by raising the inverse of the matrix to

positive powers.
6. The inverse of the transpose of A is equal to the transpose of the inverse of A:

(AT)–1 = (A–1) T

Example E2.1

Find the inverse of the matrix 
2 3
5 1

A
 

=  
 

Solution:

If
2 3
5 1

A
 

=  
 

then
1 3
5 2

− 
=  − 

Aadj

and   det A = 2 × 1 – 5 × 3 = –13

Hence 1

1 3
1 31 13 13
5 2 5 213

13 13

−

 − − 
= − =   −    −  

A

2.4 MATRIX INVERSION METHOD

Consider a set of three simultaneous linear algebraic equations
a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3 (2.7)
Equation (2.7) can be expressed in the matrix form

Ax = b (2.8)
Premultiplying by the inverse A–1, we obtain the solution of x as

  x = A–1b (2.9)
If the matrix A is non-singular, that is, if det (A) is not equal to zero, then Eq. (2.9) has a unique solution.
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The solution for x1 is

1 12 13
22 23 12 13 12 13

1 2 22 23 1 2 3
32 33 32 33 22 23

3 32 33

1 1
| | | |

  = = − + 
  

b a a
a a a a a a

x b a a b b b
a a a a a a

b a a
A A

            1 11 2 21 3 31
1 { }

| |
= + +b C b C b C

A

where A is the determinant of the coefficient matrix A, and C11, C21 and C31 are the cofactors of A
corresponding to element 11, 21 and 31. We can also write similar expressions for x2 and x3 by replacing the
second and third columns by the y column respectively. Hence, the complete solution can be written in
matrix form as follows:

1 111 21 31

2 12 22 32 2

13 23 333 3

1
| |

    
    =    
        

A

x bC C C
x C C C b

C C Cx b
(2.10)

or
1 1{ } [ ]{ } [ ]{ }

| | | |
= = A

A Ajix C b adj b

Hence  1 1
| |

− = adjA A
A

and Adj A = A–1 abs [A] (2.11)

Although this method is quite general but it is not quite suitable for large systems because evaluation of
A–1 by co-factors becomes very cumbersome.
Example E2.2
Obtain the solution of the following linear simultaneous equations by the matrix inversion method.

(a)       
1

2

1 3 5
4 1 12

    
=    −    

x
x

(b)

1

2

3

1 1 3 5
4 2 1 0
1 3 1 5

x
x
x

−     
    − =    
        

Solution:

(a)          
1

2

1 3 5
4 1 12

    
=    −    

x
x

C11 = (–1)1+1|–1| = –1
C12 = (–1)1+2|4| = –4
C21 = (–1)1+|3| = –3

C22 = (–1)2+2|1| = 1
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Hence
1 4
3 1
− − 

=  − 
C

1 3
4 1
− − 

=  − 
TC

1 31
4 1| | 13

− − − −= =  − 

T
1 CA

A

Hence
1

2

1 3 5 5 36 411 1 1
4 1 12 20 12 813 13 13
− − − − −         − − −

= = =         − − + −        

x
x

Therefore,    1
41

3.15
13

x −
= =
−

and    2
8

0.62
13

x −
= =
−

(b)   

1 1 3
| A | 4 2 1 40

1 3 1

−
= − =

The matrix of cofactors is given by

    

5 5 10
10 2 4

5 13 6

− 
 = − − 
 − 

C

The transpose of C is the adjoint of A or

     

5 10 5
5 2 13

10 4 6

− 
 = = − − 
 − 

TAdj A C

1
5 10 5

1/ | | 5 2 13
40

10 4 6
A−

− 
 = = − − 
 − 

A Adj A

          Therefore  1
5 10 5 5 0 0

1 15 2 13 0 40 1
40 40

10 4 6 5 80 2

−
−       

       = = − − = =       
       −       

AX Y

or x1 = 0, x2 = 1, x3 = 2.
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Example E2.3
Find the inverse of the matrix

    

2 2 0
2 1 1
3 0 1

A
 
 = − 
  

and solve the system of equations [A] {x} = {b} where {b} = 
6
3
6

 
 
 
  

.

Solution:

The determinant of 
2 2 0
2 1 1
3 0 1

A = −

 = 2[1(1) – 0(1)] + 2[2(1) – 0(0)] + 3[2(1) – 1(0)] = 12
Since det A = 12 ≠ 0, the given matrix is non-singular. The cofactors corresponding to the entries in each row
of det A are

11 12 13
1 1 2 1 2 1

1 5 3
0 1 3 1 3 0

C C C
− −

= = = − = = = −

21 22 23
2 0 2 0 2 2

2 2 6
0 1 3 1 3 0

C C C= − = − = = = − =

31 32 33
2 0 2 0 2 2

2 2 6
1 1 2 1 2 1

C C C= = = − = − = =
− −

Hence      

1 1 1
12 6 6

1 5 1 1
12 6 6
1 1 1
4 2 2

1 2 2
1 5 2 2

| | 12
3 6 6

−
 − − 
  = = − = −     − −   

TCA
A

It is easy to verify that A–1A = AA–1 = I.

Therefore       

6 3 6 6 6 121 1 1 12 6 6 121 12 6 6
5 30 3 6 30 6 121 1

2 12 6 6 12 6 6 12
1 1 1 6 6 126 3 63 4 2 2 44 2 2

6 1
[ ] 3 2

6 3

− +

+ −

− + +−

   − + −               = = − = + − = =                −       + +     

x
x b
x

A-1

2.4.1 Augmented Matrix
A system of linear equations in matrix notation takes the form Ax = b, where A is of order m × n, x is of order
n × 1. The augmented matrix [Ab] can be obtained by adjoining column b to matrix A. In terms of partitioned
matrices we have [Ab] = [A : b].
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As an example let us consider a set of linear equations
x + y + z = 8
x + y – z = 5
x – y + z = 2

Then we have,

1 1 1 8
[ ] 1 1 1 ; { } 5

1 1 1 2
A b

   
  = − =   
  −   

and

1 1 1 8
[ ] 1 1 1 5

1 1 1 2
bA

 
 = − 
 − 

2.5  GAUSS ELIMINATION METHOD

Consider the following system of linear simultaneous equations:
a11x1 + a12x2 + a13x3 = b1 (2.12)
a21x1 + a22x2 + a23x3 = b2 (2.13)
a31x1 + a32x2 + a33x3 = b3 (2.14)

Gauss elimination is a popular technique for solving simultaneous linear algebraic equations. It reduces the
coefficient matrix into an upper triangular matrix through a sequence of operations carried out on the matrix.
The vector b is also modified in the process. The solution vector {x} is obtained from a backward substitution
procedure.

Two linear systems Ax = b and A'x = b'  of equations are said to be equivalent if any solution of one
is a solution of the other. Also, let Ax = b is a linear non-homogeneous system of n equations. Suppose we
subject this system to the system of following operations:

1. Multiplication of one equation by a non-zero constant.
2. Addition of a multiple of one equation to another equation.
3. Interchange of two equations.
If the sequence of operations produce the new system A′′′′′x = b′, then both the systems Ax = b and

A′x = b' are equivalent. In particular, then A is invertible if A′′′′′ is invertible. In Gauss elimination method, we
adopt this and the elimination process is based on this theorem.

In Gauss elimination method, the unknowns are eliminated such that the elimination process leads to an
upper triangular system and the unknowns are obtained by back substitution. It is assumed a11 ≠ 0. The
method can be described by the following steps:

Step 1: Eliminate x1 from the second and third equations.
Using the first equation (2.12), the following operations are performed:

3121

11 11

(2.13) (2.12) and (2.14) (2.12)
aa

a a
   

− −      
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gives a11x1 + a12x2 + a13x3 = b1 (2.15)
        a'22x2 + a'23x3 = b'2 (2.16)
        a'32x2 + a'33x3 = b'3 (2.17)

Equation (2.15) is called the pivotal equation and the coefficient a11 is the pivot.
Step 2: Eliminate x2 from the Eq. (2.17) using Eq. (2.16) by assuming a'22 ≠ 0. We perform the following
operation:

32

22
(2.17) (2.16)

a
a

 ′
−  ′ 

to obtain a11x1 + a12x2 + a13x3 = b1 (2.18)
a'22x2 + a'23x3 = b'2 (2.19)

and a²33x3 = b''3 (2.20)
Here Eq. (2.19) is called the pivotal equation and the coefficient a'22 is the pivot.
Step 3: To find x1, x2 and x3, we apply back substitution starting from Eq. (2.20) giving x3, then x2 from
Eq. (2.19) and x1 from Eq. (2.18).
Pivoting:
Gauss elimination method fails if any one of the pivots in the above equations (2.12) to (2.20) becomes zero.
To overcome this difficulty, the equations are to be rewritten in a slightly different order such that the pivots
are not zero.
Partial pivoting method:
Step 1: The numerically largest coefficient of x1 is selected from all the equations are pivot and the
corresponding equation becomes the first equation (2.12).
Step 2: The numerically largest coefficient of x2 is selected from all the remaining equations as pivot and the
corresponding equation becomes the second equation (2.16). This process is repeated till an equation into
a simple variable is obtained.
Complete pivoting method:
In this method, we select at each stage the numerically largest coefficient of the complete matrix of coefficients.
This procedure leads to an interchange of the equations as well as interchange of the position of variables.
Example E2.4
Solve the following equations by Gauss elimination method:

2x + 4y – 6z = – 4
x + 5y + 3z = 10
x + 3y + 2z = 5

Solution:
2x + 4y – 6z = – 4 (E.1)
x + 5y + 3z = 10 (E.2)
x + 3y + 2z = 5 (E.3)



38 // Numerical Methods //

To eliminate x from (E.2) and (E.3) using (E.1):
2x + 4y – 6z = – 4
x + 5y + 3z = 10 1 × (– 2)
x + 3y + 2z = 5 1 × (– 2)

2x + 4y – 6z = –4
–2x – 10y – 6z = –20
–2x – 6y – 4z = –10

2x + 4y – 6z = –4
Row 1 + Row  2: – 6y – 12z = –24 (E.6)
Row 1 + Row 3: 2y – 10z =  –14 1 × (–3) (E.5)

To eliminate y from (E.5) using (E.4):
2x + 4y – 6z = –4

–6y – 12z = –24
6y + 30z =   42

2x + 4y – 6z = –4
–6y – 12z = –24

Row 2 + Row 3: 18z = 18        1z⇒ =
Evaluation of the unknowns by back substitution:

– 6y – 12z = –24

6y = 24 – 12z        
24 12 1

2
6

− ×
⇒ = ⇒ =y y

2x + 4y – 6z = –4

2x = –4 – 4y + 6z  
4 4 2 6 1

3
2

− − × + ×
⇒ = ⇒ = −x x

Example E2.5
Use the method of Gaussian elimination to solve the following system of linear equations:

x1 + x2 + x3 – x4 = 2
4x1 + 4x2 + x3 + x4 = 11
x1 – x2 – x3 + 2x4 = 0

2x1 + x2 + 2x3 – 2x4 = 2 (E.1)
Solution:
In the first step, eliminate x1 terms from second, third and fourth equations of the set of equations (E.1) to
obtain:

x1 + x2 + x3 – x4 = 2
–3x3 + 5x4 = 3

–2x2 – 2x3 + 3x4 = –2
–x2 = –2 (E.2)

Interchanging columns in Eq. (E.2) putting the variables in the order x1, x4, x3 and x2 as
x1 – x4 + x3 + x2 = 2

–5x4 – 3x3 = 3
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3x4 – 2x3 – 2x2 = –2
–x2 = –2 (E.3)

In the second step, eliminate x4 term in third equation of the set of equations (E.3)
x1 – x4 + x3 + x2 = 2

5x4 – 3x3 = 3
–1/5x3 – 2x2 = –19/5

–x2 = –2
Now, by the process of back substitution, we have

x2 = 2, x3 = –1, x4 = 0, x1 = 1.

Example E2.6
Using the Gaussian elimination method, solve the system of equations [A] {x} = {b} where

    

1 1 1 1 3
2 1 3 0 3

[ ] and { }
0 2 0 3 1
1 0 2 1 0

   
   −   = =        −    

bA

Solution:
The augmented matrix is

   

1 1 1 1 3
2 1 3 0 3

[ ] 0 2 0 3 1
0 2 0 3 1
1 0 2 1 0

 
 − 
 =
 
 
 − 

bA

From the augmented matrix, we apply elementary transformations:
1 1 1 1 3
0 3 1 2 3

Row 2 2 Row 1
0 2 0 3 1

Row 4 Row 1
0 2 0 3 1
0 1 3 2 3

 
 − − − ×
 

+  
 
  

which gives

52 52
3 3 3 3

10 4
3 3

1 1 1 1 3 1 1 1 1 3
0 3 1 2 3 0 3 1 2 3
0 0 1 0 0 1
0 0 2 0 0 0 7 7

   
   − − − − − −   
 −  −
   −     

Hence, by back substitution the upper triangular matrix, we obtain
x4 = –1, x3 = 1, x2 = 2, x1 = 1.
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2.6  GAUSS-JORDAN METHOD

Gauss-Jordan method is an extension of the Gauss elimination method. The set of equations Ax = b is reduced
to a diagonal set Ix = b', where I is a unit matrix. This is equivalent to x = b'. The solution vector is therefore
obtained directly from b'. The Gauss-Jordan method implements the same series of operations as implemented
by Gauss elimination process. The main difference is that it applies these operations below as well as above
the diagonal such that all off-diagonal elements of the matrix are reduced to zero. Gauss-Jordan method also
provides the inverse of the coefficient matrix A along with the solution vector {x}. The Gauss-Jordan method
is highly used due to its stability and direct procedure. The Gauss-Jordan method requires more computational
effort than Gauss elimination process.

Gauss-Jordan method is a modification of Gauss elimination method. The series of operations performed
are quite similar to the Gauss elimination method. In the Gauss elimination method, an upper triangular matrix
is derived while in the Gauss-Jordan method an identity matrix is derived. Hence, back substitutions are not
required.

Example E2.7
Solve the following equations by Gauss-Jordan method.

x + 3y + 2z = 17
x + 2y + 3z = 16
2x – y + 4z = 13

Solution:
Consider x + 3y + 2z = 17 (E.1)

x + 2y + 3z = 16 (E.2)
2x – y + 4z = 13 (E.3)
x + 3y + 2z = 17 (E.1) (–2) + (E.3)
x + 2y + 3z = 16 (E.2) (–1) + (E.1)
2x – y + 4z = 13
x + 3y + 2z = 17

y – z = 1 x(2) + (E.1)

7y = 21 3y⇒ =

x + 5y = 19
 y – z = 1 ⇒ z = y – 1 =  3 – 1 2z⇒ =

x + 5y = 19 ⇒ x = 19 – 5 × 3 4x⇒ =

Example E2.8
Solve the following system of equations using the Gauss-Jordan method.

x – 2y = – 4
5y + z = – 9

4x – 3z = – 10
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Solution:
The augmented matrix is

1 2 0 4
0 5 1 9
4 0 3 10

− − 
 − − 
 − − 

Multiplying 1st row by –4 and adding the result to the 3rd row, we obtain

1 3

1 2 0 4
4 0 5 1 9

0 8 3 6
R R

− − 
 − + → − − 
 − 

Now, multiply the 2nd row by –1/5

           2

1 2 0 4
1 0 1 1/ 5 9 / 5
5

0 8 3 6
R

− − 
 − → − 
 − 

Multiply the 2nd row and add the result to the 1st row. Then multiply the 2nd row by –8 and add the result to
the 3rd row.

  2 1

1 0 2 / 5 2 / 5
2 0 1 1/ 5 9 / 5

0 0 7 / 5 42 / 5
R R

− − 
 + → − 
 − − 

Multiply 3rd row by –5/7

      3

1 0 2 / 5 2 / 5
5 0 1 1/ 5 9 / 5
7

0 0 1 6
R

− − 
 − → − 
  

Multiply 3rd row by 2/5 and add the result to 1st row. Then multiply 3rd row by 1/5 and add the result to 2nd row.
2

3 15

1
3 25

1 0 0 2
0 1 0 3
0 0 1 6

R R

R R

+ →  
 
 
 + → 

Hence, the last matrix above represents the system with x = 2, y = 3 and z = 6.

Example E2.9
Solve the following set of equations by Gauss-Jordan method.

2x1 + x2 – 3x3 = 11
4x1 – 2x2 + 3x3 =  8
–2x1 + 2x2 – x3 = –6
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Solution:
The augmented matrix for the given set of equations is

2 1 3 11
4 2 3 8
2 2 1 6

− 
 − 
 − − − 

1 3 111
2 2 2

: Divide Row 1 by 2Step 1 4 2 3 8
2 2 1 6

 − 
 

− 
 − − − 

Step 2: Row 2 4 Row 1
Row 3 2 Row 1

− ×
− ×

  

1 3 111
2 2 2

0 4 9 14
0 3 4 5

 − 
 

− − 
 − 

Step 3: Divide Row 2 by –4   

1 3 111
2 2 2

9 70 1
4 2

0 3 4 5

 − 
 
 − 
 −  

Step 4: Row 1 1/ 2 Row 2
Row 3 3 Row 2

− ×
− ×

3 151 0
8 4
9 70 1
4 2

11 110 3
4 2

 − 
 
 − 
 
 −  

Step 5: Divide Row 3 by 11/4

3 151 0
8 4
9 70 1
4 2

0 0 1 2

 − 
 
 − 
 −  

Step 6: 
Row 1 3/ 8 Row 3
Row 2 9 / 4 Row 3

+ ×
+ ×

1 0 0 3
0 1 0 1
0 0 1 2

 
 − 
 − 

Hence the solution is x1 = 3, x2 = –1, x3 = –2.
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Example E2.10
Solve 2x1 + 6x2 + x3 = 7

x1 + 2x2 – x3 = –1
5x1 + 7x2 – 4x3 = 9

Using (a) Gaussian elimination and (b) Gauss-Jordan elimination.

Solution:
(a) Using row operations on the augmented matrix of the system,

1 2

1 312

2
5

2 6 1 7 1 2 1 1 1 2 1 1
1 2 1 1 2 6 1 7 0 2 3 9
5 7 4 9 5 7 4 9 0 3 1 14

R R
R RR

− +
− +

− − − −     
     − − → →     

− − −     

    
2 3

2 3

1 2
3 3 93 9 3 92 11

2 22 2 2 2
5511

2 2

1 2 1 11 2 1 1 1 2 1 1
0 10 1 0 1
0 00 3 1 14 0 0 1 5

R RR R+
− − − − − −   

    → → →     −    
(E.1)

The last matrix is in row-echelon form and represents the system

x1 + 2x2 – x3 = –1 (E.2)

  2 3
3 9
2 2

x x+ = (E.3)

x3 = 5 (E.4)

Substituting x3 = 5 into Eq. (E.3) gives x2 = –3. Substituting both these values back into Eq. (E.2)
finally yields x1 = 10.

(b) We start with the last matrix in Eq. (E.1) above. Since the first entries in the second and third rows
are 1s, we must, in turn, make the remaining entries in the second and third columns 0s:

3 1

3 2
2 1

4
3

23 9 3 9 2
2 2 2 2

1 2 1 1 1 0 4 10 1 0 0 10
0 1 0 1 0 1 0 3
0 0 1 5 0 0 1 5 0 0 1 5

R R
R RR R

+

− +− +
− − − −     

     → → −     
     

(E.5)

The last matrix in Eq. (E.5) is now in reduced row-echelon form. It is evident that the solution of
the system is x1 = 10, x2 = –3, x3 = 5.
LU Decomposition: It is possible to show that any square matrix A can be expressed as a product
of a lower triangular matrix L and an upper triangular matrix U.

A = LU
For instance

11 12 13 11 11 12 13

21 22 23 21 22 22 23

31 32 33 31 32 33 33

0 0
0 0

0 0

a a a L U U U
a a a L L U U
a a a L L L U

     
     =     
          
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The process of computing L and U for a given A is known as LU Decomposition or LU Factorisation. LU
decomposition is not unique (the combinations of L and U for a prescribed A are endless), unless certain
constraints are placed on L or U. These constraints distinguish one type of decomposition from another.
Two commonly used decompositions are given below:

1. Cholesky’s decomposition: Constraints are L = UT

2. Crout’s decomposition: Constrains are Uii = 1, i = 1, 2, ..., n.
After decomposing the matrix A, it is easier to solve the equations Ax = b.
We can rewrite the equations as

LUx = b
or denoting Ux = y, the above equation becomes

  Ly = b
This equation Ly = b can be solved for y by forward substitution. Then Ux = y will yield x by the

backward substitution process. The advantage of LU decomposition method over the Gauss elimination
method is that once A is decomposed, we can solve Ax = b for as many constant vectors b as we please.
Also, the forward and backward substitutions operations are much less time consuming than the
decomposition process.

2.7 CHOLESKY’S TRIANGULARISATION METHOD

Cholesky’s decomposition method is faster than the LU decomposition. There is no need for pivoting. If the
decomposition fails, the matrix is not positive definite.

Consider the system of linear equations:
a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3 (2.21)
The above system can be written as (2.22)

Ax = b

where
1 111 12 13

21 22 23 2 2

31 32 33 3 3

, ,
    
    = = =    
         

x ba a a
a a a x bx b
a a a x b

A

Let    A = LU… (2.23)

11 12 13

21 22 23

31 32 33

1 0 0
1 0 0and =

1 0 0

u u u
l u uL U
l l u

   
   =    
      

Equation (2.21) can be written as
LUX = b (2.24)

If we write   UX = V (2.25)
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Equation (2.24) becomes
   LV = b (2.26)

Equation (2.26) is equivalent to the system

v1 = b1

l21v1 + v2 = b2

l31v1 + l32v2 + v3 = b3 (2.27)
The above system can be solved to find the values of v1, v2 and v3 which give us the matrix V.

UX = V
then becomes

u11x1 + u12x2 + u13x3 = v1

u22x2 + u23x3 = v2

u33x3 = v3 (2.28)

which can be solved for x3, x2 and x1 by the backward substitution process.
In order to compute the matrices L and U, we write Eq. (2.23) as

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0
1 0 0

1 0 0

u u u a a a
l u u a a a
l l u a a a

     
     =     
          

(2.29)

Multiplying the matrices on the left and equating the corresponding elements of both sides, we obtain
   u11 = a11, u12 = a12, u13 = a13 (2.30)

21
21 11 21 21

11

31
31 11 31 31

11

al u a l
a
a

l u a l
a

= ⇒ = 

= ⇒ =


(2.31)

21
21 12 22 22 22 22 12

11

21
21 13 23 23 23 23 13

11

al u u a u a a
a
al u u a u a a
a

+ = ⇒ = − 

+ = ⇒ = −


(2.32)

31
32 1231 12 32 22 32 32

1122

1 a
a al u l u a l

au
 −+ = ⇒ =  
 

(2.33)

and l31u13 + l32u23 + u33 = a33 (2.34)

The value of u33 can be computed from Eq. (2.34).
To obtain the elements of L and U, we first find the first row of U and the first column of L. Then, we

determine the second row of U and the second column of L. Finally, we compute the third row of U.
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Cholesky’s triangularisation method is also known as Crout’s triangularisation method or method of
factorisation.

Example E2.11
Solve the following equations by Cholesky’s triangularisation method.

2x + y + 4z = 12
8x – 3y + 2z = 20
4x + 11y – z = 33

Solution:

We have
2 1 4 12
8 3 2 , , 20
4 11 1 33

x
A X y B

z

     
     = − = =     
     −     

Let
11 12 13

21 22 23

31 32 33

1 0 0 2 1 4
1 0 0 8 3 2

1 0 0 4 11 1

u u u
l u u
l l u

     
     = −     
     −    

Multiplying and equating we get:

l × u11 =   2 11 2u⇒ =

l × u12 =   1 12 1u⇒ =

l × u13 =   4 13 4u⇒ =

l21 × u11 =   8 21
11

8 8
4

2
l

u
⇒ = = =

          l21 × u12 + u22 = –3 22u⇒ = –3 – l21 × u12 = –3 – 4 × 1 = –7

 l21 × u13 + u23 =   2 23u⇒ = 2 – l21 × u13 = 2 – 4 × 4 = –14

l31 × u11 =  4 31
11

4 4
2

2
l

u
⇒ = = =

l31 × u12 + l32 × u22 = 11 31 12
32

22

11 11 2 1 9
7 7

l u
l

u
− × − ×

⇒ = = = −
−

l31 × u13 + l32 × u23 + l × u33= –1 33u⇒ = –1 – l31 × u13 – l32 × u23 = –1 – 2 × 4 – 9 ( 14)
7

 − −   = –27

We get:             

1 0 0 2 1 4
4 1 0 0 7 14

9 0 0 272 1
7

A

       = − −    −−    
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and the given system can be written as:

1 0 0 2 1 4 12
4 1 0 0 7 14 20

9 0 0 27 332 1
7

x
y
z

                − − =            −−        

Writing: LV = B, we get

1

2

3

1 0 0 12
4 1 0 20

9 332 1
7

V
V
V

            =        −      

which gives                1 12V = 2V⇒

4V1 + V2 = 20 2V⇒ = 20 – 4 × 12 = –28

2V1 –
9
7

V2 + V3 = 33 3
9

33
7

V⇒ = + (–28) – 2× 12 = –27

The solution to the original system is given by:

UX = V

2 1 4 12
0 7 14 28
0 0 27 27

x
y
z

     
     − − = −     
     − −     

2x + y + 4z = 12
–7y – 14z = –28

–27z = –27           1z⇒ =

                          7y = 28 – 14 × 1
14

2
7

y y⇒ = ⇒ =

       2x = 12 – y – 4z = 12 – 2 – 4 × 1
6

3
2

x x⇒ = ⇒ =

Example E2.12
Solve the system of equations using Cholesky’s factorisations.

x1 + x2 + x3 – x4 = 2
x1 – x2 – x3 + 2x4 = 0

4x1 + 4x2 + x3 + x4 = 11
2x1 + x2 + 2x3 – 2x4 = 2
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Solution:
The set of equations can be written in the matrix form [A]{x} = {b}

1

2

3

4

1 1 1 1 2
1 1 1 2 0
4 4 1 1 11
2 1 2 2 2

x
x
x
x

−     
    − −      =             −     

Let us decompose [A] in the form
[A] = [L] [U]

where

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

1 0 0 0
1 0 0 0

[ ] and [ ]
1 0 0 0

1 0 0 0

u u u u
l u u u

L U
l l u u
l l l u

   
   
   = =
   
   

     

The product of [L][U] gives

11 12 13 14

21 11 21 12 22 21 13 23 21 14 24

31 11 31 12 32 22 31 13 32 23 33 31 14 32 24 34

41 11 41 12 42 22 41 13 42 23 43 33 41 14 42 24 43 34 44

[ ][ ]

 
 + + + =
 + + + + +
 + + + + + +  

u u u u
l u l u u l u u l u u

L U
l u l u l u l u l u u l u l u u
l u l u l u l u l u l u l u l u l u u

Equating the elements of this matrix to the [A] matrix yields the following equations
u11 = 1 l21u11 = 1 l31u11 = 4 l41u11 = 2
u12 = 1 l21u12 + u22 = –1 l31u12 + l32u22 = 4 l41u12 + l42u22 = 1
u13 = 1 l21u13 + u23 = –1 l31u13 + l32u23 + u33 = 1 l41u13 + l42u23 + l23u33 = 2
u14 = –1 l21u14 + u24 = 2 l31u14 + l32u24 + u34 = 1 l41u14 + l42u24 + l43u34 + u44 = –2

By solving these sixteen equations we get

1 1 1
2 3 6

1 0 0 0 1 1 1 1
1 1 0 0 0 2 2 3

[ ] and [ ]
4 0 1 0 0 0 3 5
2 1 0 0 0

L U

−   
   − −   = =   −
   −      

To solve [A]{x} = {b} we have to solve the two systems
[L]{Y} = {b}
[U]{x} = {Y}
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i.e.,       

1

2

3
1 1

42 3

1 0 0 0 2
1 1 0 0 0
4 0 1 0 11
2 1 2

y
y
y
y

     
          =                  

which gives by forward substitution
y1 = 2, y2 = –2, y3 = 3, y4 = 0

and hence [U]{x} = {y} becomes

1

2

3
1

46

1 1 1 1 2
0 2 2 3 2
0 0 3 5 3
0 0 0 0

x
x
x
x

−     
     − − −     =    −              

Then by back substitution we obtain
x4 = 0, x3 = –1, x2 = 2, x1 = 1.

Example E2.13
Solve the system of linear equations using Cholesky’s factorisation method.

2x – 6y + 8z = 24
5x + 4y – 3z =  2
3x + y + 2z = 16

Solution:

    

11 12 13

21 22 23

31 32 33

1 0 0 2 6 8
1 0 0 5 4 3

1 0 0 3 1 2

u u u
l u u
l l u

−     
     = −     
         

11 12 13

21 11 21 12 22 21 13 23

31 11 31 12 32 22 31 13 32 23 33

2 6 8
5 4 3
3 1 2

u u u
l u l u u l u u
l u l u l u l u l u u

−   
   + + = −   
   + + +   
u11 = 2, u12 = –6, u13 = 8

21
11

5
2.5l

u
= =

 31
11

3
1.5l

u
= =

u22 = 4 – l21u12 = 19
u23 = –3 – l21u13 = –23
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31 12
32

22

1 10
19

l u
l

u
−

= =

l33 = 2 – l31u13 – l32u23 = 
40
19

10 40
19 19

1 0 0 2 6 8
2.5 1 0 0 19 23,
1.5 1 0 0

L U
−   

   −= =   
      

LV = B ⇒
1

2
10

319

1 0 0 24
2.5 1 0 2
1.5 1 16

v
v
v

     
     =     
        

⇒ v1 = 24
v2 = 2 – 2.5 × 24 = –58

v3 = 16 – 1.5 × 24 –
10 200

( 58)
19 19

− =

UX = V ⇒
40
19

242 6 8
580 19 23

2000 0
19

x
y
z

 −     −     − =              
2x – 6y + 8z = 24 (E.1)

19y – 23z = –58 (E.2)

        
40 200

5
19 19

z z= ⇒ = (E.3)

From Eqs.(E.2) and (E.3), we have

3y =

From Eqs.(E.1), (E.2) and (E.3), we get

1x =

2.8 CROUT’S METHOD

This method is based on the fact that every square matrix A can be expressed as the product of a lower
triangular matrix and an upper triangular matrix, provided all the principle minors of A are non-singular. Also,
such a factorisation, if exists, is unique.

This method is also called triangularisation or factorisation method. Here, we factorise the given matrix
as A = LU, where L is a lower triangular matrix with unit diagonal elements and U is an upper triangular
matrix. Then,

A–1 = (LU)–1 = U–1L–1
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Consider the system
a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3 (2.35)
The above system can be written as

Ax = b
Let A = LU (2.36)

where           
11 12 13

21 22 23

31 32 33

0 0 1
0 and = 0 1

0 0 1

l u u
l lL U u
l l l

   
   =    
     

(2.37)

Here, L is a lower triangular matrix and U is an upper triangular matrix with diagonal elements equal to unity.
A = LU ⇒ A–1 = U–1L–1 (2.38)

Now
11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

0 0 1
0 0 1

0 0 1

a a a l u u
a a a l lA LU u
a a a l l l

     
     = ⇒ =     
         

or          
11 12 13 11 11 12 11 13

21 22 23 21 21 12 22 21 13 22 23

31 32 33 31 31 12 32 31 13 32 23 33

a a a l l u l u
a a a l l u l l u l u
a a a l l u +l l u +l u +l

   
   + +=   
      

Equating the corresponding elements, we obtain
l11 = a11 l21 = a21 l31 = a31 (2.39)
l11u12 = a12 l11u13 = a13 (2.40)
l21u12 + l22 = a22 l31u12 + l32 = a32 (2.41)
l21u13 + l22u23 = a23 (2.42)

and l31u13 + l32u23 + l33 = a33 (2.43)
from (2.40) we find

u12 = a12/l11 = a12/a11

from (2.41) we obtain
l22 = a22 – l21u12 (2.44)
l32 = a32 – l31u12 (2.45)

Equation (2.42) gives
u23 = (a23 – l21u23)/l22 (2.46)

from the relation (2.43) we get
l33 = a33 – l31u13 – l32u23 (2.47)

Thus, we have determined all the elements of L and U.
From Eqs.(2.36) and (2.37) we have

LUx = b (2.48)
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Let UX = V

where                  

1

2

n

v
v

V

v

 
 
 =  
 
  

�

From Eq. (2.48) we have LV = b, which on forward substitution yields V.
From UX = V, we find x (by backward substitution).

Example E2.14
Solve the following set of equations by Crout’s method:

2x + y + 4z = 12
8x – 3y + 2z = 20
4x + 11y – z = 33

Solution:

We have
2 1 4 12
8 3 2 , , 20
4 11 1 33

     
     = − = =     
     −     

x
X y B

z
A

AX = B
Let A = LU

11 12 13

21 22 23

31 32 33

0 0 1
0 0 1

0 0 1

l u u
l lL U u
l l l

   
   = =   
     

11 12 13

21 22 23

31 32 33

0 02 1 4 1
08 3 2 0 1

4 11 1 0 0 1

l u u
l l u
l l l

    
    − =     
    −    

11 11 12 11 13

21 21 12 22 21 13 22 23

31 31 12 32 31 13 32 23 33

2 1 4
8 3 2
4 11 1

l l u l u
l l u l l u l u
l l u l l u l u l

  
   + +− =   
   + + +−   

l11u12 = 1 12
1
2

u⇒ =

l11u12 = 4 13
4

2
2

u⇒ = =

l22 + l21u12 = –3 22
13 8 7
2

l  ⇒ = − − = −  

l32 + l21u12 = –3 32
111 4 9
2

l  ⇒ = − =  
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l21u13 + l22u23 = 2 23
2 8 2

2
7

u − ×
⇒ = =

−
l31u13 + l32u23 + l33 = –1 33 1 4 2 9 2 27l⇒ = − − × − × = −

1
22 0 0 1 2

8 7 0 and 0 1 2
4 9 27 0 0 1

L U
  
  = − =   
  −   

LV = B

     

1

2

3

2 0 0 12
8 7 0 20
4 9 27 33

v
v
v

    
    − =    
    −    

2v1 = 12 1 6v⇒ =

8v1 – 7v2 = 20 2
20 8 6

7
v − + ×

⇒ = = 4

  4v1 + 9v2 – 27v3 = 33 3
33 4 6 9 4

27
v − + × + ×

⇒ = = 1

1

2

3

6
4
1

V
VV
V

   
   = =   
     

;   Ux = V

      

1
2 61 2

40 1 2
10 0 1

x
y
z

     
     =     
         

1
2 6

2
x y z+ + =

y + 2z = 4

1z =
y = 4 – 2 × 1

  2y⇒ =

   x = 6 – 
1
2
× 2 – 2 × 1 3x⇒ =

Example E2.15
Solve the following set of equations by using the Crout’s method:

2x1 + x2 + x3 = 7
x1 + 2x2 + x3 = 8
x1 + x2 + 2x3 = 9
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Solution:

            

2 1 1 7
1 2 1 , , 8
1 1 2 9

     
     = = =     
          

x
x y B

z
A

Let A = LU

11 12 13

21 22 23

31 32 33

0 0 1
0 0 1

0 0 1

l u u
l lL U u
l l l

   
   = =   
     

   

11 11 12 11 13

21 21 12 22 21 13 22 23

31 31 12 32 31 13 32 23 33

2 1 1
1 2 1
1 1 2

l l u l u
l l u l l u l u
l l u l l u l u l

  
   + +=   
   + + +   

 l11 = 2,  l21 = 1, l31 = 1

u12 = 
1
2

, u13 = 
1
2

 l22 = 2 – l21u12 = 2 – 1 ×
1
2

=
3
2

 l32 = 1 – l31u12 = 1 – 1 × 
1
2

 = 
1
2

u23 = 21 13

22

1 1
3

l u
l

−
=

  l33 = 2 – l31u13 – l32u23 = 2 – 
1 1 1 4
2 2 3 3
− × =

            

2 0 0 1 1/ 2 1/ 2
1 3/ 2 0 , 0 1 1/ 3
1 1/ 2 4 / 3 0 0 1

L U
   
   = =   
      

Ax = B,  LU.x = B,  Ux = V

1

2

3

2 0 0 7
1 3/ 2 0 8
1 1/ 2 4 / 3 9

v
vLV B
v

    
    = ⇒ =    
        

1 1

1 2 2

1 2 3 3

2 7 3.5
3.53 8 3 32

1 4 39 3
2 3

v v

v v v V

v v v v

= ⇒ = 
  
+ = ⇒ =  ⇒ =  
   + + = ⇒ =

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1

2

3

1 1/ 2 1/ 2 3.5
0 1 1/ 3 3
0 0 1 3

x
xUx V
x

    
    = ⇒ =    
        

1 2 3
1 1

3.5
2 2

x x x+ + = (E.1)

2 3
1

3
3

x x+ = (E.2)

3 3x = (E.3)

From Eqs.(E.2) and (E.3), we have

2 2x =

From Eq.(E.1), we get

1 1x =

2.9 THOMAS ALGORITHM FOR TRIDIAGONAL SYSTEM

Consider the system of linear simultaneous algebraic equations given by
Ax = b

where A is a tridiagonal matrix, x = [x1, x2, …, xn]T and b = [b1, b2, …, bn]T. Hence, we consider a 4 × 4
tridiagonal system of equations given by

1 112 13

2 221 22 23

31 32 33 3 3

41 42 4 4

0 0
0

0
0 0

x ba a
x ba a a

a a a x b
a a x b

    
    
     =    
    

          

(2.48a)

Equation (2.48a) can be written as
a12x1 + a13x2 = b1

a21x1 + a22x2 + a23x3 = b2

a31x2 + a32x3 + a33x4 = b3

a41x3 + a42x4 = b4 (2.48b)
The system of equations given by Eq.(2.48b) is solved using Thomas Algorithm which is described in three
steps as shown below:
Step 1: Set y1 = a12 and compute

1 ( 1)3
2

1

i i
i i

i

a a
y a

y
−

−
= − i = 2, 3, …, n
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Step 2: Set 1
1

12

b
z

a
= and compute

1 1i i i
i

i

b a z
z

y
−−

= i = 2, 3, …, n

Step 3: 3 1i i
i i

i

a x
x z

y
+= − i = n – 1, n – 2, …, 1, where xn = zn

Example E2.16
Solve the following equations by Thomas Algorithm.

3x1 – x2 = 5
2x1 – 3x2 + 2x3 = 5
x2 + 2x3 + 5x4 = 10

x3 – x4 = 1

Solution:

Here

1

2

3

4

3 1 0 0 5
2 3 2 0 5
0 1 2 5 10
0 0 1 1 1

x
x
x
x

−     
    −     =    
    −        

[a2, a3, a4] = [2, 1, 1]
[b1, b2, b3, b4] = [3, –3, 2, –1]

[c1, c2, c3] = [–1, 2, 5]

Step 1: Set y1 = b1 and compute

            1

1

i i
i i

i

a c
y b

y
−

−
= −            i = 2, 3, …, n

y1 = 3

i = 2, 
2 1

2 2
1

2( 1) 7
3

3 3
a c

y b
y

−
= − = − − = −

i = 3, 3 2
3 3

2

1 2 202 7 7
3

a c
y b

y
×= − = − =
−

i = 4, 4 3
4 4

3

1.5 551 20 20
7

a c
y b

y
= − = − − = −

Step 2: Set z1 = 1

1

5
3

d
b

= , 1i i i
i

i

d a z
z

y
−−

=    i = 2, 3, …, n
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2 2 1
2

2

55 2 532,
7 7
3

d a zi z
y

− ×−
= = = = −

−

3 3 2
3

3

510 1
7573, 20 20

7

d a z
i z

y

 − −  −
= = = =

4 4 3
4

4

751 1
204, 1

55
20

d a z
i z

y

− ×−
= = = =

−

Step 3: Set 1i i
i i

i

c x
x z

y
+= − ; i = n – 1, n – 2, …, 1;   xn = zn

4 4 1x z= =

3 4
3 3

3

75 5 13, 22020
7

c x
i x z

y
×= = − = − =

2 3
2 2

2

5 2 22, 177
3

c x
i x z

y
×= = − = − − =
−

1 2
1 1

1

5 ( 1) 1
1, 2

3 3
c x

i x z
y

− ×
= = − = − =

Example E2.17
Solve the following set of tridiagonal set of algebraic equations using Thomas’s method.

x1 + 4x2 = 10
2x1 + 10x2 – 4x3 = 7

x2 + 8x3 – x4 = 6
x3 – 6x4 = 4

Solution:

b1x1 + c1x2 = d1

a2x1 + b2x2 + c2x3 = d2

a3x2 + b3x3 + c3x4 = d3

a4x3 + b4x4 = d4

a2 = 2, a3 = 1, a4 = 1
b1 = 1, b2 = 10, b3 = 8, b4 = –6
c1 = 4, c2 = –4, c3 = –1
d1 = 10, d2 = 7, d3 = 6, d4 = 4
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Step 1: Set y1 = b1,

1

1

i i
i i

i

a c
y b

y
−

−
= − ; i = 2, 3, …, n

y1 = 1

2
2 4

10 2
1

y ×
= − =

3

4

8 1( 4) 8 2 10;
2
1 ( 1)6

10

− −= = + =

× −= − −

y

y

⇒ 4
60 1 59
10 10

y − +
= = −

Step 2: Set
11

1
1

,   = 2, 3, ......., i i i
i

i

d a zd
z z i n

b y
−−

= =

1
10

10
1

z = =

2
7 2.10 13

2 2
z −

= = −

3
6 1( 13 / 2) 6 13/ 2 25

10 10 20
z − − +
= = =

4
4 1 25/ 20 55

59 /10 118
z − ×

= = −
−

Step 3: Set x11 = z11 
1 ,  =  – 1,  – 2, ........, 1i i

i i
i

c x
x z i n n

y
+= −

4
55

0.466
118

x = − = −

3
25 ( 1)( 55 /118)

1.203
20 10

x − −
= − =

2
13 ( 4)1.203

4.094
2 2

x −
= − − = −

1
4( 4.094)

10 26.376
1

x −
= − =
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2.10  JACOBI’S ITERATION METHOD

This method is also known as the method of simultaneous displacements. Consider the system of linear
equations

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3 (2.49)
Here, we assume that the coefficients a11, a22 and a33 are the largest coefficients in the respective equations
so that

|a11| > |a12| + |a13|
|a22| > |a21| + |a23|
|a33| > |a31| + |a32| (2.50)

Jacobi’s iteration method is applicable only if the conditions given in Eq.(2.50) are satisfied.
Now, we can write Eq.(2.49)

1 1 12 2 13 3
11

1
(  –  – )x b a x a x

a
=

2
22

1x
a

= (b2 – a21x1 – a23x3) (2.51)

3
33

1x
a

= (b3 – a31x1 – a32x2)

Let the initial approximations be 0
1x , 0

2x and 0
3x respectively. The following iterations are then carried out.

Iteration 1: The first improvements are found as

( )

( )

0 0
11 1 12 2 13 3

11

0 0
21 2 21 1 23 3

22

1

1

x b a x a x
a

x b a x a x
a

= − −

= − −

( )0 0
31 3 31 1 32 2

33

1x b a x a x
a

= − − (2.52)

Iteration 2: The second improvements are obtained as

12
11

1x
a

= (b1 – a12x21 – a13x31)

22
22

1x
a

= (b2 – a21x11 – a23x31)

32
33

1x
a

= (b3 – a31x11 – a32x21) (2.53)
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The above iteration process is continued until the values of x1, x2 and x3 are found to a pre-assigned degree
of accuracy. That is, the procedure is continued until the relative error between two consecutive vector norm
is satisfactorily small. In Jacobi’s method, it is a general practice to assume 0 0 0

1 2 2 0.x x x= = = . The method
can be extended to a system of n linear simultaneous equations in n unknowns.
Example E2.18
Solve the following equations by Jacobi’s method.

15x + 3y – 2z = 85
2x + 10y + z = 51
x – 2y + 8z = 5

Solution:
In the above equations:

 |15| > |3| + |–2|
 |10| > |2| + |1|
 |8| > |1| + |–2|

then Jacobi’s method is applicable. We rewrite the given equations as follows:

   

1 1 1
1

2 2 2
2

3 3 3
3

1 1( ) (85 3 2 )
15

1 1( ) (51 2 )
10

1 1( ) (5 2 )
8

x d b y c z y z
a

y d a x c z x z
b

z d a x b y x y
c

= − − = − +

= − − = − −

= − − = − +

Let the initial approximations be:
x0 = y0 = z0 = 0

Iteration 1:

1
1

1

2
1

2

3
1

3

85 17
15 3
51
10
5
8

dx
a
d

y
b
d

z
c

= = =

= =

= =

Iteration 2:

 2 1 1 1 1 1
1

1 1 51 5( ) 85 3 ( 2)
15 10 8

x d b y c z
a

 = − − = − × − − ×  

2 4.73x =
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  2 2 2 1 2 1
2

1 1 17 5( ) 51 2 1
10 3 8

y d a x c z
b

 = − − = − × − ×  

2 3.904y =

  2 3 3 1 3 1
3

1 1 17 51( ) 5 1 ( 2)
8 3 10

z d a x b y
c

 = − − = − × − − ×  

2 1.192z =

Iteration 3:

 

3

3

3

1 (85 3 3.904 2 1.192) 5.045
15
1

(51 2 4.73 1 1.192) 4.035
10
1 (5 1 4.173 2 3.904) 1.010
8

x

y

z

= − × + × =

= − × − × =

= − × + × =

Iteration 4:

4

4

4

1 (85 3 4.035 2 1.010) 4.994
15
1

(51 2 5.045 1 1.010) 3.99
10
1 (5 1 5.045 2 4.035) 1.003
8

x

y

z

= − × + × =

= − × − × =

= − × + × =

Iteration 5:

5

5

5

1 (85 3 3.99 2 1.003) 5.002
15
1

(51 2 4.994 1 1.003) 4.001
10
1 (5 1 4.994 2 3.99) 0.998
8

= − × + × =

= − × − × =

= − × + × =

x

y

z

Iteration 6:

6

6

6

1 (85 3 4.001 2 0.998) 5.0
15
1

(51 2 5.002 1 0.998) 4.0
10
1 (5 1 5.002 2 4.001) 1.0
8

= − × + × =

= − × − × =

= − × + × =

x

y

z
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Iteration 7:

7

7

7

1 (85 3 4 2 1) 5.0
15
1

(51 2 5 1 1) 4.0
10
1 (5 1 5 2 4) 1.0
8

x

y

z

= − × + × =

= − × − × =

= − × + × =

Example E2.19
Use the Jacobi iterative scheme to obtain the solutions of the system of equations correct to three decimal
places.

x + 2y + z = 0
3x + y – z = 0
x – y + 4z = 3

Solution:
Rearrange the equations in such a way that all the diagonal terms are dominant.

3x + y – z = 0
x + 2y + z = 0
x – y + 4z = 3

Computing for x, y and z we get
x = (z – y)/3
y = (–x – z)/2
z = (3 + y – x)/4

The iterative equation can be written as
x(r +1) = (z(r) – y(r))/3
y(r +1) = (–x(r) – z(r))/2
z(r +1) = (3 – x(r) + y(r))/4

The initial vector is not specified in the problem. Hence we choose

x(0) = y (0) = z (0) = 1
Then, the first iteration gives

x(1) = (z(0) – y(0))/3 = (1 – 1)/3 = 0
y(1) = (–x(0) – z(0))/2 = (–1 – 1)/2 = –1.0

z(1) = (3 – x(0) + y(0))/4 = (3 – 1 + 1)/4 = 0.750
similarly, second iteration yields

x(2) = (z(1) – y(1))/3 = (0.75 + 1.0)/3 = 0.5833
y(2) = (–x(1) – z(1))/2 = (–0 – 0.75)/2 = – 0.3750

z(2) = (3 – x(1) + y(1))/4 = (3 – 0 – 0)/4 = 0.500
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Subsequent iterations result in the following:
x(3) = 0.29167 y(3) = –0.47917 z(3) = 0.51042
x(4) = 0.32986 y(4) = –0.40104 z(4) = 0.57862
x(5) = 0.32595 y(5) = –0.45334 z(5) = 0.56728
x(6) = 0.34021 y(6) = –0.44662 z(6) = 0.55329
x(7) = 0.3333 y(7) = –0.44675 z(7) = 0.55498
x(8) = 0.33391 y(8) = –0.44414 z(8) = 0.55498
x(9) = 0.33304 y(9) = –0.44445 z(9) = 0.5555

so to three decimal places the approximate solution
x = 0.333 y = –0.444 z = 0.555

Example E2.20
Use Jacobi iterative scheme to obtain the solution of the system of equations correct to two decimal places.

5 2 1 4
1 4 2 3
1 2 4 17

−   
   − =   
      

Solution:
Jacobi’s method is applicable only if the conditions given by Eq.(2.50) are satisfied.
Here |5| > |–2| + |1| or 5 > 3

|4| > |1| + |–1| or 4 > 3
|4| > |1| + |2| or 4 > 3

Clearly, the iterative approach will converse. Hence, writing the set of equations in the form of (2.51), we
have

1

0.8 0 0.4 0.2
0.75 0.25 0 0.5
4.25 0.25 0.5 0k k

x x
y y
z z+

−       
      = − −      
             

(E.1)

Assuming the initial approximation 

0

0
0
0

x
y
z

   
   =   
      

and substituting into Eq.(E.1) gives our first approximation

to the solution. Hence

2 1

0.8 0 0.4 0.2 0.8
0.75 0.25 0 0.5 0.75
4.25 0.25 0.5 0 4.25

x
y
z

−       
      = − −      
             

(E.2)

The process is continued until successive values of each vector are very close in magnitude. Here, the
eleven iterations obtained accurate to two decimal places are shown below in Table E2.20.
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Table E2.20

Variable 1 2 3 4 5 6 7 8 9 10 11 
x 
y 
z 

0.8 
0.75 
4.25 

0.25 
2.68 
3.68 

1.14 
2.53 
2.85 

1.24 
1.89 
2.70 

1.02 
1.79 
2.99 

0.92 
1.99 
3.10 

0.98 
2.07 
3.02 

1.02 
2.02 
2.97 

1.01 
1.98 
2.98 

0.99 
1.99 
3.01 

1 
2 
3 

Hence, the solution is given by x = 1, y = 2 and z = 3.

2.11  GAUSS-SEIDAL ITERATION METHOD

The Gauss-Seidal method is applicable to predominantly diagonal systems. A predominantly diagonal system
has large diagonal elements. The absolute value of the diagonal element in each case is larger than the sum
of the absolute values of the other elements in that row of the matrix A. For such predominantly diagonal
systems, the Gauss-Seidal method always converges to the correct solution, irrespective of the choice of the
initial estimates. Since the most recent approximations of the variables are used while proceeding to the next
step, the convergence of the Gauss-Seidal method is twice as fast as in Jacobi’s method. The Gauss-Seidal
and Jacobi’s methods converge for any choice of the initial approximations, if in each equation of the system,
the absolute value of the largest coefficient is greater than the sum of the absolute values of the remaining
coefficients. In other words,

1
1

| |
1

| |

n
ij

iii
j

a
a=

≠

≤∑ i = 1, 2, 3, …, n

where the inequality holds in case of at least one equation. Convergence is assured in the Gauss-Seidal
method if the matrix A is diagonally dominant and positive definite. If it is not in a diagonally dominant form,
it should be connected to a diagonally dominant form by row exchanger, before starting the Gauss-Seidal
iterative scheme.

Gauss-Seidal method is also an iterative solution procedure which is an improved version of Jacobi’s
method. The method is also known as the method of successive approximations.

Consider the system of linear simultaneous equations
a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3 (2.54)
If the absolute value of the largest coefficient in each equation is greater than the sum of the absolute values
of all the remaining coefficients, then the Gauss-Seidal iteration method will converge. If this condition is not
satisfied, then Gauss-Seidal method is not applicable. Here, in Eq.(2.54), we assume the coefficient a11, a22
and a33 are the largest coefficients.

We can rewrite Eq.(2.54) as

1
11

1x
a

= (b1 – a12x2 – a13x3)

2
22

1x
a

= (b2 – a21x1 – a23x3)
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3
33

1x
a

= (b3 – a31x1 – a32x2) (2.55)

Let the initial approximations be 0 0
1 2,x x  and 0

3x respectively. The following iterations are then carried out.

Iteration 1: The first improvements of x1, x2 and x3 are obtained as

( )

( )

( )

0
11 1 12 2 13 3

11

0
21 2 21 11 23 3

22

3 31 11 32 2131
33

1

1

1

x b a x a x
a

x b a x a x
a

b a x a xx
a

= − −

= − −

− −=

�

(2.56)

Iteration 2: The second improvements of x1, x2 and x3 are obtained as

12
11

1x
a

= (b1 – a12x11 – a13x31)

22
22

1x
a

= (b2 – a21x12 – a23x31)

32
33

1x
a

= (b3 – a31x12 – a32x22) (2.57)

The above iteration process is continued until the values of x1, x2 and x3 are obtained to a pre-assigned or
desired degree of accuracy. In general, the initial approximations are assumed as 0 0 0

1 2 3 0x x x= = = . Gauss-
Seidal method generally converges for any initial values of 0 0 0

1 2 3, ,x x x . The convergence rate of Gauss-Seidal
method is found to be twice to that of Jacobi’s method. Like the Jacobi’s method, Gauss-Seidal method can
also be extended to n linear simultaneous algebraic equations in n unknowns.

Example E2.21
Solve the following equations by Gauss-Seidal method.

8x + 2y – 2z =   8
x – 8y + 3z = –4
2x + y + 9z = 12

Solution:
In the above equations:

|8| > |2| + | –2|
| –8| > |1| + |3|

|9| > |2| + |1|
So, the conditions of convergence are satisfied and we can apply Gauss-Seidal method. Then we rewrite the
given equations as follows:
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0 0
1 1 1 1

1

0
1 2 2 1 2

2

1 3 3 1 3 1
3

1 ( )

1
( )

1 ( )

x d b y c z
a

y d a x c z
b

z d a x b y
c

= − −

= − −

= − −

Let the initial approximations be:
           x0 = y0 = z0 = 0

Iteration 1:

1
1

1

1 2 2 1
2

1 3 3 1 3 1
3

8 1.0
8

1 1( ) ( 4 1 1.0) 0.625
8

1 1( ) (12 2) 2 1.0 1 0.625) 1.042
9

dx
a

y d a x
b

z d a x b y
c

= = =

= − = − − × =
−

= − − = − = × − × =

Iteration 2:

2 1 1 1 1 1
1

2 2 2 2 2 1
2

2 3 3 2 3 2
3

1 1( ) (8 2 0.625 ( 2) 1.042) 1.104
8

1 1( ) ( 4 1 1.104 3 1.042) 1.029
8

1 1( ) (12 2 1.104 1 1.029) 0.974
9

x d b y c z
a

y d a x c z
b

z d a x b y
c

= − − = − × − − × =

= − − = − − × − × =
−

= − − = − × − × =

Iteration 3:

3 1 1 2 1 2
1

3 2 2 3 2 2
2

3 3 3 3 3 3
3

1 1( ) (8 2 1.029 ( 2) 0.974) 0.986
8

1 1
( ) ( 4 1 0.986 3 0.974) 0.989

8
1 1( ) (12 2 0.986 1 0.989) 1.004

9

x d b y c z
a

y d a x c z
b

z d a x b y
c

= − − = − × − − × =

= − − = − − × − × =
−

= − − = − × − × =

Iteration 4:

4

4

4

1 (8 2 0.989 ( 2) 1.004) 1.004
8
1

( 4 1 1.004 3 1.004) 1.002
8

1 (12 2 1.004 1 1.002) 0.999
9

x

y

z

= − × − − × =

= − − × − × =
−

= − × − × =
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Iteration 5:

5

5

5

1 (8 2 1.002 ( 2) 0.999) 0.999
8
1

( 4 1 0.999 3 0.999) 1.0
8

1 (12 2 0.999 1 1.0) 1.0
9

x

y

z

= − × − − × =

= − − × − × =
−

= − × − × =

Iteration 6:

6

6

6

1 (8 2 1 2 1) 1.0
8
1

( 4 1 1.0 3 1.0) 1.0
8

1 (12 2 1.0 1 1.0) 1.0
9

x

y

z

= − × + × =

= − − × − × =
−

= − × − × =

Example E2.22
Using the Gauss-Seidal method solve the system of equations correct to three decimal places.

x + 2y + z = 0
3x + y – z = 0
x – y + 4z = 3

Solution:
Rearranging the given equations to give dominant diagonal elements, we obtain

3x + y – z = 0
x + 2y + z = 0
x – y + 4z = 3 (E.1)

Equation (E.1) can be rewritten as
x = (z – y)/3
y = –(x + z)/2
z = (3 + x + y)/2 (E.2)

Writing Eq.(E.2) in the form of Gauss-Seidal iterative scheme, we get
x (r +1) = (z (r) – y (r))/3
y (r +1) = – (x (r +1) – z (r))/2
z (r +1) = (3 – x (r +1) + y (r +1))/4

We start with the initial value
x(0) = y(0) = z(0) = 1

The iteration scheme gives
x(1) = (z(0) – y(0))/3 = (1 – 1)/3 = 0

y(1) = (–x(1) – z(0))/2 = (0 – 1)/2 = –0.5
z(1) = (3 – x(1) + y(1))/4 = (3 – 0 – 0)/4 = 0.625



68 // Numerical Methods //

The second iteration gives
x(2) = (z(1) – y(1))/3 = (0.625 + 0.5)/3 = 0.375

y(2) = (–x(2) – z(1))/2 = (– 0.375 – 0.625)/2 = –0.50
z(2) = (3 – x(2) + y(2))/4 = (3 – 0.375 – 0.5)/4 = 0.53125

Subsequent iterations result in

x(3) = 0.34375 y(3) = – 0.4375 z(3) = 0.55469
x(4) = 0.33075 y(4) = – 0.44271 z(4) = 0.55664
x(5) = 0.33312 y(5) = – 0.44488 z(5) = 0.5555
x(6) = 0.33346 y(6) = – 0.44448 z(6) = 0.55552

Hence, the approximate solution is as follows:
x = 0.333 y = –0.444 z = 0.555

Example E2.23
Solve the following equations by the Gauss-Seidal method.

4x – y + z = 12
– x + 4y – 2z = –1

x – 2y + 4z = 5
Solution:
The iteration formula is

1

1
n

i ij ji jii j i

b A xx
A =

≠

 
− ←

 
 

∑   i = 1, 2, …, n

Hence x =
1
4

(12 + y – z)

y =
1
4

(–1 + x + 2z)

z =
1
4

(5 – x + 2y)

Choosing the starting values x = y = z = 0, we have the first iteration

x =
1
4

(12 + 0 – 0) = 3

y =
1
4

[–1 + 3 + 2(0)] = 0.5

z =
1
4

[5 – 3 + 2)0.5) = 0.75
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The second iteration gives

x =
1
4

(12 + 0.5 – 0.75) = 2.9375

y =
1
4

[–1 + 2.9375 + 2(0.75)] = 0.8594

z =
1
4

(5 – 2.9375 + 2(0.8594)] = 0.9453

The third iteration yields

x =
1
4

[12 + 0.8594 – 0.9453] = 2.9785

y =
1
4

[–1 + 2.9785 + 2(0.9453)] = 0.9673

z =
1
4

(5 – 2.9785 + 2(0.9673)] = 0.9890

After five more iterations, we obtain the final values for x, y and z as x = 3, y = 1 and z = 1.

2.12  SUMMARY

A matrix is a rectangular array of elements, in rows and columns. The elements of a matrix can be numbers,
coefficients, terms or variables. This chapter provided the relevant and useful elements of matrix analysis for
the solution of linear simultaneous algebraic equations. Topics covered include matrix definitions, matrix
operations, determinants, matrix inversion, trace, transpose, and system of algebraic equations and solution.
The solution of n linear simultaneous algebraic equations in n unknowns is presented. There are two classes
of methods of solving system of linear algebraic equations: direct and iterative methods. Direct methods
transform the original equation into equivalent equations that can be solved more easily. Iterative or indirect
methods start with a guess of the solution x, and then repeatedly refine the solution until a certain convergence
criterion is reached. Six direct methods (matrix inversion method, Gauss elimination method, Gauss-Jordan
method, Cholesky’s triangularisation method, Crout’s method and Thomas algorithm for tridiagonal system)
are presented. Two indirect or iterative methods (Jacobi’s iteration method and Gauss-Seidal iteration method)
are presented.

The LU decomposition method is closely related to Gauss elimination method. LU decomposition is
computationally very effective if the coefficient matrix remains the same but the right hand side vector changes.
Cholesky’s decomposition method can be used when the coefficient matrix A is symmetric and positive definite.
Gauss-Jordan method is a very stable method for solving linear algebraic equations. Gauss-Seidal iterative
substitution technique is very suitable for predominantly diagonal systems. It requires a guess of the solution.

Problems
2.1 Determine the inverse of the following matrices:

(a)
1 1 2
3 1 1
1 3 4

− 
 = − 
 − 

A
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(b)
1 2 0
3 1 2
1 0 3

 
 = − − 
 − 

A

(c)
10 3 10

8 2 9
8 1 10

 
 = − 
 − 

A

(d)
1 2 3
4 5 6
7 0 0

 
 =  
  

A

(e)
1 1 1
1 2 2
1 0 3

 
 =  
  

A

( f )
1 0 3
2 1 1
1 1 1

 
 = − 
 − 

A

2.2 Solve the following set of simultaneous linear equations by the matrix inverse method.

(a) 2x + 3y – z = –10
–x + 4y + 2z = –4
2x – 2y + 5z = 35

(b) 10x + 3y + 10z = 5
8x – 2y + 9z = 2
8x + y – 10z = 35

(c) 2x + 3y – z = 1
–x + 2y + z = 8
x – 3y – 2z = –13

(d) 2x – y + 3z = 4
x + 9y – 2z = –8

4x – 8y + 11z = 15
(e) x1 – x2 + 3x3 – x4 = 1

x2 – 3x3 + 5x4 = 2
x1 – x3 + x4 = 0

x1 + 2x2 – x4 = –5
( f ) x1 + 2x2 + 3x3 + 4x4 = 8

2x1 – 2x2 – x3 – x4 = –3
x1 – 3x2 + 4x3 – 4x4 = 8

2x1 + 2x2 – 3x3 + 4x4 = –2
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2.3 Solve the following set of simultaneous linear equations using the method of Gaussian elimination.

(a) 2x + y – 3z = 11
4x – 2y + 3z = 8

– 2x + 2y – z = –6
(b) 6x + 3y + 6z = 30

2x + 3y + 3z = 17
x + 2y + 2z = 11

(c) 2x1 + x2 + x3 = 4
3x2 – 3x3 = 0
–x2 + 2x3 = 1

(d) x1 + 2x2 + 3x3 + 4x4 = 8
2x1 – 2x2 – x3 – x4 = –3

x1 – 3x2 + 4x3 – 4x4 = 8
2x1 + 2x2 – 3x3 + 4x4 = –2

(e) 2x1 + x2 + x3 – x4 = 10
x1 + 5x2 – 5x3 + 6x4 = 25

–7x1 + 3x2 – 7x3 – 5x4 = 5
x1 – 5x2 + 2x3 + 7x4 = 11

( f ) x1 + x2 + x3 + x4 = 3
2x1 – x2 + 3x3 = 3

2x2 + 3x4 = 1
– x1 + 2x3 + x4 = 0

2.4 Solve the following set of simultaneous linear equations by the Gauss-Jordan method.

(a) 4x – 3y + 5z = 34
2x – y – z = 6
x + y + 4z = 15

(b) 2x – y + z = –1
3x + 3y + 9z = 0
3x + 3y + 5z = 4

(c) x + y – z = 1
x + 2y – 2z = 0
–2x + y + z = 1

(d) x – y = 2
–2x + 2y – z = –1

y – 2z = 6
(e) x + y + z = 3

2x + 3y + z = 6
x – y – z = –3
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( f ) 4x1 – 2x2 – 3x3 + 6x4 = 12
–5x1 + 7x2 + 6.5x3 – 6x4 = –6.5

x1 + 7.5x2 + 6.25x3 + 5.5x4 = 16
–12x1 + 22x2 + 15.5x3 – x4 = 17

2.5 Solve the following set of simultaneous linear equations by the Cholesky’s factorisation method.
(a) 2x – y = 3

–x + 2y – z = –3
–y + z = 2

(b) x + y + z = 7
3x + 3y + 4z = 23

2x + y + z = 10
(c) x + 0.5y = 1

0.5x + y + 0.5z = 2
0.5y + z = 3

(d) 2x + 3y + z = 9
x + 2y + 3z = 6
3x + y + 2z = 8

(e) x – 2y + z = 2
5x + y – 3z = 0
3x + 4y + z = 9

( f ) 12x1 – 6x2 – 6x3 + 1.5x4 = 1
–6x1 + 4x2 + 3x3 + 0.5x4 = 2
–6x1 + 3x2 + 6x3 + 1.5x4 = 3

–1.5x1 + 0.5x2 + 1.5x3 + x4 = 4

2.6 Solve the following set of simultaneous linear equations using the Crout’s method.
(a) 2x + y = 7

x + 2y = 5
(b) 3x + 2y + 7z = 4

2x + 3y + z = 5
3x – 4y + z = 7

(c) x + y + z = 9
2x – 3y + 4z = 13
3x + y + 5z = 40

(d) 3x + y = –1
2x + 4y + z = 7

2y + 5z = 9
(e) 2x + y – z = 6

x – 3y + 5z = 11
–x + 5y + 4z = 13
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( f ) 2x1 – x2 = 1
–x1 + 2x2 – x3 = 0
–x2 + 2x3 – x4 = 0

–x3 + 2x4 = 1

2.7 Solve the following tridiagonal system of equations using the Thomas algorithm.
(a) 2x1 + x2 = 3

–x1 + 2x2 + x3 = 6
3x2 + 2x3 = 12

(b) 2x1 + x2 = 4
3x1 + 2x2+ x3 = 8
x2 + 2x3+ 2x4 = 8

x3 + 4x4 = 9
(c) 3x1 – x2 = 2

2x1 – 3x2 + 2x3 = 1
x2 + 2x3 + 5x4 = 13

x3 – x4 = –1
(d) 2x1 + x2 = 3

x1 + 3x2 + x3 = 3
x2 + x3 + 2x4 = 4

2x3 + 3x4 = 4
(e) 2x1 + x2 = 1

3x1 + 2x2 + x3 = 2
x2 + 2x3 + 2x4 = –1

x3 + 4x4 = –3

( f ) 2x1 – x2 = 1
x1 + 3x2 + x3 = 3
x2 + x3 + 2x4 = 0

2x3 + 3x4 = –1

2.8 Solve the following set of simultaneous linear equations using the Jacobi’s method.
(a) 2x – y + 5z = 15

2x + y + z = 7
x + 3y + z = 10

(b) 20x + y – 2z = 17
3x + 20y – z = –18

2x – 3y + 20z = 25

(c) 5x + 2y + z = 12
x + 4y + 2z = 15
x + 2y + 5z = 20
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(d) 10x – y + 2z = 6
–x + 11y + z = 22
2x – y + 10z = –10

(e) 8x + 2y – 2z = 8
x – 8y + 3z = –4
2x + y + 9z = 12

( f ) 10x1 + x2 + 2x3 = 6
–x1 + 11x2 – x3 + 3x4 = 25

2x1 – x2 + 10x3 – x4 = –1
3x2 – x3 + 8x4 = 15

2.9 Solve the following system of simultaneous linear equations using the Gauss-Seidal method.

(a) 4x – 3y + 5z = 34
2x – y – z = 6
z + y + 4z = 15

(b) 2x – y + 5z = 15
2x + y + z = 7
x + 3y + z = 10

(c) 15x + 3y – 2z = 85
2x + 10y + z = 51
x – 2y + 8z = 5

(d) 10x1 – 2x2 – x3 – x4 = 3
–2x1 + 10x2 – x3 – x4 = 15
–x1 – x2 + 10x3 – 2x4 = 27
–x1 – x2 – 2x3 + 10x4 = –9

(e) 4x1 + 2x2 = 4
2x1 + 8x2 + 2x3 = 0
2x2 + 8x3 + 2x3 = 0

2x3 + 4x4 = 0

( f ) 4x1 + 2x2 = 4
2x1 + 8x2 + 2x3 = 0
2x2 + 8x3 + 2x3 = 0

2x3 + 4x4 = 14

P P P



3.1 INTRODUCTION

One of the most common problem encountered in engineering analysis is that given a function f (x), find
the values of x for which f (x) = 0. The solution (values of x) are known as the roots of the equation f (x) = 0,
or the zeroes of the function f (x).

The roots of equations may be real or complex. In general, an equation may have any number of (real)
roots, or no roots at all. For example, sin x – x = 0 has a single root, namely, x = 0, whereas tan x – x = 0 has
infinite number of roots (x = 0, ± 4.493, ± 7.725, …). There are two types of methods available to find the
roots of algebraic and transcendental equations of the form f (x) = 0.

1. Direct Methods: Direct methods give the exact value of the roots in a finite number of steps. We
assume here that there are no round off errors. Direct methods determine all the roots at the same time.

2. Indirect or Iterative Methods: Indirect or iterative methods are based on the concept of successive
approximations. The general procedure is to start with one or more initial approximation to the root and
obtain a sequence of iterates (xk) which in the limit converges to the actual or true solution to the root.
Indirect or iterative methods determine one or two roots at a time.

The indirect or iterative methods are further divided into two categories: bracketing and open methods.
The bracketing methods require the limits between which the root lies, whereas the open methods require
the initial estimation of the solution. Bisection and False position methods are two known examples of the
bracketing methods. Among the open methods, the Newton-Raphson and the method of successive
approximation are most commonly used. The most popular method for solving a non-linear equation is the
Newton-Raphson method and this method has a high rate of convergence to a solution.

In this chapter, we present the following indirect or iterative methods with illustrative examples:
1. Bisection Method
2. Method of False Position (Regular Falsi Method)
3. Newton-Raphson Method (Newton’s method)
4. Successive Approximation Method.
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3.2 BISECTION METHOD

After a root of f (x) = 0 has been bracketed in the interval (a, b). Bisection method can be used to close in
on it. The Bisection method accomplishes this by successfully halving the interval until it becomes
sufficiently small. Bisection method is also known as the interval halving method. Bisection method is not
the fastest method available for finding roots of a function, but it is the most reliable method. Once a has
been bracketed, Bisection method will always close in on it.

We assume that f (x) is a function that is real-valued and that x is a real variable. Suppose that f (x) is
continuous on an interval a ≤ x ≤ b and that f (a) f (b) < 0. When this is the case, f (x) will have opposite
signs at the end points of the interval (a, b). As shown in Fig. 3.1 (a) and (b), if f (x) is continuous and has
a solution between the points x = a and x = b, then either f (a) > 0 and f (b) < 0 or f (a) < 0 and f (b) > 0. In
other words, if there is a solution between x = a and x = b, then f (a) f (b) < 0.

f(a) > 0

f(b) < 0

xs
x

y

a

b

True solution

f(b) > 0

f(a) < 0

True solution

xs
x

y

a

b

Fig. 3.1: Solution of f(x) = 0 between x = a and x = b

The method of finding a solution with the Bisection method is illustrated in Fig. 3.2. It starts by finding
points a and b that define an interval where a solution exists. The midpoint of the interval

1sx is then taken
as the first estimate for the numerical solution. The true solution is either in the portion between points a
and xs1, or in the portion between points xs1 and b. If the solution obtained is not accurate enough, a new
interval that contains the true solution is defined. The new interval selected is the half of the original interval
that contains the true solution, and its midpoint is taken as the new (second) estimate of the numerical
solution. The procedure is repeated until the numerical solution is accurate enough according to a certain
criterion that is selected.

The procedure or algorithm for finding a numerical solution with the Bisection method is given below:

Algorithm for the Bisection Method
1. Compute the first estimate of the numerical solution

1sx by

1 2s
a bx +

=
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True solution

x
a

b

a b

ba

x

x

True solution

True solution

f(x)

First estimate

Second estimate

First
iteration

Second
iteration

Third
iteration

Third estimate

Third interval

Second interval

First interval
1

s
x

3sx

a x
2s b

x

Fig. 3.2: Bisection method

2. Determine whether the true solution is between a and 
1sx or between xs1 

and b by checking the sign of
the product

f (a) f ( xs1
):

If f (a) f (
1sx ) < 0, the true solution is between a and xs1

.

If f (a) f ( xs1
) > 0, the true solution is between  xs1 

and b.
If b – c ≤ ∈, then accept c as the root and stop. ∈ is the error tolerance, ∈ > 0.

3. Choose the subinterval that contains the true solution (a to xs1 
or 

1sx  to b) as the new interval (a, b),
and go back to step 1.
Steps 1 through 3 are repeated until a specified tolerance or error bound is attained.

3.2.1 Error Bounds

Let an, bn and cn denote the nth computed values of a, b and xs1
 respectively. Then, we have

bn+1 – an +1 =
1
2

(bn – an) n ≥ 1 (3.1)

also bn – an = 1
1

2n− (b – a) n ≥ 1 (3.2)

where (b – a) denotes the length of the original interval with which we started.
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Since the root xs is in either the interval (an, cn) or (cn, bn), we know that

|xs – cn| ≤ cn – an = bn – cn = 
1
2

(bn – an) (3.3)

This is the error bound for cn that is used in step 2 of the algorithm described earlier.
From Eqs. (3.2) and ( 3.3), we obtain the further bound

1| | ( )
2s n nx c b a− ≤ − (3.4)

Equation (3.4) shows that the iterate cn converges to xs as n → ∞.
To find out how many iterations will be necessary, suppose we want to have

|xs – cn| ≤ ∈

This will be satisfied if

1 ( )
2

∈− ≤n b a (3.5)

Taking logarithms of both sides of Eq.(3.5), and simplifying the resulting expression, we obtain

        
log

log 2

b a

n

− 
  ∈≥ (3.6)

There are several advantages to the Bisection method. The method is guaranteed to converge. The method
always converges to an answer, provided a root was bracketed in the interval (a, b) to start with. In addition,
the error bound, given in Eq. (3.4), is guaranteed to decrease by one-half with each iteration. The method
may fail when the function is tangent to the axis and does not cross the x-axis at f (x) = 0. The disadvantage
of the Bisection method is that it generally converges more slowly than most other methods. For functions
f (x) that have a continuous derivative, other methods are usually faster. These methods may not always
converge. When these methods do converge, they are almost always much faster than the Bisection method.
Example E3.1
Use the Bisection method to find a root of the equation x3 – 4x – 8.95 = 0 accurate to three decimal places
using the Bisection method.
Solution:
Here, f (x) = x3 – 4x – 8.95 = 0

f (2) = 23 – 4(2) – 8.95 = – 8.95 < 0
f (3) = 33 – 4(3) – 8.95 = 6.05 > 0

Hence, a root lies between 2 and 3.
f ' (x) = 3x2 – 4 > 0 for x in the interval (2, 3). Hence, we have a = 2 and b = 3. The results of the algorithm

for Bisection method are shown in Table E3.1.
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Table E3.1: Bisection Method Results

n a b 
1s

x  b – 
1s

x  f(
1s

x ) 

1 2 3 2.5  0.5  –3.25 
2 2.5 3 2.75  0.25  0.84688 
3 2.5 2.75 2.625  0.125  –1.36211 
4 2.75 2.625 2.6875  –0.0625  –0.28911 
5 2.75 2.6875 2.71875  –0.03125  0.27092 
6 2.6875 2.71875 2.70313  0.01563  –0.01108 
7 2.71875 2.70313 2.71094  –0.00781  0.12942 
8 2.71875 2.71094 2.71484  –0.00391  0.20005 
9 2.71094 2.71484 2.71289  0.00195  0.16470 

10 2.71094 2.71289 2.71191  0.00098  0.14706 
11 2.71094 2.71191 2.71143  0.00049  0.13824 

Hence the root is 2.711 accurate to three decimal places.

Example E3.2
Find one root of ex – 3x = 0 correct to two decimal places using the method of Bisection.

Solution:
Here, f (x) = ex – 3x

f (1.5) = e1.5 – 3(1.5)  = –0.01831
f (1.6) = e1.6 – 3(1.6)  = 0.15303

f ' (x) = ex – 3 > 0 for x in the interval (1.5, 1.6). Hence, a root lies in the interval (1.5, 1.6). Therefore, here we
have a = 1.5 and b = 1.6. The results of the algorithm for Bisection method are shown in Table E3.2.

Table E3.2: Bisection Method Results

n a b 
1s

x  b – 
1s

x  f(
1s

x ) 

1 1.5 1.6 1.55 0.05  0.06147 
2 1.5 1.55 1.525 0.025  0.02014 
3 1.5 1.525 1.5125 0.0125  0.00056 
4 1.5 1.5125 1.50625 0.00625  –0.00896 
5 1.50625 1.5125 1.50938 0.00313  –0.00422 
6 1.50938 1.5125 1.51094 0.00156  –0.00184 

Hence the root of f (x) = 0 is x = 1.51 accurate up to  two decimal places.

Example E3.3
Determine the largest root of f (x) = x6 – x – 1 = 0 accurate to within ∈ = 0.001. Use the Bisection method.

Solution:
Here f (x) = x6 – x – 1 = 0

f (1) = 16 – 1 – 1 = –1
f (2) = 26 – 2 – 1 = 61
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Since f (1) f (2) < 0, f (x) = 0 has at least one root on the interval. The results of the algorithm for Bisection
method are shown in Table E3.3.

Table E3.3: Bisection Method Results

n a b 
1s

x  b – 
1s

x  f(
1s

x ) 

1 1 2 1.5 0.5  8.89063 
2 1 1.5 1.25 0.25  1.56470 
3 1 1.25 1.25 0.125  –0.09771 
4 1.125 1.25 1.1875 0.0625  0.61665 
5 1.125 1.1875 1.15625 0.03125  0.23327 
6 1.125 1.15625 1.14063 0.01563  0.06158 
7 1.125 1.14063 1.13281 0.00781  –0.01958 
8 1.13281 1.14063 1.13672 0.00391  0.02062 
9 1.13281 1.13672 1.13477 0.00195  0.00043 

10 1.13281 1.13477 1.13379 0.00098  –0.00960 

3.3 METHOD OF FALSE POSITION

The method of False Position (also called the Regular Falsi method, and the linear interpolation method)
is another well-known bracketing method. It is very similar to Bisection method with the exception that it
uses a different strategy to end up with its new root estimate. Rather than bisecting the interval (a, b), it
locates the root by joining f (a1) and f (b1) with a straight line. The intersection of this line with the x-axis
represents an improved estimate of the root.

f(x)

f(a1)
f(a2)

f(b1)

Actual
solution

a3a2a1 1sx
2sx

x
b1

b2

b3

Fig. 3.3: Method of false position

Here again, we assume that within a given interval (a, b), f (x) is continuous and the equation has a
solution. As shown in Fig. 3.3, the method starts by finding an initial interval (a1, b1) that brackets the solution.
f (a1) and f (b1) are the values of the function at the end points a1 and b1. These end points are connected
by a straight line, and the first estimate of the numerical solution,

1sx , is the point where the straight line
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crosses the axis. For the second iteration, a new interval (a2, b2) is defined. The new interval is either (a1,
1sx )

where a1 is assigned to a2 and 
1sx  to b2 or (

1sx , b1) where 
1sx is assigned to a2 and b1 to b2. The end points

of the second interval are connected with a straight line, and the point where this new line crosses the x-axis
is the second estimate of the solution, 

1sx . A new subinterval (a3, b3) is selected for the third iteration and
the iterations will be continued until the numerical solution is accurate enough.

The equation of a straight line that connects points (b, f (b)) to point (a, f (a)) is given by

  
( ) ( )

( ) ( )
f b f ay x b f b

b a
−

= − +
−

(3.7)

The points xs where the line intersects the x-axis is determined by substituting y = 0 in Eq.(3.7) and solving
the equation for x.

Hence ( ) ( )
( ) ( )s

a f b b f ax
f b f a

−
=

−
(3.8)

The procedure (or algorithm) for finding a solution with the method of False Position is given below:

Algorithm for the method of False Position
1. Define the first interval (a, b) such that  solution exists between them. Check f (a) f (b) < 0.
2. Compute the first estimate of the numerical solution xs using Eq.(3.8).
3. Find out whether the actual solution is between a and 

1sx  or between 
1sx  and b. This is

accomplished by checking the sign of the product f (a) f (
1sx ).

If f (a) f (
1sx ) < 0, the solution is between a and

1sx .
If f (a) f (

1sx ) > 0, the solution is between 
1sx  and b.

4. Select the subinterval that contains the solution (a to
1sx , or 

1sx  to b) is the new interval (a, b) and
go back to step 2. Step 2 through 4 are repeated until a specified tolerance or error bound is attained.
The method of False Position always converges to an answer, provided a root is initially bracketed
in the interval (a, b).

Example E3.4
Using the False Position method, find a root of the function f (x) = ex – 3x2 to an accuracy of 5 digits. The
root is known to lie between 0.5 and 1.0.
Solution:
We apply the method of False Position with a = 0.5 and b = 1.0. Equation (3.8) is

( ) ( )
( ) ( )s

a f b b f ax
f b f a

−=
−
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The calculations based on the method of False Position are shown in the Table E3.4.

Table E3.4

n a b f(a) f(b) 
1s

x  f(
1s

x ) ξ 
Relative error 

1 0.5 1 0.89872 –0.28172 0.88067 0.08577 — 
2 0.88067 1 0.08577 –0.28172 0.90852 0.00441 0.03065 
3 0.90852 1 0.00441 –0.28172 0.90993 0.00022 0.00155 
4 0.90993 1 0.00022 –0.28172 0.91000 0.00001 0.00008 
5 0.91000 1 0.00001 –0.28172 0.91001 0 3.7952 × 10–6 

The relative error after the fifth step is 0.91001 0.91
0.91001

− 
  

= 3.7952 × 10–6. The root is 0.91 accurate to five

digits.
Example E3.5
Find a real root of cos x – 3x + 5 = 0. Correct to four decimal places using the method of False Position
method.
Solution:
Here f (x) = cos x – 3x + 5 = 0

f (0) = cos 0 – 3(0) + 5 = 5 > 0

f (π/2) = 
cos 33 5 5 0

2 2 2
π π − π − + = + <  

Therefore, a root of f (x) = 0 lies between 0 and π/2. We apply the method of False Position with a = 0 and
b = π/2. Equation (3.8) is

          
( ) ( )
( ) ( )s

a f b b f ax
f b f a

−
=

−

The calculations based on the method of False Position are shown in Table E3.5.

Table E3.5

n a b f(a) f(b) 
1s

x  f(
1s

x ) ξ 

1 0 1.5708   6 0.28761 1.64988 –0.02866 — 
2 1.64988 1.5708 –0.02866 0.28761 1.64272 –0.00001 –0.00436 
3 1.64272 1.5708 –0.00001 0.28761 1.64271   0 –1.97337 × 10–6 

The relative error after the third step is

x =
1.64271 1.64272

1.64271
−

= –1.97337 × 10–6

The root is 1.6427 accurate to four decimal places.
Example E3.6
Using the method of False Position, find a real root of the equation x4 – 11x + 8 = 0 accurate to four decimal
places.
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Solution:
Here f (x) = x4 – 11x + 8 = 0

f (1) = 14 – 11(1) + 8 = – 2 < 0
f (2) = 24 – 11(2) + 8 = 4 > 0

Therefore, a root of f (x) = 0 lies between 1 and 2. We apply the method of False Position with a = 1 and
b = 2. Equation (3.8) is

          
( ) ( )
( ) ( )s

a f b b f ax
f b f a

−
=

−

The calculations based on the method of False Position are summarised in Table E3.6.

Table E3.6

n a b f(a) f(b) 
1s

x  f(
1s

x ) ξ 

1 1 2 –2 2 1.5 –3.4375 — 
2 1.5 2 –3.4375 2 1.81609 –1.9895 0.17405 
3 1.81609 2 –1.09895 2 1.88131 –0.16758 3.4666 × 10–2 
4 1.88131 2 –0.16758 2 1.89049 –0.02232 4.85383 × 10–3 
5 1.89049 2 –0.02232 2 1.89169 –0.00292 6.3902 × 10–4 
6 1.89169 2 –0.00292 2 1.89185 –0.00038 8.34227 × 10–5 
7 1.89185 2 –0.00038 2 1.89187 –0.00005 1.08786 × 10–5 

The relative error after the seventh step is

ξ = 
1.89187 1.89185

1.89187
−

 = 1.08786 × 10–5

Hence, the root is 1.8918 accurate to four decimal places.

3.4 NEWTON-RAPHSON METHOD

The Newton-Raphson method is the best-known method of finding roots of a function f (x). The method is
simple and fast. One drawback of this method is that it uses the derivative f'(x) of the function as well as the
function f (x) itself. Hence, the Newton-Raphson method is usable only in problems where f '(x) can be readily
computed. Newton-Raphson method is also called Newton’s method. Here, again we assume that f(x) is
continuous and differentiable and the equation is known to have a solution near a given point. Figure 3.4
illustrates the procedure used in Newton-Raphson method. The solution process starts by selecting point x1
as the first estimate of the solution. The second estimate x2 is found by drawing the tangent line to f (x) at
the point (x1, f (x1)) and determining the intersection point of the tangent line with the x-axis. The next estimate
x3 is the intersection of the tangent line to f (x) at the point (x2, f (x2)) with the x-axis, and so on. The slope,
f '(x1), of the tangent at point (x1, f (x1)) is written as

1
1

1 2

( ) 0
( )

f x
f x

x x
−

=′
− (3.9)
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Rewriting Eq.(3.9) for x2 gives

    
1

2 1
1

( )
( )

f x
x x

f x
= −

′ (3.10)

Equation (3.10) can be generalised for determining the next solution xi + 1 from the current solution xi as

  1
( )
( )

i
i i

i

f x
x x

f x+ = −
′ (3.11)

Slope: f' (x1)

Slope: f' (x2)Slope: f' (x3)

Solution f(x3)

f(x2)

f(x1)

x1x2x3x4
x

y
y =  f(x)

Fig. 3.4: Newton-Raphson method

The solution is obtained by repeated application of the iteration formula given by Eq.(3.11) for each successive
value of ‘i ’.

Algorithm for Newton-Raphson Method:
1. Select a point x1 as an initial guess of the solution.
2. For i = 1, 2, …, until the error is smaller than a specified value, compute xi +1 by using Eq.(3.11).
Two error estimates that are generally used in Newton-Raphson method are given below:

The iterations are stopped when the estimated relative error 1i i

i

x x
x

+ −
is smaller than a specified value ∈.

   
1i i

i

x x
x

+ −
≤ ∈ (3.12)

The iterations are stopped when the absolute value of f (xi) is smaller than some number δ :
| f (xi)| ≤ δ (3.13)

The Newton-Raphson method, when successful, works well and converges fast. Convergence problems occur
when the value of f '(x) is close to zero in the vicinity of the solution, where f (x) = 0. Newton-Raphson
method generally converges when f (x), f ' (x) and f "(x) are all continuous, if f '(x) is not zero at the solution
and if the starting value x1 is near the actual solution.
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3.4.1 Convergence of Newton-Raphson Method
The Newton-Raphson iteration formula is given by

1
( )

( )
( )

i
i n n

i

f x
x x x

f x+ = − = φ
′ (3.13a)

The general form of Eq.(3.13a) is given by
x = φ (x) (3.13b)

The Newton-Raphson iteration method given by Eq.(3.13b) converges if |φ′(x)| < 1.

Here
( )

( )
( )

i

i

f x
x x

f x
φ = −

′

Hence
2

2 2
[ ( )] ( ) ( ) ( ) ( )( ) 1

[ ( )] [ ( )]
f x f x f x f x f xx

f x f x

 −′ ′′ ′′
φ = − =′  

′ ′  

or 2
( ) ( )| ( ) |
[ ( )]

f x f xx
f x

′′φ =′
′

Hence, Newton-Raphson’s method converges if

2
( ) ( ) 1
[ ( )]

f x f x
f x

′′ <
′

or | f (x) f " (x)| < [ f '(x)]2  (3.13c)

If α denotes the actual root of f (x) = 0, then we can select a small interval in which f (x), f ′(x) and f ″(x) are
all continuous and the condition given by Eq.(3.13c) is satisfied. Therefore, Newton-Raphson method always
converges provided the initial approximation x0 is taken very close to the actual root α.

3.4.2 Rate of Convergence of Newton-Raphson Method
Let α denotes the exact value of the root of f (x) = 0, and let xi, xi +1, be two successive approximations to
the actual root α. If ∈i and ∈i +1 are the corresponding errors, we have

xi = α + ∈i  and  xi +1 = α + εi +1

by Newton-Raphson’s iterative formula

1
( )
( )+
α+ ∈

α+ ∈ = α+ ∈ −
α+ ∈′

i
i i

i

f
f

1
( )
( )+
α + ∈

∈ − ∈ = −
α + ∈′

i
i i

i

f
f

or                

2

1

...( ) ( ) ( )
2

...( ) ( )+

 ∈
α + ∈ α + α +′ ′′  

∈ = ∈ −
α + ∈ α +′ ′′

i
i

i i
i

f f f

f f
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2
...( ) ( )

2 (since ( ) = 0)...( ) ( )

∈
∈ α + α +′ ′′

= ∈ − α
α + ∈ α +′ ′′

i
i

i
i

f f
f

f f

     
2

...( ) ( )
( )2 1

... ...( ) ( ) 2 ( ) ( )

∈ ∈ α + α +′ ′′   ∈ α′′ = ∈ − =  α + ∈ α + α + ∈ α +′ ′′ ′ ′′  

i
i

i
i

i i

f f
f

f f f f

     

2

1
( )1 ( )

2 2 ( )( ) ...( ) 1
( )

+

 
 ∈ α′′ α′′ = = ∈ ≈  α′ α′′α + ∈ +′  α′   

i
i

i

f f
fff

f
(3.13d)

Equation (3.13d) shows that the error at each stage is proportional to the sequence of the error in the previous
stage. Hence, Newton-Raphson method has a quadratic convergence.
Example E3.7
Use Newton-Raphson method to find the real root near 2 of the equation x4 – 11x + 8 = 0 accurate to five
decimal places.

Solution:
Here f (x) = x4 – 11x + 8

f '(x) = 4x3 – 11
x0 = 2

and f (x0) = f (2) = 24 – 11(2) + 8 = 2
f '(x0) = f '(2) = 4(2)3 – 11 = 21

Therefore,

           0
1 0

0

( ) 2
2

( ) 21
f x

x x
f x

= − = −
′ = 1.90476

    
4

1
2 1 3

1

( ) (1.90476) 11(1.90476) 81.90476
( ) 4(1.90476) 11

f x
x x

f x
− +

= − = −
′ −

= 1.89209

          
4

2
3 2 3

2

( ) (1.89209) 11(1.89209) 81.89209
( ) 4(1.89209) 11

f x
x x

f x
− +

= − = −
′ −

= 1.89188

         
4

3
4 3 3

3

( ) (1.89188) 11(1.89188) 81.89188
( ) 4(1.89188) 11

f x
x x

f x
− +

= − = −
′ −

 = 1.89188

Hence the root of the equation is 1.89188.
Example E3.8
Using Newton-Raphson method, find a root of the function f (x) = ex – 3x2 to an accuracy of 5 digits. The
root is known to lie between 0.5 and 1.0. Take the starting value of x as x0 = 1.0.
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Solution:
Start at x0 = 1.0 and prepare a table as shown in Table E3.8, where f (x) = ex – 3x2 and f '(x) = ex – 6x. The
relative error

1

1
i i

i

x x
x
+ −

ξ =
+

The Newton-Raphson iteration method is given by

1
( )
( )

i
i i

i

f x
x x

f x+ = −
′

Table E3.8

i xi f(xi) f′(xi) xi+1 ξ 
0 
1 
2 
3 

1.0 
0.91416 
0.91002 
0.91001 

–0.28172 
–0.01237 
–0.00003 
  0 

–3.28172 
–2.99026 
–2.97574 
–2.97570 

0.91416 
0.91002 
0.91001 
0.91001 

0.09391 
0.00455 
0.00001 
6.613 × 10–11 

Example E3.9

Evaluate 29 to five decimal places by Newton-Raphson iterative method.

Solution:

Let x = 29  then x2 – 29 = 0.
We consider f (x) = x2 – 29 = 0 and f'(x) = 2x
The Newton-Raphson iteration formula gives

2

1
( ) 29 1 29
( ) 2 2

i i
i i i i

i i i

f x x
x x x x

f x x x+
 −

= − = − = + ′   (E.1)

Now f (5) = 25 – 29 = –4 < 0 and f (6) = 36 – 29 = 7 > 0.
Hence, a root of f (x = 0) lies between 5 and 6.
Taking x0 = 3.3, Equation (E.1) gives

  1
1 295.3
2 5.3

x  = +   = 5.38585

           2
1 295.38585
2 5.38585

x  = +   = 5.38516

 3
1 295.38516
2 5.38516

x  = +   = 5.38516

Since x2 = x3 up to five decimal places, 29  = 5.38516.
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3.4.3 Modified Newton-Raphson Method
Here, the iteration scheme is written as

1
( )

( )
( ( ) ( ))

i
i i i

i i i

f x
x x x

f x a x f x+ = − = φ
+′

(say) (3.13e)

or
( )( )

( ( ) ( ))
f xx x

f x a x f x
φ = −

+′

where a(x) is a smooth function.

Consider 2
( ) ( ) ( ( ) ( ))(1 ( ) ( ) ( ) ( ))

( ) 1
( ( ) ( )) [ ( ( ) ( ))]

f x f x f x a x f x a x f x a x f xx
f x a x f x f x a x f x

+ + +′ ′′ ′ ′
φ = − +′

+′ +′
(3.13f)

and 2
( ) ( ) ( ( ) ( ))[1 ( ) ( ) ( ) ( )]

( ) 2
( ( ) ( )) [ ( ( ) ( ))]

f x f x f x a x f x a x f x a x f xx
f x a x f x f x a x f x

+ + +′′ ′ ′′ ′ ′
φ = +′′

+′ +′

          
2 2

2
( )[ ( ( ) ( ))] [1 ( ) ( ) ( ) ( )]2

[ ( ( ) ( ))]
f x f x a x f x a x f x a x f x

f x a x f x
+ + +′′ ′ ′

−
+′

             
2 2

2 2
( ) ( ( ) ( ))[1 ( ) ( ) ( ) ( )] [ ( )] ( ( ) ( )) ( )

[ ( ( ) ( ))] [ ( ( ) ( ))]
f x f x a x f x a x f x a x f x f x f x a x f x a x

f x a x f x f x a x f x
+ + + +′′′ ′ ′ ′′ ′′

+ +
+ +′ ′

2
( ) ( ( ) ( ))[2 ( ) ( ) ( ) ( )]

[ ( ( ) ( ))]
f x f x a x f x a x f x a x f x

f x a x f x
+ +′′ ′ ′ ′′

+
+′ (3.13g)

If ξ is the root of the equation f (x) = 0, then f (ξ) = 0 and therefore φ(ξ) = ξ and φ′(ξ) = 0.
Now, from Eq.(3.13g)

2
( ) 2 ( ) ( )[1 ( ) ( )] ( )

( ) [1 2 ( ) ( )]
( ) ( )[ ( )]

f f f a f f a f
f ff

ξ ξ ξ + ξ ξ ξ′′ ′ ′′ ′ ′′
φ ξ = − + = + ξ ξ′′ ′

ξ ξ′ ′ξ′ (3.13h)

If
1( )

2 ( )
a

f
ξ = −

ξ′
then φ″(ξ) = 0.

Therefore, the iteration scheme in modified Newton-Raphson method is given by

1
( )

[ ( ) ( )]+ = −
+ +′

i
i i

i i i

f x
x x

f x a x f x (3.13i)

where
1

( )
2 ( )i

i
a x

f x
= −

′

Equation (3.13i) can also be written as
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1 2
( ) ( )

[ ( )] ( ) ( )
i i

i i
i i i

f x f x
x x

f x f x f x+
′

= −
−′ ′′ (3.13j)

In addition, we have
 φ(ξ) =  ξ, φ′(ξ) =  0 and φ′(ξ) =  0 (3.13k)

3.4.4 Rate of Convergence of Modified Newton-Raphson Method
Let ξ be the root of the equation f (x) = 0. In addition, let

   ∈i =  xi – ξ
Hence       xi +1 =  φ(xi) = φ(∈i + ξ)

or    
2 3

1 ...( ) ( ) ( ) ( )
2! 3!+
∈ ∈

∈ + ξ = φ ξ + ∈ φ ξ + φ ξ + φ ξ +′ ′ ′′′i i
i i

or
3

4
1 ( ) ( )

3!
i

i iO+
∈

∈ = φ ξ + ∈′′′ (3.13l)

If we neglect the terms 4
i∈  and higher powers of 4

i∈ , Eq.(3.13l) reduces to

           3
1i iA+∈ = ∈

in which   
1

( )
3!

A = φ ξ′′′

Equation (3.13m) shows that the rate of convergence of the modified Newton-Raphson method is cubic.
Example E3.10
Repeat Example E3.7 using modified Newton-Raphson method.
Solution:

f (x) = x4 – 11x + 8
f '(x) = 4x3 – 11

f "(x) = 12x2

The modified Newton-Raphson’s formula is

1 2
( ) ( )

[ ( )] ( ) ( )
i i

i i
i i i

f x f x
x x

f x f x f x+
′

= −
−′ ′′

The calculations are shown in Table E3.10.

Table E3.10

n xi f(xi) f′(xi) f″(xi) xi+1 
0 
1 
2 
3 

2 
1.878261 
1.891624 
1.891876 

  2 
–0.21505 
–0.00405 
–1.4 × 10–6 

21 
15.50499 
16.07476 
16.08557 

48 
42.33437 
42.93891 
42.95034 

1.878261 
1.891624 
1.891876 
1.891876 

Hence, the root is 1.891876.
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3.5 SUCCESSIVE APPROXIMATION METHOD

Suppose we are given an equation f (x) = 0 whose roots are to be determined. The equation can be written
as

x = f (x) (3.14)
Let x = x0 be an initial approximation to the desired root α. Then, the first approximation x1 is given by

x1 = φ(x0)
The second approximation x2 = φ(x1). The successive approximations are then given by x3 = φ(x2),
x4 = φ(x3), …, xn = φ(xn –1).

The sequence of approximations of x1, x2, …, xn always converge to the root of x = φ(x) and it can be
shown that if |φ′(x)| < 1, when x is sufficiently close to the exact value c of the root and xn → c as n → ∞.
The convergence of xi + 1 = φ(xn), for |φ′(x)| < 1 is shown in Fig. 3.5. The following theorem presents the
convergence criteria for the iterative sequence of solution for the Successive Approximation method.

Theorem 3.5: Let α be a root of f (x) = 0 which is equivalent to x = φ(x), φ(x) is continuously
differentiable function in an interval I containing the root x = α, if |φ′(x)| < 1, then the sequence of
approximations x0, x1, x2, …, xn will converge to the root α provided the initial approximation x0 ∈ I.

y = φ (x)

y = x

y

x
0 ξ x x x x0123

Fig. 3.5: Converge of xi+1 = φ(xn), for |φ'(x)| < 1

Proof: Let α be the actual root of x = φ(x), then we can write
α = φ(a) (3.15)

Let x = x0 be an initial approximation to the root, then
x1 = φ(x0) (3.16)

From Eqs. (3.15) and (3.16), we obtain
α – x1 = φ(α) – φ (x0)

By using the Lagrange’s mean value theorem, we can write
α – x1 = (a – x0)φ'(ξ0) for x0 < x0 < α
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Similarly,
α – x2 = (α – x1)φ′(ξ1) for x1 < ξ1 < α
α – x3 = (α – x2)φ′(ξ2) for x2 < ξ2 < α

and so on, or
α – xn = (α – xn –1)φ′(ξn – 1) for xn – 1 < ξn–1 < α

Multiplying the above equations, we obtain
α – xn = (α – x0) φ′(ξ0) φ′(ξ1) φ′(ξ2), …, φ′(ξn–1)

If |φ′(xi)| ≤ κ < 1, for all I, then

|xn – α| ≤ |x0 – α|ξ0|φ′(ξ0)|φ′(ξ1)…|φ′(ξn–1)| ≤ κ, κ….κ |x0 – α| ≤ κn| x0 – α|

As κ < 1 therefore κn → 0, as n → ∞, and thus we have xn → α, provided x0 ∈ I.
Hence, the theorem is proved.

3.5.1 Error Estimate in the Successive Approximation Method

Let ∈n = xn – ξ, the error estimate at the nth iteration, then 1lim ( / ) ( )n nn +→∞
∈ ∈ = φ ξ′ is satisfied. We know that

|xn +1 – ξ| = |φ(xn) – φ(ξ)| = |φ′(ξn)||xn – ξ|, ξn∈(xn, ξ) by the mean value theorem. Hence

1 1| ( ) | lim( / ) ( )+ +→∞
∈ = ∈ φ ξ ⇒ ∈ ∈ = φ ξ′ ′n n n n nn

Therefore, we obtain the order of convergence as linear. But if φ′(ξ) = 0 and φ″(ξ) ≠ 0, then the Taylor series
expansion of φ in a neighbourhood of ξ is given by

2( ) ...( ) ( ) ( ) ( ) ( )
2

n
n n

x
x x

− ξ
φ = φ ξ + − ξ φ ξ + φ ξ +′ ′′

∠
which shows that

2 3

1
...( ) ( ) ( )

2 6+
∈ ∈

∈ = ∈ φ ξ − φ ξ + φ ξ −′ ′′ ′′n n
n n

on using xn +1 = φ(xn) and ∈n = |xn +1 – ξ|.

Hence,
2

1 ( )
2
n

n+
∈

∈ = − φ ξ′′ , on neglecting the terms containing cubes and higher power of ∈n. This is a

quadratic convergence.

Example E3.11
Find a real root of x3 – 2x – 3 = 0, correct to three decimal places using the Successive Approximation
method.
Solution:
Here f (x) = x3 – 2x – 3 = 0 (E.1)
Also f (1) = 13 – 2(1) – 3 = – 4 < 0
and f (2) = 23 – 2(2) – 3 = 1 > 0
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Therefore, root of Eq.(E.1) lies between 1 and 2. Since f (1) < f (2), we can take the initial approximation
x0 = 1. Now, Eq. (E.1) can be rewritten as

x3 = 2x + 3
or x = (2x + 3)1/3  = φ(x)
The successive approximations of the root are given by

x1 = φ(x0) = (2x0 + 3)1/3 = [2(1) + 3]1/3 = 1.25992
x2 = φ(x1) = (2x1 + 3)1/3 = [2(1.25992) + 3]1/3 = 1.31229
x3 = φ(x2) = (2x2 + 3)1/3 = [2(1.31229) + 3]1/3 = 1.32235
x4 = φ(x3) = (2x3 + 3)1/3 = [2(1.32235) + 3]1/3 = 1.32427
x5 = φ(x4) = (2x4 + 3)1/3 = [2(1.32427) + 3]1/3 = 1.32463

Hence, the real roots of f (x) = 0 is 1.324 correct to three decimal places.

Example E3.12
Find a real root of 2x – log10 x – 9 using the Successive Approximation method.
Solution:
Here f (x) = 2x – log10 x – 9 (E.1)

f (4) = 2(4) – log10(4) – 9 = 8 – 0.60206 – 9 = –1.60206
f (5) = 2(5) – log10(5) – 9 = 10 – 0.69897 – 9 = 0.30103

Therefore, a root of Eq.(E.1) lies between 4 and 5. Rewriting Eq.(E.1) as

10
1

(log 9)
2

x x= + = φ(x)

We start with x0 = 4.

x1 = φ(x0) = 
1
2

(log104 + 9) = 4.80103

x2 = φ(x1) = 
1
2

(log104.80103 + 9) = 4.84067

x3 = φ(x2) = 
1
2

(log104.84067 + 9) = 4.84245

x4 = φ(x3) = 
1
2

(log104.84245 + 9) = 4.84253

x5 = φ(x4) = 
1
2

(log104.84253 + 9) = 4.84254

Hence, x = 4.8425 is the root of Eq.(E.1) correct to four decimal places.

Example E3.13
Find a real root of cos x – 3x + 5 = 0. Correct to four decimal places using the Successive Approximation
method.
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Solution:
Here, we have

f (x) = cos x – 3x + 5= 0 (E.1)
f (0) = cos(0) – 3(0) + 5 = 5 > 0

f (π/2) = cos(π/2) – 3(π/2) + 5 = –3π/2 + 5 < 0
Also f (0) f (π/2) < 0

Hence, a root of f (x) = 0 lies between 0 and π/2.
The given Eq. (E.1) can be written as

             
1

[5 cos ]
3

x x= +

Here   1
( ) [5 cos ]

3
x xφ = +  and sin

( )
3

xxφ = −′

      
sin| ( ) |

3
xxφ =′ < 1 in (0, π/2)

Hence, the successive approximation method applies.

Let x0 = 0

x1 = φ(x0) = 
1
3

[5 + cos 0] = 2

x2 = φ(x1) = 
1
3

[5 + cos(2)] = 1.52795

x3 = φ(x2) = 
1
3

[5 + cos(1.52795)] = 1.68094

x4 = φ(x3) = 
1
3

[5 + cos(1.68094)] = 1.63002

x5 = φ(x4) = 
1
3

[5 + cos(1.63002)] = 1.64694

x6 = φ(x5) = 
1
3

[5 + cos(1.64694)] = 1.64131

x7 = φ(x6) = 
1
3

[5 + cos(1.64131)] = 1.64318

x8 = φ(x7) = 
1
3

[5 + cos(1.64318)] = 1.64256

x9 = φ(x8) = 
1
3

[5 + cos(1.64256)] = 1.64277

x10 = φ(x9) = 
1
3

[5 + cos(1.64277)] = 1.64270

Hence, the root of the equation is 1.6427 correct to four decimal places.
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3.6 SECANT METHOD

The secant method is very similar to the Newton-Raphson method. The main disadvantage of the Newton-
Raphson method is that the method requires the determination of the derivatives of the function at several
points. Often, the calculation of these derivatives takes too much time. In some cases, a closed-form expression
for f ′(x) may difficult to obtain or may not be available.

To remove this drawback of the Newton-Raphson method, the derivatives of the function being
approximated by finite differences instead of being calculated analytically. In particular, the derivative f '(x) is
approximated by the backward difference

   
1

1

( ) ( )
( ) i i

i
i i

f x f x
f x

x x
−

−

−
=′

− (3.17)

where xi and xi–1 are two approximations to the root but does not require the condition f (xi) . f (xi –1) < 0.
Now, from the Newton-Raphson method, we have

1
1

1

( ) ( )( )
( ) ( ) ( )

i i i i
i i i

i i i

f x f x x x
x x x

f x f x f x
−

+
−

−
= − = −

−′ (3.18)

It should be noted here from Eq.(3.18) that this method requires two initial guess values x0 and x1 for the
root. The secant method is illustrated geometrically as shown in Fig. 3.6, where a secant is drawn connecting
f (xi–1) and f (xi). The point where it intersects the x-axis is xi+1. Another secant is drawn connecting f (xi) and
f (xi+1) to obtain xi +2 and the process continues.

f(x)

x i
x i+1

xi–1
x

O xi+1

Fig. 3.6: The secant method

3.6.1 Convergence of the Secant Method

The formula for the secant method can be written as

      
1

1
1

( )
( ) ( )

n n
n n

n n

x x
x x

f x f x
−

+
−

−
= −

− (3.19)

Let ξ be the exact root of the equation f (x) = 0 and f (ξ) = 0. The error at the nth iteration is given by
         ∈n = xn – ξ (3.20)
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Now Eq.(3.19) becomes

    
1

1
1

( ) ( )
( ) ( )

−
+

−

∈ − ∈ ∈ + ξ
∈ = ∈ −

∈ +ξ − ∈ + ξ
n n n

n n
n n

f
f f

          

2
1

2 2
1 1

...( )[ ( ) ( ) ( / 2) ( ) ]
1 ...( ) ( ) ( ) ( )
2

−

− −

∈ − ∈ ξ + ∈ ξ + ∈ ξ +′ ′′
= ∈ −

∈ − ∈ ξ + ∈ − ∈ ξ +′ ′′

n n n n
n

n n n n

f f f

f f

          

12

1
( ) 1 ( )... ...1 ( )

2 ( ) 2 ( )

−

−
   ∈ ξ′′ ξ′′= ∈ − ∈ + + + ∈ + ∈ +   ξ ξ′ ′    

n
n n n n

f f
f f

          
2 2

1 1 1
1 ( ) ( )
2 ( )− − −

ξ′′
= ∈ ∈ + ∈ ∈ + ∈ ∈

ξ′n n n n n n
f O
f (3.21)

Equation (3.21) can be expressed as
    ∈n+1 = c∈n∈n–1 (3.22)

where                  
1 ( )
2 ( )

fc
f

ξ′′
=

ξ′
(3.23)

Equation (3.23) is a non-linear difference equation which can be solved by letting 1+∈ = ∈p
n nA or

1−∈ = ∈p
n nA and which gives

    1/ 1/
1

−
−∈ = ∈ p p

n n A

Hence    1/ 1/−∈ = ∈ ∈p p p
n n nA c A (3.24)

or (1 1/ ) 1 1/p p p
n ncA− + +∈ = ∈ (3.25)

Now by equating the power of ∈n both sides of Eq.(3.25), we obtain

1 1p
p

= +

or ( )1
1 5

2
p = ± (3.26)

Therefore taking the positive sign in Eq.(3.26), we get
  p = 1.618

and     1.618
1n nA+∈ = ∈ (3.27)

Hence, the rate of convergence of the secant method is 1.618 which is lesser than the Newton-Raphson
method. The second method evaluates the function only once in each iteration whereas the Newton-Raphson
method evaluates two functions f and f ' in each iteration. Therefore, the second method is more efficient
than the Newton-Raphson method.

Example E3.14
Find a root of the equation x3 – 8x – 5 = 0 using the secant method.
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Solution:
f (x) = x3 – 8x – 5 = 0
f (3) = 33 – 8(3) – 5 = –2
f (4) = 43 – 8(4) – 5 = –27

Therefore one root lies between 3 and 4. Let the initial approximations be x0 = 3, and x1 = 3.5. Then, x2 is
given by

     
0 1 1 0

2
1 0

( ) ( )
( ) ( )

x f x x f x
x

f x f x
−

=
−

The calculations are summarised in Table E3.14.

Table E3.14: Secant method

x0 f(x0) x1 f(x1) x2 f(x2) 
3 
3.5 
3.08421 
3.08788 
3.10045 

 –2 
 9.875 
 –0.33558 
 –0.05320 
 0.00039 

3.5 
3.08421 
3.09788 
3.10045 
3.10043 

 9.875 
 –0.33558 
 –0.05320 
 0.00039 
 0 

3.08421 
3.09788 
3.10045 
3.10043 
3.10043 

 –0.33558 
 –0.05320 
 0.00039 
 0 
 0 

Hence, a root is 3.1004 correct up to five significant figures.

Example E3.15
Determine a root of the equation sin x + 3 cos x – 2 = 0 using the secant method. The initial approximations
x0 and x1 are 0 and 1.5.
Solution:
The formula for x2 is given by

           
0 1 1 0

2
1 0

( ) ( )
( ) ( )

x f x x f x
x

f x f x
−

=
−

The calculations are summarised in Table E3.15.

Table E3.15: Secant method

x0 f(x0) x1 f(x1) x2 f(x2) 
0 
1.5 
1.24488 
1.21122 
1.20788 

–2.33914 
–0.79029 
–0.09210 
–0.00833 
–0.00012 

1.5 
1.24488 
1.21122 
1.20788 
1.20783 

–0.79029 
–0.09210 
–0.00833 
–0.00012 
  0 

1.24488 
1.21122 
1.20788 
1.20783 
1.20783 

 –0.09210 
 –0.00833 
 –0.00012 
 0 
 0 

Hence, a root is 1.2078 correct up to five significant figures.

Example E3.16
Repeat Example E3.14 with initial approximations of x0 = –2 and x1 = –1.5.



// Solution of Algebraic and Transcendental Equations // 97

Solution:
x2 is given by

           
0 1 1 0

2
1 0

( ) ( )
( ) ( )

x f x x f x
x

f x f x
−

=
−

The calculations are summarised in Table E3.16.

Table E3.16: Secant method

x0 f(x0) x1 f(x1) x2 f(x2) 
–2 
–1.5 
–0.48529 
–0.54918 
–0.56485 
–0.56432 

 –4.15774 
 –2.78528 
 0.18715 
 0.03687 
 –0.00129 
 0.00001 

 –1.5 
 –0.48529 
 –0.54918 
 –0.56485 
 –0.56432 
 –0.56433 

–2.78528 
 0.18715 
 0.03687 
–0.00129 
 0.00001 
 0 

–0.48529 
–0.54918 
–0.56488 
–0.56432 
–0.56433 
–0.56433 

 0.18715 
 0.03687 
–0.00129 
 0.00001 
 0 
 0 

Hence, a root is –0.5643 correct up to five significant figures.

3.7 MULLER’S METHOD

Muller’s method is an iterative method and free from the evaluation of derivative as in Newton-Raphson
method. It requires three starting points (xn–2, fn –2), (xn –1, fn –1) and (x2, f2). A parabola is constructed that
passes through these points then the quadratic formula is employed to find a root of the quadratic for the
next approximation. In other words, we assume that xn is the best approximation to the root and consider the
parabola through the three starting values as shown in Fig. 3.7. We denote f (xn–2) = fn–2, f (xn –1) = fn –1 and
f (xn) = fn.

xn–2 x xn+1xn

(xn, fn)

(xn–2, fn–2)

n–1

(xn–1, fn–1)

Fig. 3.7: Muller’s method

Let the quadratic polynomial be
f (x) = ax2 + bx + c (3.28)

If Eq.(3.28) passes through the points (xn –2, fn –2), (xn –1, fn –1) and (xn, fn), then

        2
2 2 2

2
1 1 1

2

n n n

n n n

n n n

ax bx c f

ax bx c f

ax bx c f

− − −

− − −

+ + =

+ + =

+ + =

(3.29)
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Eliminating a, b, c from Eq.(3.29), we obtain the following determinant

          

2

2
2 2 2

2
1 1 1

2

( ) 1

1
0

1

1

n n n

n n n

n n n

f x x x

f x x

f x x

f x x

− − −

− − −

= (3.30)

By expanding this determinant in Eq.(3.30), the function f (x) can be written as

1 2
2 1

2 1 2 1 2 1

( )( ) ( )( )
( )

( )( ) ( )( )
n n n n

n n
n n n n n n n n

x x x x x x x x
f x f f

x x x x x x x x
− −

− −
− − − − − −

− − − −
= +

− − − −

          
2 1

2 1

( )( )
( )( )

n n
n

n n n n

x x x x
f

x x x x
− −

− −

− −
+

− − (3.31)

Equation (3.31) is a quadratic polynomial passing through the three given points.
Let h = x – xn, hn = xn – xn–1 and hn–1 = xn–1 – xn–2.
Now, Eq.(3.31) becomes

1 1
2 1

1 1 1 1

( ) ( ) ( )( )
0

( ) ( )
n n n n n n

n n n
n n n n n n n n

h h h h h h h h h h h h
f f f

h h h h h h h h
− −

− −
− − − −

+ + + + + +
− + =

+ + (3.32)

Noting f (x) = 0.

Let
1

, 1n
n n n

n n

hh and
h h −

λ = λ = δ = + λ

The Equation (3.32) now reduces to the following form:

{ }2 2 1 2 2 1
1 1 2 2( ) ( ) 0n n n n n n n n n n n n n n n n nf f f f f f f− −

− − − −λ λ λ δ + λ δ + λ λ − δ + λ + δ δ + = (3.33)

or λ2cn + λgn + δn fn = 0 (3.34)

where 2 2
2 1 ( )n n n n n n n ng f f f− −= λ − δ + λ + δ

cn = λn(λn fn–2 – δn fn –1 + fn)
Equation (3.34) can be written as

2
1 0n

n n n
g

f c δ + + =   λλ
(3.35)

Solving Eq.(3.35) for 1/λ, we obtain

2

2

4
n n

n n n n n

f

g g f c

δ
λ = −

± − δ (3.36)

The sign in the denominator of (3.36) is ± according as gn > 0 or gn < 0.
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Hence
1

n

n n

x x
x x −

−
λ =

−
or x =  xn + (xn – xn –1)λ (3.37)

Now, replacing x on left hand side by xn + 1 in Eq.(3.37), we obtain
xn +1 = xn + (xn – xn –1)λ (3.38)

Equation (3.38) is the Muller’s formula for the root and the procedure for finding a root is summarised in
Table 3.1.

Table 3.1: Muller’s method

hn = xn – xn–1, n
n

n 2

h
h −

λ = , δn = 1 + λn 

2 2
n n n 2 n n 1 n n ng f f ( )f− −= λ − δ + λ + δ  

cn = λn(λnfn–2 – δnfn–1 + fn) 
n n

2
n n n n n

2 f

g g 4 f c

δλ = −
± − δ

 

xn+1 = xn + (xn – xn–1)λ 
xn–1 = Xn + (xn – xn–1)λ 

Example E3.17
Find a root of the equation x3 – 3x – 7 = 0 using the Miller’s method where the root lies between 2 and 3.

Solution:
Let x0 = 2, x1 = 2.5 and x2 = 3. The calculations are shown in Tables E3.16 and E3.17(a).

Table E3.17: Muller’s method

n xn–2 xn–1 xn hn hn–1 λn δn 
2 2 2.5 3  0.5  0.5  1  2 
3 2.5 3 2.4272 –0.5728  0.5 –1.14559 –0.14559 
4 3 2.4272 2.42599 –0.00122  –0.5728  0.00213  1.00213 
5 2.4272 2.42599 2.42599  0  –0.00122 –0.0029  0.99710 

Table E3.17 (a): Muller’s method

n fn–2 fn–1 fn gn cn λ xn+1 
2 –5  1.125  11  23.5  3.75 –1.14559 2.42720 
3  1.125 11  0.01781  1.22026 –0.37867  0.00213 2.42599 
4 11  0.01781  –0.00005  –0.01789  0.00001 –0.0029 2.42599 
5  0.01781 –0.0005  0  0.00005  0 –0.00005 2.42599 

Hence one root is 2.42599 correct up to five decimal places.
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3.8 CHEBYSHEV METHOD

Consider the equation to be solved as f (x) = 0. The function f (x) can be expanded by Taylor’s series in the
neighbourhood of xn as

0 = f (x) = f (xn) + x – xn) f '(xn) + . . . (3.39)
Equation (3.39) gives

   
( )
( )

n
n

n

f x
x x

f x
= −

′ (3.40)

Equation (3.40) gives the (n + 1)th approximation to the root.
Hence

1
( )
( )

n
n n

n

f x
x x

f x+ = −
′ (3.41)

Once again, we expand f (x) by Taylor’s series and retain up to the second order term, we obtain

    
2( )

0 ( ) ( ) ( ) ( ) ( )
2

n
n n n n

x x
f x f x x x f x f x

−
= = + − +′ ′′ (3.42)

Hence          
2

1
1 1

( )
( ) ( ) ( ) ( ) ( ) 0

2
n n

n n n n n n
x x

f x f x x x f x f x+
+ +

−
= + − + =′ ′′ (3.43)

Substituting the value of xn+1 – xn from (3.41) to the last term and we obtain

          
2

1 2
[ ( )]1( ) ( ) ( ) ( ) 0

2 [ ( )]
n

n n n n n
n

f x
f x x x f x f x

f x++ − + =′ ′′
′ (3.44)

Hence
2

1 3
( ) [ ( )]1 ( )
( ) 2 [ ( )]

n n
n n n

n n

f x f x
x x f x

f x f x+ = − − ′′
′ ′

(3.45)

Equation (3.45) can be recognised as the extended form of Newton-Raphson formula and it is called the
Chebyshev’s formula.

The rate of convergence of this method can be shown to be a cubic.

3.9 AITKEN’S ∆∆∆∆∆2 METHOD

Suppose we have an equation

f (x) = 0 (3.46)
whose roots are to be determined.
Let I be an interval containing the point x = α.
Now, Eq.(3.46) can be written as x = φ(x) such that φ(x) and φ′(x) are continuous in I and |φ′(x)| < 1 for all
x in I.

Denoting xi –1, xi and xi +1 as the three successive approximations to the desired root α, we can write

α – xi = λ(α – xi –1) (3.47)
and α – xi +1 = λ(α – xi) (3.48)
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where λ is a constant so that |φ′(x)| ≤ λ ≤ 1 for all i.
Dividing Eq.(3.47) with Eq. (3.48), we obtain

    1

1

i i

i i

x x
x x

−

+

α − α −
=

α − α −
(3.49)

Equation (3.49) gives

    
2

1
1

1 1

( )
( 2 )

i i
i

i i i

x x
x

x x x
+

+
+ −

−
α = −

− − (3.50)

Now ∆xi = xi +1 – xi

and ∆2xi –1 = (E – 1)2 xi–1 = (E2 – 2E + 1)xi –1 = xi +1 – 2xi + xi –1 (3.51)
Using Eq.(3.51), Eq.(3.50) can be written as

2

1 2
1

( )i
i

i

x
x +

−

∆
α = −

∆
(3.52)

Equation (3.52) gives the successive approximation to the root α and method is known as the Aitken’s
∆2 method.

 ∆ ∆2 
xi–1   

 ∆xi–1  
xi  ∆2xi–1 
 ∆xi  

xi+1   

Example E3.18

Find the root of the function 1 cos
3

xx + =   
 correct to four decimal places using Aitken’s iteration method.

Solution:
f (x) = cos x – 3x + 1 (E.1)
f (0) = 1

f (π/2) = cos(π/2) – 3(π/2) + 1 = – 8.42857
Hence f (0) > 0 and f (π/2) < 0
Also f (0) f (π/2) = 1(– 8.42857) = – 8.42857 < 0

Therefore, a root exists between 0 and π/2.
Equation (E.1) can be written as

          
1 cos ( )

3
xx x+ = = φ  

Now  sin sin( ) ( ) 1 0,
3 3 2

x xx x x− − π φ = = φ = < − ∈′ ′   
(E.2)
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Equation (E.2) signifies that Aitken’s method can be employed.
Let x0 = 0 be an initial approximation to the root of (E.1).

         1 0
1 cos 0( ) 0.66667

3
x x + = φ = =  

        2 1
1 cos(0.66667)

( ) 0.59530
3

x x +
= φ = =

         3 2
1 cos(0.59530)

( ) 0.60933
3

x x +
= φ = =

We can now construct the table as shown in Table E3.18.

Table E3.18: Aitken’s method

x ∆x ∆2 

x1 = 0.66667 
1

0.07137
x

−
∆

 
 

x2 = 0.59530 
 

2
1

0.08540
x∆

 

x3 = 0.60933 
2

0.01403
x∆

 
 

Therefore,
2 2

2
4 3 2

1

( ) (0.01403)0.60933 0.60702
(0.08540)( )

xx x
x

∆
= − = − =

∆

Hence, the root is 0.6070 correct up to four decimal places.

3.10 COMPARISON OF ITERATIVE METHODS

The Bisection method and the method of False Position always converge to an answer, provided a root is
bracketed in the interval (a, b) to start with. Since the root lies in the interval (a, b), on every iteration the
width of the interval is reduced until the solution is obtained. The Newton-Raphson method and the method
of Successive Approximations require only one initial guess and on every iteration it approaches to the true
solution or the exact root. The Bisection method is guaranteed to converge. The Bisection method may fail
when the function is tangent to the axis and does not cross the x-axis at f (x) = 0.

The Bisection method, the method of False Position, and the method of Successive Approximations
converge linearly while the Newton-Raphson method converges quadratically. Newton-Raphson method
requires less number of iterations than the other three methods. One disadvantage with Newton-Raphson
method is that when the derivative f ′(xi) is zero, a new starting or initial value of x must be selected to
continue with the iterative procedure. The Successive Approximation method converges only when the
condition |φ′(x)| < 1 is satisfied. Table 3.2 gives a summary of the comparison of the methods presented in
this chapter.
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Table 3.2: Comparison of the methods

S.No. Method Formula Order of  
convergence 

Functional evaluations  
at each step 

1. Bisection s1
a bx

2
+=  

One 
bit/iteration 

gain 
1 

2. False position s
af (b) bf (a)

x
f (b) f (a)

−
=

−
 1 1 

3. Newton-Raphson i
i 1 i

i

f (x )
x x

f (x )+ = −
′

 2 2 

4. Modified  
Newton-Raphson  

n
i 1 n 1

n n n2

f
x x

f x f / f+ = −
′ ′−  

 3 3 

5. Successive 
approximation 

   x1 = φ(x0) 1 1 

6. Secant i i i 1
i 1 i

i i 1

f (x )(x x )
x x

f (x ) f (x )
−

+
−

−= −
−

      1.62 1 

7. Muller xn+1 = xn + (xn – xn–1)λ      1.84 1 

8. Chebyshev 
2

n n
n 1 n n3

n n

f f1x x f
f 2 f+ ′′= − −
′ ′

 3 3 

3.11  SUMMARY

In this chapter, the techniques for the numerical solution of algebraic and transcendental equations have
been presented. Numerical methods involving iterative solution of nonlinear equations are more powerful.
These methods can be divided into two categories: Direct methods and Indirect (or iterative) methods. The
indirect or iterative methods are further divided into two categories: bracketing and open method. The
bracketing methods require the limits between which the root lies, whereas the open methods require the
initial estimation of the solution. Bisection and False Position methods are two known examples of the
bracketing methods. Among the open methods, the Newton-Raphson and the method of Successive
Approximation are most commonly used. The most popular method for solving a non-linear equation is the
Newton-Raphson method and this method has a quadratic rate of convergence. These methods have been
illustrated with examples.

Problems
3.1 Use the Bisection method to find a solution accurate to four decimal places for x = tan x in the interval

(4.4, 4.6).

3.2 Determine the solution of the equation 8 – 
9
2

(x – sin x) = 0 by using the Bisection method accurate
to five decimal places in the interval (2, 3).

3.3 Use the Bisection method to compute the root of ex – 3x = 0 correct to three decimal places in the
interval (1.5, 1.6).
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3.4 Find the root of log x = cos x correct to two decimal places using Bisection method.
3.5 Use the Bisection method to find a root of the equation x3 – 4x – 9 = 0 in the interval (2, 3), accurate

to four decimal places.
3.6 Use the Bisection method to determine a root correct to three decimal places of the equation

x log10 x = 1.2. Interval (2, 3).
3.7 Use the Bisection method to find a root of the equation 4.905t2 – 15t + 5 = 0 in the interval (0.3, 0.4)

with an accuracy of 4 digits.
3.8 Use Bisection method to find the root of f (x) = x3 – 10x2 + 5 = 0 that lies in the interval (0.6, 0.8)

correct within four decimal places.
3.9 Use Bisection method to find the root of f (x) = x – tan x in the interval (7, 8) correct to four decimal

places.

3.10 Use Bisection method to find the smallest positive root of cos x = 
1
2

 + sin x in the interval (0.41, 043).

Use an error tolerance of ∈ = 0.0001.
3.11 Use the method of False Position to find solution accurate to within 10–4 for the function f (x)

= x – cos x in the interval (0, π/2).
3.12 Use the method of False Position to find solution accurate to within 10–4 for the function f (x)

= x – 0.8 – 0.2 sin x = 0 in the interval (0, π/2).
3.13 Repeat Problem 4.6 correct to four decimal places using the False Position method.
3.14 Repeat Problem 4.7 correct to four decimal places using the False Position method.
3.15 Use the method of False Position to solve the equation x tan x + 1 = 0 accurate to three decimal

places starting with 2.5 and 3.0 as the initial approximations to the root.
3.16 Use method of False Position to solve the equation x log x – 1 = 0 correct to three significant figures.
3.17 Use the method of False Position to solve the equation xex – cos x = 0 correct to four decimal places

in the interval (0, 1).
3.18 Use the method of False Position to find a root correct to three decimal places for the function

tan x – 4x = 0.
3.19 Use the method of False Position to find a root of f (x) = ex – 2x2 = 0 with an accuracy of four digits.

The root lies between 1 and 1.5.
3.20 Use the method of False Position to find a root correct to three decimal places of the function

x3 – 4x – 9 = 0.
3.21 A root of f (x) = x3 – 10x2 + 5 = 0 lies close to x = 0.7. Determine this root with the Newton-Raphson

method to five decimal accuracy.
3.22 A root of f (x) = ex – 2x2 lies in the interval (1, 2). Determine this root with the Newton-Raphson

method to five decimal accuracy.
3.23 A root of f (x) = x3 – x2 – 5 = 0 lies in the interval (2, 3). Determine this root with the Newton-Raphson

method for four decimal places.
3.24 Use Newton-Raphson method to find solution accurate to within 10–4 for the function f (x)

=  x – cos x in the interval (0, π/2).
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3.25 Use Newton-Raphson method to find solution accurate to within 10–4 for the function f (x) = x – 0.8
– 0.2 sin x = 0 in the interval (0, π/2).

3.26 A positive root of the equation 
2 3

0.31
2 6

x xx xe x e= + + +  lies in the interval (2, 3). Use Newton-

Raphson method to find this root accurate to five decimal places.
3.27 Use Newton-Raphson method to find the smallest positive root of the equation tan x = x accurate to

four decimal places.
3.28 Determine the positive root of the equation x = 2 sin x accurate to three decimal places.
3.29 Use the Newton-Raphson method to estimate the root of f (x) = e–x – x with an initial guess of x0 = 0

accurate to five decimal places.

3.30 The equation 
2 3 4

...( ) 0.1 0
4 36 576
x x xf x x= − + − + + = has one root in the interval (0, 1). Determine this

root correct to five decimal places.
3.31 Use the Successive Approximation method to find correct to four significant figures a real root of

cos x – 3x + 1 = 0.
3.32 Use the Successive Approximation method to find correct to four significant figures a real root of

e–x – 10x = 0.
3.33 Use the Successive Approximation method to find correct to four decimal places a real root of

2x – log10 x – 7 = 0.
3.34 Use the Successive Approximation method to find correct to four significant figures a real root of the

function ex tan x – 1 = 0.
3.35 Find the real root of the equation x – sin x – 0.25 = 0 to three significant digits using the Successive

Approximation method.
3.36 Use the method of Successive Approximation to find a root of the equation ex – 3x = 0 in the interval

(0, 1) accurate to four decimal places.
3.37 Use the method of Successive Approximation to find a real root of ex – x2 = 0 correct to four significant

figures.
3.38 Use the method of Successive Approximation to determine a solution accurate to within 10–2 for

x4 – 3x2 – 3 = 0 on [1, 2]. Use x0 = 1.
3.39 Find a root of the equation x3 – 3x2 + 4 = 0 using the modified Newton-Raphson method, starting

with x0 = 1.8.
3.40 Find a root of the following function with an accuracy of 4 digits using modified Newton-Raphson

method, starting with x0 = 1.4. f (x) = ex – 2x2 = 0.
3.41 Find a root of the equation x3 – 8x – 4 = 0 using the modified Newton-Raphson method starting with

x0 = 2.8 up to four significant figures.
3.42 Find a root of the equation x3 – 3x – 5 = 0 using the modified Newton-Raphson method correct up to

four decimal places starting with x0 = 2.0.
3.43 Find a root of the equation x3 – x – 1 = 0 using the modified Newton-Raphson method correct up to

four decimal places starting with x0 = –1.5.
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3.44 Find a root of the equation x6 – x – 1 = 0 using the secant method approximations: x0 = 2 and x1 = 1.0.

3.45 Find a root of the equation x3 – 75 = 0 using the secant method with the initial approximations of
x0 = 4 and x1 = 5.

3.46 Find a root of the equation tan x – tanhx = 0 using the secant method with initial approximations:
x0 = 7 and x1 = 7.5.

3.47 Find a root of the equation cos x cosh x – 1 = 0 using the secant method with initial approximations:
x0 = 4.5 and x1 = 5.0.

3.48 Find a root of the equation sin x – 0.1x = 0 using the secant method with initial approximations:
x0 = 2 and x1 = 3.

3.49 Repeat Problem P3.39 using Muller’s method given that a root is near 1.0.

3.50 Repeat Problem P3.40 using Muller’s method given that a root is near 4.0.

3.51 Repeat Problem P3.41 using Muller’s method given that a root is near 7.0.

3.52 Repeat Problem P3.42 using Muller’s method given that a root is near 4.6.

3.53 Repeat Problem P3.43 using Muller’s method given that a root is near 2.8.

3.54 Find a root of the equation cos x – xex
 = 0 using Aitken’s ∆2 method.

3.55 Find the root of the equation x3 – 5x – 11 = 0 correct to three decimal places using Aitken’s method.

3.56 Find the root of 0.5 + sin x – x = 0 and x0 = 1 using Aitken’s method.

3.57 Use Aitken’s method to find a root of the equation 3x – log10x – 16 = 0.

3.58 Use Aitken’s method to find a root of the equation ex – 3x = 0 lying between 0 and 1.

3.59 Use Aitken’s method to find a root of the equation x3 + x – 1 = 0.

3.60 Use Aitken’s method to find a root of the equation 5x3 – 20x + 3 = 0 in the interval (0, 1).

3.61 Use Aitken’s method to find a root of the equation x3 + 2x – 2 = 0 up to three decimal places.

3.62 Use Aitken’s method to find a root of the equation x3 – 3x2 + 4 = 0.

P P P



4.1 INTRODUCTION

Numerical differentiation deals with the following problem: given the function y = f (x) find one of its derivatives
at the point x = xk. Here, the term given implies that we either have an algorithm for computing the function,
or possesses a set of discrete data points (xi, yi), i = 1, 2, …., n. In other words, we have a finite number of
(x, y) data points or pairs from which we can compute the derivative. Numerical differentiation is a method
to compute the derivatives of a function at some values of independent variable x, when the function f (x) is
explicitly unknown, however it is known only for a set of arguments.

Like the numerical interpolation discussed in Chapter 5, a number of formulae for differentiation are
derived in this chapter. They are:

(a) Derivatives based on Newton’s forward interpolation formula. This formula is used to find the
derivative for some given x lying near the beginning of the data table.

(b) Derivatives based on Newton’s backward interpolation formula. This formula is suitable to find
the derivative for a point near the end of the data table.

(c) Derivatives based on Stirling’s interpolation formula. This formula is used to find the derivative
for some point lying near the middle of the tabulated value.

A method to find the maxima and minima of a given function is also discussed in this chapter.

4.2 DERIVATIVES BASED ON NEWTON’S FORWARD
INTERPOLATION FORMULA

Suppose the function y = f (x) is known at (n + 1) equispaced points x0, x1, …., xn and they are y0, y1, …., yn

respectively i.e., yi = f (xi), i = 0, 1, …., n. Let xi = x0 + ih and ix x
u

h
−

= , where h is the spacing.

Referring to Chatper 5, the Newton’s forward interpolation formula is

2
0 0 0 0

...( 1) ( 1) ( 1)...( )
2! !

nu u u u u ny f x y u y y y
n

− − − −
= = + ∆ + ∆ + + ∆
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2 3 2 4 3 2

2 3 4
0 0 0 0 0

3 2 6 11 6
2! 3! 4!

u u u u u u u u uy u y y y y− − + − + −
= + ∆ + ∆ + ∆ + ∆

      
5 4 3 2

5
0

10 35 50 24 ...
5!

u u u u u y− + − +
+ ∆ + (4.1)

Differentiating Eq.(4.1) w.r.t. x, we get

  
2 3 2

2 3 4
0 0 0 0

1 2 1 3 6 2 4 18 22 6( )
2! 3! 4!

u u u u u uf x y y y y
h
 − − + − + −= ∆ + ∆ + ∆ + ∆′ 


             
4 3 2

5
0

5 40 105 100 24
5!

u u u u y− + − +
+ ∆ (4.2)

Note here that 
1du

dx h
=

Differentiating Eq.(4.2) w.r.t. x, we obtain

2 3 2
2 3 4 5

0 0 0 02
1 6 6 12 36 22 20 120 210 100 ...( )

3! 4! 5!
u u u u u uf x y y y y

h

 − − + − + −
= ∆ + ∆ + ∆ + ∆ +′′  

  
(4.3)

and so on.
Equations (4.2) and (4.3) give the approximate derivatives of f (x) at arbitrary point x = x0 + uh.

When x = x0, u = 0, Eqs.(4.2) and (4.3) become

2 3 4 5
0 0 0 0 0 0

1 1 1 1 1 ...( )
2 3 4 5

f x y y y y y
h
 = ∆ − ∆ + ∆ − ∆ + ∆ −′   

(4.4)

and 2 3 4 5
0 0 0 0 02

1 11 5 ...( )
12 6

f x y y y y
h

 = ∆ − ∆ + ∆ − ∆ +′′   
(4.5)

and so on.
Example E4.1

From the following table find the value of 
dy
dx

 and 
2

2
d y
dx

at the point x = 1.0.

x 1 1.1 1.2 1.3 1.4 1.5 
y 5.4680 5.6665 5.9264 6.2551 6.6601 7.1488 
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Solution:
The forward difference table is

x y ∆y ∆2y ∆3y 
1.0 5.4680    
  0.1985   
1.1 5.6665  0.0614  
  0.2599  0.0074 
1.2 5.9264  0.0688  
  0.3287  0.0074 
1.3 6.2551  0.0763  
  0.4050  0.0074 
1.4 6.6601  0.0837  
  0.4887   
1.5 7.1488    

Here x0 = 1.0 and h = 0.1. Then u = 0 and hence

  2 3
0 0 0

1 1 1 1 1 1...(1.0) 0.1985 (0.0614) (0.0074) 1.7020
2 3 0.1 2 3

dy y y y y
dx h

   = = ∆ − ∆ + ∆ − = − + =′       

[ ]
2

3
0 02 2 2

1 1...(1.0) 0.0614 0.0074 5.4040
(0.1)

d y y y y
dx h

 = = ∆ − ∆ + = − =′′  

Example E4.2
Obtain the first and second derivatives of the function tabulated below at the points x = 1.1 and x = 1.2.

x : 1 1.2 1.4 1.6 1.8 2.0
y : 0 0.128 0.544 1.298 2.440 4.02

Solution:
We first construct the forward difference table as shown below.

x y ∆y ∆2y ∆3y ∆4y 
1.0 0     
  0.128    
1.2 0.128  0.288   
  0.416  0.05  
1.4 0.544  0.338  0 
  0.754  0.05  
1.6 1.298  0.388  0 
  1.142  0.05  
1.8 2.440  0.438   
  1.580    
2.0 4.02     

Since x = 1.1 is a non-tabulated point near the beginning of the table, we take x0 = 1.0 and compute
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 0 1.1 1.0
0.5

0.2
x x

p
h
− −

= = =

Hence,
2

2 3
0 0 0

1 2 1 3 6 2
2 6

dy p p py y y
dx h

 − − +
= ∆ + ∆ + ∆ 

  

    
21 3(0.5) 6(0.5) 20.128 0 (0.05) 0.62958

0.2 6
 − += + + = 
  

2
2 3

0 02 2 2
1 1( 1) [0.288 (0.5 1)0.05] 6.575

(0.2)
d y y p y
dx h

 = ∆ + − ∆ = + − = 

Now, x = 1.2 is a tabulated point near the beginning of the table. For x = x0 = 1.2, p = 0 and

2 3
0 0 0

1 1 1 1 1 10.416 (0.338) (0.05) 1.31833
2 3 0.2 2 3

dy y y y
dx h

   = ∆ − ∆ + ∆ = − + =      

2
2 3

0 02 2 2
1 1[ ] [0.338 0.05] 7.2

(0.2)
d y y y
dx h

= ∆ − ∆ = − =

Example E4.3
Find the first and second derivatives of the functions tabulated below at the point x = 1.1 and x = 1.2.

x 1 1.2 1.4 1.6 1.8 2.0 
y 0 0.1 0.5 1.25 2.4 3.9 

Solution:
First, we construct the forward difference table:

x y ∆y ∆2y ∆3y ∆4y 
1.0 0     
  0.1    
1.2 0.1  0.3   
  0.4  0.05  
1.4 0.5  0.35  0 
  0.75  0.05  
1.6 1.25  0.40  0 
  1.15  0.05  
1.8 2.40  0.45   
  1.5    
2.0 3.90     

Here x = 1.1 is a non-tabulated point near the beginning of the table. For x0 = 1.0,

           0 1.1 1.0
0.5

0.2
x x

p
h
− −

= = =
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Hence
2

2 3
0 0 0

1 2 1 3 6 2
2 6

dy p p py y y
dx h

 − − +
= ∆ + ∆ + ∆ 

  

     
21 3(0.5) 6(0.5) 20.1 0 (0.05) 0.48958

0.2 6
 − +

= + + = 
  

2
2 3

0 02 2 2
1 1( 1) [0.3 (0.5 1)0.05] 6.875

(0.2)
d y y p y
dx h

 = ∆ + − ∆ = + − = 

For x = 1.2, it is a tabulated point near the beginning of the table.
Let    x = x0 = 1.2, p = 0

2 3
0 0 0

1 1 1 1 1 10.4 (0.35) (0.05) 1.208
2 3 0.2 2 3

dy y y y
dx h

   = ∆ − ∆ + ∆ = − + =      

2
2 3

0 02 2 2
1 1[ ] [0.35 0.05] 7.5

(0.2)
d y y y
dx h

= ∆ − ∆ = − =

4.3 DERIVATIVES BASED ON NEWTON’S BACKWARD
INTERPOLATION FORMULA

Here, we assume the function y = f (x) is known at (n + 1) points x0, x1, …., xn , i.e., yi = f (xi), i = 0, 1, 2, ….,

n are known. Let xi = x0 + ih, i = 0, 1, 2, …., n and nx x
v

h
−

= .

Then, the Newton’s backward interpolation formula from Chapter 5 is given by

2 3 4( 1) ( 1)( 2) ( 1)( 2)( 3)
( )

2! 3! 4!n n n n n
v v v v v v v v vf x y v y y y y+ + + + + +

= + ∇ + ∇ + ∇ + ∇

        5( 1)( 2)( 3)( 4) ...
5! n

v v v v v y+ + + +
+ ∇ + (4.6)

When the Eq.(4.6) is differentiated w.r.t. x successively, we obtain

2 3 2
2 3 41 2 1 3 6 2 4 18 22 6( )

2! 3! 4!n n n n
v v v v v vf x y y y y

h
 + + + + + += ∇ + ∇ + ∇ + ∇′ 


(4.7)

  
4 3 2

55 40 105 100 24 ...
5! n

v v v v y
+ + + +

+ ∇ + 


      
2 3 2

2 3 4 5
2

1 6 6 12 36 22 20 120 210 100 ...( )
3! 4! 5!n n n n

v v v v v vf x y y y y
h

 + + + + + += ∇ + ∇ + ∇ + ∇ +′′  
  

and so on. (4.8)
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Equations (4.7) and (4.8) can be used to determine the approximate differentiation of first, second, etc. order
at any point x, where x = xn + vh.

If x = xn, then v = 0.
Equations (4.7) and (4.8) become

2 3 4 51 1 1 1 1 ...( )
2 3 4 5n n n n n nf x y y y y y

h
 = ∇ + ∇ + ∇ + ∇ + ∇ +′   

(4.9)

and 2 3 4 5
2

1 11 5 ...( )
12 6n n n n nf x y y y y

h
 = ∇ + ∇ + ∇ + ∇ +′′   

(4.10)

Example E4.4
A slider in a machine moves along a fixed straight rod. Its distance x(m) along the rod are given in the
following table for various values of the time t (seconds).

t(sec.) 1 2 3 4 5 6 
x(m) 0.0201 0.0844 0.3444 1.0100 2.3660 4.7719 

Find the velocity and acceleration of the slider at time t = 6 sec.
Solution:
The backward difference table is

t x ∇x ∇2x ∇3x ∇4x ∇5x 
1.0 0.0201      
2.0 0.0844 0.0643     
3.0 0.3444 0.2600 0.1957    
4.0 1.0100 0.6656 0.4056 0.2100   
5.0 2.3660 1.3560 0.6904 0.2847 0.0748  
6.0 4.7719 2.4059 1.0499 0.3595 0.0748 0.0000 

Here h = 1.0

2 3 4 51 1 1 1 1 ...
2 3 4 5

dx x x x x x
dt h

 = ∇ + ∇ + ∇ + ∇ + ∇ +  

1 1 1 1 12.4059 (1.0499) (0.3595) (0.0748) (0.0) 3.0694
1.0 2 3 4 5

 = + + + + =  

         
2

2 3 5
2 2 2

1 11 1 11 5... 1.0499 0.3595 (0.0748) (0) 1.4780
12 12 6(1.0)

d x x x x
dt h

   = ∇ +∇ + ∇ + = + + + =      

4.4 DERIVATIVES BASED ON STIRLING’S INTERPOLATION FORMULA

Suppose y±i = f (x±i), i = 0, 1, …., n are given for 2n + 1 equispaced points x0, x±1, x±2, …., x±n, where
x±i = x0 ± ih, i = 0, 1, …., n.
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The Stirling’s interpolation polynomial is given by

 
3 32 3

21 0 2 1
0 1( )

1! 2 2! 3! 2
y y y yu u u uf x y y− − −

−
 ∆ + ∆ ∆ + ∆− = + + ∆ +       

           
5 54 2 5 3

4 3 2
2

5 4 ...
4! 5! 2

y yu u u u uy − −
−

 ∆ + ∆− − ++ ∆ + + 
  

(4.11)

where 0x x
u

h
−

=

When Eq.(4.11) is differentiated with respect to x successively, we obtain

3 32
21 0 2 1

1
1 3 1( )

2 6 2
y y y yuf x u y

h
− − −

−

  ∆ + ∆ ∆ + ∆−= + ∆ +′    
5 53 4 2

4 3 2
2

2 5 15 4 ...
12 120 2

y yu u u uy − −
−

 ∆ + ∆− − ++ ∆ + +    
(4.12)

and         
5 53 3 2 3

2 4 3 22
1 22

11 6 1 2 3 ...( )
2 12 12 2

y yy u u uf x y u y
h

− −−
− −

  ∆ + ∆∆ + ∆ − − −= ∆ + + ∆ + +′′      

(4.13)
At x = x0, u = 0 and Eqs.(4.12) and (4.13) become

5 53 3
0 1 2 31 2

0
1 1 1 ...( )

2 6 2 30 2
y y y yy yf x

h
− − −− −

   ∆ + ∆ ∆ + ∆∆ + ∆
= − + +′         

(4.14)

2 4
0 1 22

1 1 ...( )
12

f x y y
h − −

 = ∆ − ∆ +′′   
(4.15)

Example E4.5

Find 
dy
dx

 and 
2

2
d y
dx

for x = 0.2 for the data given in the following table

x 0 0.1 0.2 0.3 0.4 0.5 
y 0 0.10017 0.20134 0.30452 0.41076 0.52115 
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Solution:
Construct the following difference table.

x y ∆y ∆2y ∆3y ∆4y 
0 0     
  0.10017    
0.1 0.10017  0.001   
  0.10017  0.00101  
0.2 0.20134  0.00201  0.00004 
  0.10318  0.00105  
0.3 0.30452  0.00306  0.00004 
  0.10624  0.00109  
0.4 0.41076  0.00415   
  0.11039    
0.5 0.52115     

Here, we use Stirling’s formula. Hence, for x = 0.2, we have

3 3
1 0 2 11 1
2 6 2

y y y ydy
dx h

− − − ∆ + ∆ ∆ + ∆
= − 

  

     
1 0.10117 0.10318 1 (0.00101 0.00105 1.020033

0.1 2 12
+ = − + =  

2
2 4

1 22 2 2
1 1 1 10.00201 (0.00004) 0.200666

12 12(0.1)
d y y y
dx h − −

   = ∆ − ∆ = − =      

Example E4.6
Compute the values of f '(3.1) and f '(3.2) using the following table.

x 1 2 3 4 5 
f(x) 0 1.4 3.3 5.6 8.1 

Solution:
The central difference table is

x y = f(x) ∆y ∆2y ∆3y ∆4y 
x–2 = 1     0     

  1.4    
x–1 = 2 1.4  0.5   

  1.9  –0.1  
x0 = 3 3.3  0.4  –0.1 

  2.3  –0.2  
x1 = 4 5.6  0.2   

  2.5    
x2 = 5 8.1     
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Let

x0 = 3, h = 1, 
3.1 3

0.1
1

u −
= =

.3 32 3
2 41 0 2 1

1 2
1 3 1 2 ...(3.1)

2 6 2 12
y y y yu u uf u y y

h
− − −

− −

  ∆ + ∆ ∆ + ∆− −= + ∆ + + ∆ +′      

2 31 1.9 2.3 3(0.1) 1 0.1 0.2 2(0.1) 0.10.1(0.4) ( 0.1)
1 2 6 2 12
 + − − − − = + + + −     

= [2.1 + 0.04 + 0.02425 + 0.00082] = 2.16507

2 3 2
2 42 1

1 22
1 6 1 ...(3.1)

2 12
y y uf y u y

h
− −

− −

  ∆ + ∆ −= ∆ + + ∆ +′      

2

2
1 0.1 0.2 6(0.1) 10.4 0.1 ( 0.1) [0.4 0.015 0.00783] 0.39283

2 121

 − − − = + + − = − + =     

4.5 MAXIMA AND MINIMA OF A TABULATED FUNCTION

From calculus, we know that if a function is differentiable, then the maximum and minimum value of that
function can be determined by equating the first derivative to zero and solving for the variable. This method
is extendable for the tabulated function.

Now, consider the Newton’s forward difference formula given in Eq.(4.1).
Differentiating Eq.(4.1) w.r.t. u, we obtain

2
2 3

0 0 0
2 1 3 3 2 ...

2 6
dy u u uy y y
du

− − +
= ∆ + ∆ + ∆ + (4.16)

For maximum or minimum, 
dy
du

= 0. Neglecting the term after the third difference to obtain a quadratic equation
in u.

Hence
2

2 3
0 0 0

1 1 0
2 2 2 3

u uy u y y
  ∆ + − ∆ + − + ∆ =      

(4.17)

or
3

2 2 2 2 30
0 0 0 0 0

1 1 1 0
2 2 2 3
y

u y y u y y y
∆    + ∆ − ∆ + ∆ − ∆ + ∆ =      

or a0u2 + a1u + a2 = 0 (4.18)
which gives the values of u.
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Here 3
0 0

1
2

a y= ∆

2 3
1 0 0

1
2

a y y= ∆ − ∆

2 3
2 0 0 0

1 1
2 3

a y y y= ∆ − ∆ + ∆ (4.19)

The values of x will then be obtained from x = x0 + uh.

Example E4.7
Find x correct to four decimal places for which y is maximum from the following data given in tabular form.
Find also the value of y.

x 1 1.2 1.4 1.6  1.8 
y 0 0.128 0.544 1.298 2.44 

Solution:
We first construct the forward difference table as shown below:

x y ∆y ∆2y ∆3y 
1.0 0    

  0.128   
1.2 0.128  0.288  

  0.416  0.05 
1.4 0.544  0.338  

  0.754  0.05 
1.6 1.298  0.388  

  1.142   
1.8 2.44    

Let  x0 = 1.0

Here 0
1

(0.05) 0.025
2

a = =

1
1

0.288 (0.05) 0.2630
2

a = − =

2
1 1

0.128 (0.288) (0.05) 0.128 0.144 0.0166 0.000666
2 3

a = − + = − + =

Hence a0u2 + a1u + a2 = 0, which gives the value of u.
or 0.025u2 + 0.263u + 0.000666 = 0

        
2

1,2
0.263 (0.263) 4(0.025)(0.000666)

(0, 10.5175)
2(0.025)

u
− ± −

= = −

Hence   u = 0 or u = –10.5175
Therefore,   x = 1.0 and x = 1.0 – 10.5175(0.2) = –1.1035
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At x = 1.0, y = 0 and at x – 1.1035, we apply the Newton’s forward interpolation formula.

 2 3
0 0 0 0

( 1) ( 1)( 2) ...
2! 3!

u u u u uy y u y y y− − −
= + ∆ + ∆ + ∆ +

    

( 10.5175)( 11.5175)0 ( 10.5175)(0.128) (0.288)
2

( 10.5175)( 11.5175)( 12.5175) (0.05)
(3)(2)(1)

− −
= + − +

− − −
+

     = 3.46132  (maximum value)

4.6 CUBIC SPLINE METHOD

The cubic spline method described in Section 5.7 of Chapter 5 can be used to find the first and second
derivatives of a function. The method requires two steps. In the first step, the cubic splines are constructed
with suitable intervals. In the second step, the first and second derivatives are determined from the appropriate
cubic spline. These steps are illustrated by an example as follows:

Example E4.8
Given y = f (x) = cos x, 0 ≤ x ≤ π/2. Determine

(a) the natural cubic spline in the interval 0 ≤ x ≤ π/4 and π/4 ≤ x ≤ /2
(b) the first and second derivatives f ′(π/8) and f ″(π/8).

Solution:

Here h = 
4
π

, y0 = cos 0 = 1, y1 = cos 
1

4 2
π
=  and y2 = cos

4
π

= 0. Also k0 = k2 = 0.

From Eq.(5.85) of Sec.5.7 of Chapter 5,

1 1 1 12
64 [ 2 ]i i i i i ik k k y y y
h− + − ++ + = − + ,       i = 2, 3, …., n – 1 (E.1)

or    0 1 2 0 1 22
64 [ 2 ]k k k y y y

h
+ + = − +

or  ( )1 2
964 1 2k = −
π

or    ( )1 2
24 1 2 1.007247k = − = −
π

Therefore, the cubic spline is given by Eq.(5.81) of Chapter 5,

4

4 2

0,

,

( )
( )

( )

f x
f x

f x

π

π π

= 


(E.2)
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where
4

3 2

1 10,
4 1( ) 1

6 96 42
xf x k k xπ

  π π= − − + +  π    
(E.3)

and 4 2

3

2

1 1,
4 12( )

6 96 22

x
f x k k xπ π

 π −      π π  = − − −    π   
  

(E.4)

Hence  
40, 0.339961

8 4
f f π

π π   = = −′ ′      

40, 0.503623
8 8

f f π
π π   = = −′′ ′′      

4.7 SUMMARY

Numerical differentiation is not a particularly accurate process due to a conflict between round off errors and
errors inherent in interpolation. Hence, a derivative of a function can never be computed with the same
precision as the function itself.

Problems

4.1 From the following table of values, estimate y'(1.0) and y''(1.0):
(a) x 1 2 3 4 5 6 

y –4 +3 22 59 120 211 

(b) x 1 1.5 2   2.5 3   3.5 
y 5 6.125 9 14.375 23 35.625 

(c) x 1 2 3 4 5 6 
y 6 25 104 309 730 1481 

(d) x 1   1.5     2     2.5       3       3.5 
y 2.7 –5.5188 –27.8 –75.4688 –163.3 –309.5188 

(e) x 1     2       3      4         5         6 
y 2.9 –26.2 –157.9 –523 –1307.5 –2752.6 

( f ) x 1   3 5    7    9    11 
y 5.2 28.4 130 367.6 798.8 1481.2 

(g) x 1     1.5    2 2.5  3    3.5 
y –48 –41.0068 –24.362 8.1098 64.084 152.7363 
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4.2 Find the values of y'(3.5) and y''(3.5) from the following table:
(a) x 1 1.5 2 2.5 3   3.5 

y –49 –46.6250 –42 –34.3750 –23 –7.1250 

(b) x 1 1.5 2   2.5 3   3.5 
y 5 6.1250 9 14.3750 23 35.6250 

(c) x 1 1.5 2   2.5   3   3.5 
y 0.5470 0.4536 0.2020 –0.3284 –1.2930 –2.8814 

(d) x 1 1.5 2 2.5 3 3.5 
y 0.2377 0.3108 0.4829 0.7941 1.2849 1.9953 

4.3  Find the values of y'(6.0) and y''(6.0) from the following table:
(a) x   1   2   3   4   5   6 

y –0.5530 –0.7740 –1.2490 –2.0380 –3.1770 –4.6780 

(b) x 1   2   3   4   5   6 
y 0.0858 –0.0099 –0.3242 –0.9827 –2.1094 –3.8270 

4.4 A particle is moving along a straight line. The displacement x at some time instance t are given below.
Find the velocity and acceleration of the particle at t = 4.

t 1 3 5 7   9 11 
x 0.1405 0.7676 3.5135 9.9351 21.5892 40.0324 

4.5 Find the values of y'(4) and y''(4) from the following table:

x 0 1 2 3 4 
y 5 8 12 17 26 

4.6 Find the values of y'(2) and y''(2) from the following table:
x 1.5 1.6 1.7 1.8 1.9 2.0 
y 0.3328 0.5312 0.7651 1.0384 1.3552 1.7198 

4.7 Compute the values of y'(3) and y''(3) from the following table:
(a) x 1 2 3 4 5 

y  0 1.4 1.65 5.673 8.0978 

(b) x 1 2 3 4 5 
y 0.4 0.65 0.75 0.87 0.98 

4.8 Compute the values of y'(2) and y''(2) from the following table:
(a) x 1 1.5 2 2.5 3 

y  0 0.5 1.1 3.2 5.3 
(b) x 1 1.5 2 2.5 3 

y –2 2 3.456 5.674 8.4592 
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4.9 Compute the values of y'(1.2) and y''(1.2) from the following table:
(a) x 1 1.1 1.2 1.3 1.4 

y 0.1 0.34 0.42 0.53 0.62 

(b) x 1 1.1 1.2 1.3 1.4 
y 0.0254 0.0437 0.0587 0.0670 0.0780 

(c) x 1 1.1 1.2 1.3 1.4 
y 0.0012 0.2342 0.5786 0.7693 0.8934 

4.10 Find x for which y is maximum and also find the corresponding value of y, from the table given below:

(a) x 1 2 3 4 5 6 
y –4 +3 22 59 120 211 

(b) x 1 1.5 2   2.5 3   3.5 
y 5 6.125 9 14.375 23 35.625 

(c) x 1 2 3 4 5 6 
y 6 25 104 309 730 1481 

(d) x 1   1.5     2    2.5      3      3.5 
y 2.7 –5.5188 –27.8 –75.4688 –163.3 –309.5188 

(e) x 1     2       3       4         5         6 
y 2.9 –26.2 –157.9 –523 –1307.5 –2752.6 

( f ) x 1 3     5     7     9    11 
y 5.2 28.4 130 367.6 798.8 1481.2 

(g) x 1     1.5     2 2.5   3     3.5 
y –48 –41.0068 –24.362 8.1098 64.084 152.7363 

4.11 Repeat Problem P5.68 of Chapter 5.
4.12 Repeat Problem P5.71 of Chapter 5.
4.13 Use cubic spline method to find f '(2.0) and f '(2.5) from the following table:

x 2 3 5 6 
y 13 34 136 229 

4.14 Repeat Problem P4.7(a) using the cubic spline method.

4.15 Repeat Problem P4.8(a) using the cubic spline method.

4.16 Repeat Problem P4.9(a) using the cubic spline method.

4.17 Repeat Problem P4.9(b) using the cubic spline method.
P P P



5.1 INTRODUCTION

Interpolation is the technique of estimating the value of a function for any intermediate value of the
independent variable. The process of computing or finding the value of a function for any value of the
independent variable outside the given range is called extrapolation. Here, interpolation denotes the method
of computing the value of the function y = f (x) for any given value of the independent variable x when a set
of values of y = f (x) for certain values of x are known or given.

Hence, if (xi, yi), i = 0, 1, 2, …., n are the set of (n + 1) given data points of the function y = f (x), then
the process of finding the value of y corresponding to any value of x = xi between x0 and xn, is called
interpolation. There are several definitions available for the term interpolation. Hiral defines interpolation as
the estimation of a most likely estimate in given conditions. It is the technique of estimating a past figure.
Theile’s definition of interpolation is “Interpolation is the art of reading between the lines of a table” while
Harper’s definition is “Interpolation consists in reading a value which lies between two extreme points”.

If the function f(x) is known explicitly, then the value of y corresponding to any value of x can easily
be obtained. On the other hand, if the function f (x) is not known, then it is very hard to find the exact form
of f (x) with the tabulated values (xi, yi). In such cases, the function f (x) can be replaced by a simpler, function,
say, φ (x), which has the same values as f (x) for x0, x1, x2, …., xn. The function φ (x) is called the interpolating
or smoothing function and any other value can be computed from φ (x).

If φ (x) is a polynomial, then φ (x) is called the interpolating polynomial and the process of computing
the intermediate values of y = f (x) is called the polynomial interpolation. In the study of interpolation, we
make the following assumptions:

(a) there are no sudden jumps in the values of the dependent variable for the period under
consideration

(b) the rate of change of figures from one period to another is uniform.
In this chapter, we present the study of interpolation based on the calculus of finite differences. The following
important interpolation formulae obtained or derived based on forward, backward and central differences of
a function are presented.
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(a) Newton’s binomial expansion formula for equal intervals
(b) Newton’s forward interpolation formula for equal intervals
(c) Newton’s backward interpolation formula for equal intervals
(d) Lagrange’s formula for unequal intervals
(e) Lagrange’s formula for inverse interpolation
( f ) Gauss’s forward interpolation formula
(g) Gauss’s backward interpolation formula
(h) Bessel’s formula
(i) Stirling’s formula
( j) Laplace-Everett’s formula

5.2 FINITE DIFFERENCE OPERATORS

Consider a function y = f (x) defined on (a, b). x and y are the independent and dependent variables respectively.
If the points x0, x1, …., xn are taken at equidistance i.e., xi = x0 + ih, i = 0, 1, 2, …., n, then the value of y, when
x = xi, is denoted as yi, where yi = f (xi). Here, the values of x are called arguments and the values of y are
known as entries. The interval h is called the difference interval. The differences y1 – y0, y2 – y1, …, yn – yn–1 are
called the first differences of the function y. They are denoted by ∆y0, ∆y1, …., etc. That is

∆y0 = y1 – y0

∆y1 = y2 – y1
�

∆yn = yn – yn–1 (5.1)

The symbol ∆ in Eq.(5.1) is called the difference operator.

5.2.1 Forward Differences

The forward difference or simply difference operator is denoted by ∆ and may be defined as

∆f(x) = f(x + h) – f(x) (5.2)

or writing in terms of y, at x = xi, Eq.(5.2) becomes
∆ f(xi) = f(xi + h) – f(xi) (5.3)

or ∆yi = yi+1 – yi i = 0, 1, 2, …., n – 1
The differences of the first differences are called the second differences and they are denoted by ∆2y0, ∆2y1,
…., ∆2yn.
Hence ∆2y0 = ∆y1 – ∆y0 = (y2 – y1) – (y1 – y0) = y2 – 2y1 + y0

∆2y1 = ∆y2 – ∆y1 = (y3 – y2) – (y2 – y1) = y3 – 2y2 + y1

∆3y0 = ∆2y1 – ∆2y0 = (y3 – 2y2 + y1) – (y2 – 2y1 + y0) = y3 – 3y2 + 3y1 – y0

∆3y1 = y4 – 3y3 + 3 y2 – y1, etc.
Generalising, we have

∆n+1f (x) = ∆[∆nf (x)], i.e., ∆n +1yi = ∆[∆nyi], n = 0, 1, 2, …. (5.4)
Also, ∆n+1f (x) = ∆n[f (x + h) – f (x)] = ∆nf (x + h) – ∆nf (x)
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and ∆n +1yi = ∆nyi+1 – ∆nyi, n = 0, 1, 2, …. (5.5)
where ∆0 ≡ identity operator i.e., ∆0f (x) = f (x) and ∆1 = ∆.

Table 5.1: Forward difference table

x y ∆y ∆2y ∆3y ∆4y ∆5y 
x0 y0      
  ∆y0     
x1 y1  ∆2y0    
  ∆y1  ∆3y0   
x2 y2  ∆2y1  ∆4y0  
  ∆y2  ∆3y1  ∆5y0 
x3 y3  ∆2y2  ∆4y1  
  ∆y3  ∆3y2   
x4 y4  ∆2y3    
  ∆y4     
x5 y5      

The forward differences for the arguments x0, x1, …., x5 are shown in Table 5.1. Table 5.1 is called a diagonal
difference table or forward difference table. The first term in Table 5.1 is y0 and is called the leading term.
The differences ∆y0, ∆2y0, ∆3y0, …., are called the leading differences. Similarly, the differences with fixed
subscript are called forward differences.

5.2.2 Backward Differences
The backward difference operator is denoted by ∇ and it is defined as

∇f (x) = f (x) – f (x – h) (5.6)

Equation (5.6) can be written as
∇yi = yi – yi – 1, i = n, n – 1, …., 1. (5.7)

or ∇y1 = y1 – y0, ∇y2 = y2 – y1, …., ∇yn = yn – yn –1 (5.8)

The differences in Eq.(5.8) are called first differences. The second differences are denoted by

∇2y2, ∇2y3, …., ∇2yn.
Hence ∇2y2 = ∇(∇y2) = ∇(y2 – y1) = ∇y2 – ∇y1 = (y2 – y1) – (y1 – y0) = y2 – 2y1 + y0.
Similarly, ∇2y3 = y3 – 2y2 + y1, ∇2y4 = y4 – 2y3 + y2, and so on.

Generalising, we have

∇kyi = ∇k–1yi – ∇k–1yi–1, i = n, n – 1, …., k (5.9)
where ∇0yi = yi, ∇

1yi = ∇yi.

The backward differences written in a tabular form is shown in Table 5.2. In Table 5.2, the differences ∇ny
with a fixed subscript ‘i’ lie along the diagonal upward sloping.
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Table 5.2: Backward difference table

x y ∇y ∇2y ∇3y ∇4y 
x0 y0     
  ∇y1    
x1 y1  ∇2y2   
  ∇y2  ∇3y3  
x2 y2  ∇2y3  ∇4y4 
  ∇y3  ∇3y4  
x3 y3  ∇2y4   
  ∇y4    
x4 y4     

Table 5.2 is called the backward difference or horizontal table.

5.2.3 Central Differences
The central difference operator is denoted by the symbol δ and is defined by

δ f (x) = f (x + h/2) – f (x – h/2)

where h is the interval of differencing.

In terms of y, the first central difference is written as

δy1 = yi+1/2 – yi– 1/2 (5.10)
where yi+1/2 = f (xi + h/2) and yi – 1/2 = f (xi – h/2).
Hence δy1/2 = y1 – y0, δy3/2

= y2 – y1, …., δyn–1/2

= yn – yn–1.

The second central differences are given by

δ2yi = δyi + 1/2 – δyi – 1/2

= (yi + 1 – yi) – (yi – yi–1)
= yi + 1 – 2yi + yi –1

Generalising
δnyi = δn–1yi +1/2 – δn–1yi –1/2 (5.11)

The central difference table for the seven arguments x0, x1, …., x4 is shown in Table 5.3.
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Table 5.3: Central difference table

x y δ δ2 δ3 δ4 δ5 δ6 
x0 y0       
  δy1/2      
x1 y1  δ2y1     
  δy3/2  δ3y3/2    
x2 y2  δ2y2  δ4y2   
  δy5/2  δ3y5/2  δ5y5/2  
x3 y3  δ2y3  δ4y3  δ6y3 
  δy7/2  δ3y7/2  δ5y7/2  
x4 y4  δ2y4  δ4y4   
  δy9/2  δ3y9/2    
x5 y5  δ2y5     
  δy11/2      
x6 y6       

It is noted in Table 5.3 that all odd differences have fraction suffices and all the even differences are with
integral suffices.

Example E5.1
(a) Construct the forward difference table and the horizontal table for the following data:

x 1 2 3 4 5 
y = f(x) 4 6 9 12 17 

(b) Construct a forward difference table for the following data

x 0 10 20 30 
y 0   0.174   0.347   0.518 

(c) Construct a difference table for y = f (x) = x3 + 2x + 1 for x = 1, 2, 3, 4, 5.
(d) Obtain the backward differences for the function f (x) = x3 from x = 1 to 1.05 to two decimals chopped.

Solution:
(a) The forward and the horizontal or backward difference tables are shown in Tables E5.1 (a) and E5.1

(b) respectively.
Table E5.1(a): Forward difference table

x f(x) ∆f(x) ∆2f(x) ∆3f(x) ∆4f(x) 
1 4     
  2    

2 6  1   
  3  1  

3 9  0  3 
  3  2  

4 12  2   
  5    

5 17     
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Table E5.1 (b): Horizontal or backward difference table

x f(x) ∆f(x) ∆2f(x) ∆3f(x) ∆4f(x) 
1 4     
2 6 2    
3 9 3 1   
4 12 3 0 1  
5 17 5 2 2 3 

(b) Table E5.1 (c) shows the forward difference operations.

Table E5.1(c)

x y ∆y ∆2y ∆3y 
  0 0    

  0.174   
10 0.174  –0.001  

  0.173  –0.001 
20 0.347  –0.002  

  0.171   
30 0.518    

(c) Table E5.1(d) shows the forward difference table.

Table E5.1(d)

x x = f(x) ∆y ∆2y ∆3y 
1    4    
   9   

2   13  12  
  21  6 

3   34  18  
  39  6 

4   73  24  
  63   

5 136    
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(d) The following table E5.1(e) shows the backward differences.

Table E5.1(e)

x y = f(x) y∇  y2∇  y3∇  y4∇  
1.00 1     
  0.030    
1.01 1.030  0.001   
  0.031  –0.001  
1.02 1.061  0.000  0.002 
  0.031  0.001  
1.03 1.092  0.001  –0.001 
  0.032  0.000  
1.04 1.124  0.001   
  0.033    
1.05 1.157     

Note the typical oscillations in sign and growth of the entries.

5.2.4 Error Propagation in a Difference Table
Let y0, y1, y2, …., yn be the true values of a function and suppose the value y4 to be affected with an error
∈, so that its erroneous value is y4 + ∈. Then the successive differences of the y are as shown in Table 5.4.

Table 5.4: Error propagation in a difference table

y ∆y ∆2y ∆3y 
y0    
 ∆y0   

y1  ∆2y0  
 ∆y1  ∆3y0 

y2  ∆2y0  
 ∆y2  ∆3y1 

y3  ∆2y1  
 ∆y3  ∆3y2 + ∈ 

y4  ∆2y3 + ∈  
 ∆y4 + ∈  ∆3y3 – 3∈ 

y5 + ∈  ∆2y4 – 2∈  
 ∆y5 – ∈  ∆3y4 + 3∈ 

y6  ∆2y5 + ∈  
 ∆y6  ∆3y5 – ∈ 

y7  ∆2y6  
 ∆y7  ∆3y6 

y8  ∆2y7  
 ∆y8   

y9    
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Table 5.4 shows that the effect of an error increases with the successive differences, that the coefficients of
the ∈’s are the binomial coefficients with alternating signs, and that the algebraic sum of the errors in any
difference column is zero. The same effect is also true for the horizontal difference Table 5.2.
Example E5.2
Table E5.2 gives the values of a polynomial of degree five. It is given that f (4) is in error. Correct the value
of f (4).

Table E5.2

x 1   2   3   4   5 6   7 
y = f(x) 0.975 –0.6083 –3.5250 –5.5250 –6.3583 4.2250 36.4750 

Solution:
It is given that y = f (x) is a polynomial of degree five. Hence ∆5y must be a constant and f (4) is in error.
Let –5.5250 + ∈ be the true or correct value. The difference table is shown in Table E5.2(a).

Table E5.2(a)

x y ∆y ∆2y ∆3y ∆4y ∆5y 
1 0.975      
  –1.5833     
2 –0.6083  –1.3333    
  –2.9167  2.25 + ∈   
3 –3.5250  0.9167 + ∈  –2 – 4∈  
  –2 + ∈  0.25 – 3∈  12 + 10∈ 
4 –5.5250 + ∈  1.1667 – 2∈  10 + 6∈  
  –0.8333 – ∈  10.25 + 3∈  –10 – 10∈ 
5 –6.3583  11.4667 + ∈  0 – 4∈  
  10.5833  10.25 – ∈   
6 4.2250  21.6667    
  32.2500     
7 36.4750      

Since the fifth differences of y are constant, we have
12 + 10∈ = –10 – 10∈

or 20∈ = –22
or ∈ = –1.1
Hence f (4) = –5.5250 + ∈ = –5.5250 – 1.1
or f (4) = –6.6250

Example E5.3
The following is a table of values of a polynomial of degree 5. It is given that f (3) is in error. Correct the error.

Table E5.3
x 0 1 2 3 4 5 6 
y 1 2 33 254 1054 3126 7777 
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Solution:
It is given that y = f (x) is a polynomial of degree 5.
Hence, ∆5y must be constant; f (3) is in error.
Let 254 + ∈ be the true value, now we form the difference table as shown in Table E5.3 (a).

Table E5.3 (a)

x y ∆y ∆2y ∆3y ∆4y ∆5y 
0 1      
  1     
1 2  30    
  31  160 + ∈   
2 33  190 + ∈  200 – 4∈  
  221 + ∈  360 – 3∈  220 + 10∈ 
3 254 + ∈  550 – 2∈  420 + 6∈  
  1771 – ∈  1780 + 3∈  20 – 10∈ 
4 1054  1330 + ∈  440 – 4∈  
  2101  1220 – ∈   
5 3126  12550    
  4651     
6 7777      

Since the fifth differences of y are constant
220 + 10∈ = 20 – 10∈

⇒ 20∈ = – 200
⇒ ∈ = –10
Hence f (3) = 254 + ∈
⇒  f (3) = 244

Example E5.4
Table E5.4 below shows a difference table. Find the location of error.

Table E5.4

x y = x3 ∆ ∆2 ∆3 ∆4 
     5  125 7.651 0.306 0.006 0 

5.1 132.651 7.957 0.312 0.006 0 
5.2 140.608 8.269 0.318 0.006 –0.027 
5.3 148.877 8.587 0.324 –0.021 0.081 
5.4 157.464 8.911 0.303 0.060 –0.081 
5.5 166.375 9.214 0.363 –0.021 0.027 
5.6 175.616 9.577 0.342 0.006 0 
5.7 185.193 9.919 0.348 0.006  
5.8 195.112 10.267 0.354   
5.9 205.379 10.621    
6 216     
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Solution:
The location of an error is obviously centered on 0.060 in the third difference. Instead of 9.214, one has
wrongly entered it as 9.241.

5.2.5  Properties of the Operator ∆∆∆∆∆
1. If c is a constant then ∆c = 0.

Proof:
Let  f (x) = c
Hence f (x + h) = c, where h is the interval of differencing.
Hence    ∆ f (x) = f (x + h) – f (x) = c – c = 0

or ∆c = 0
2. ∆ is distributive, i.e.,

∆[f (x) ± g(x)] = ∆ f (x) ± ∆g(x).
Proof: ∆[f (x) + g(x)] = [f (x + h) + g(x + h)] – [f (x) + g(x)] = f (x + h) – f (x) + g(x + h) – g(x) = ∆f (x) + ∆g(x).
Similarly, we have

∆[f (x) – g(x)] = ∆f (x) – ∆g(x)
3. If c is a constant then

∆[cf (x)] = c∆f(x).
From properties 2 and 3 above, it is observed that ∆ is a linear operator.
Proof: ∆[cf(x)] = cf (x + h) – cf (x) = c[ f (x + h) – f (x)] = c∆f(x)
Hence ∆[cf (x)] = c∆f (x).

4. If m and n are positive integers then ∆m∆nf (x) = ∆m + nf (x).

Proof: ∆m∆nf (x) = (∆ × ∆ × ∆ ... m times) (∆ × ∆ … n times) f (x) = (∆∆∆ … (m + n) times) f (x) = ∆m + nf(x).
In a similar manner, we can prove the following properties:

5. ∆[f1(x) + f 2(x) + … + fn(x)] = ∆ f1(x) + ∆ f2(x) + … + ∆fn (x).
6. ∆[ f (x)g(x)] = f (x) ∆g(x) + g(x) ∆ f (x).

7.   
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

f x g x f x f x g x
g x g x g x h

  ∆ − ∆
∆ =  + 

5.2.6 Difference Operators
(a) Shift operator, E:

The shift operator is defined as
Ef (x) = f (x + h) (5.12)

or Eyi = yi+1 (5.13)
Hence, shift operator sifts the function value yi to the next higher value yi +1. The second shift operator

gives
E2f(x) = E[Ef (x)] = E[f(x + h)] = f(x + 2h) (5.14)

E is linear and obeys the law of indices. Generalising,
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Enf (x) = f (x + nh) or Enyi = yi+nh (5.15)

The inverse shift operator E–1 is defined as

E–1f (x) = f (x – h) (5.16)

In a similar manner, second and higher inverse operators are given by

E–2f (x) = f (x – 2h)  and  E–nf (x) = f (x – nh)

The more general form of E operator is given by

Erf (x) = f (x + rh) (5.17)

where r is positive as well as negative rationals.
(b) Average operator, µµµµµ:
The average operator µ is defined as

     
1

( ) [ ( / 2) ( / 2)]
2

f x f x h f x hµ = + + −

i.e.,                          1/ 2 1/ 2
1

[ ]
2i i iy y y+ −µ = + (5.18)

(c) Differential operator, D:
The differential operator is usually denoted by D, where

     ( ) ( ) ( )
dDf x f x f x
dx

= = ′

                   
2

2
2( ) ( ) ( )dD f x f x f x

dx
= = ′′ (5.19)

5.2.7 Relation between the Operators
In order to develop approximations to differential equations, following summary of operators is useful.

Table 5.5

Operator Definition 
Forward difference operator ∆   ∆f(x) = f(x + h) – f(x) 
Backward difference operator ∇  )x(f∇ = f(x) – f(x – h) 
Central difference operator δ   δf(x) = f(x + h/2) –f(x – h/2) 
Shift operator E  Ef(x) = f(x + h) 
Average operator µ  µf(x) = 0.5[f(x+h/2) – f(x– h/2)] 
Differential operator D  Df(x) = f ′(x) 

Here h is the difference interval. For linking different operators with differential operator D we consider Taylor’s
formula:

f (x + h) = f (x) + hf '(x) +
1
2!

h2f ''(x) + …
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In operator notation, we can write it as:

Ef (x) = 21 ...1 ( )
2!

hD hD + + +  
f (x)

This series in brackets is the expression for the exponential and hence we can write
E = ehD

This relation can be used by symbolic programs such as Maple or Mathematica to analyse the accuracy of
finite difference scheme.
From the definition of ∆, we know that

∆ f (x) = f (x + h) – f (x)

where h is the interval of differencing. Using the operator E we can write
∆f (x) = Ef (x) – f (x)

⇒ ∆f (x) = (E – 1) f (x)
The above relation can be expressed as an identity

∆ = E – 1
i.e., E = 1 + ∆
Proof: E∆ f (x) = E( f (x + h) – f (x))

= Ef (x + h) – Ef (x)
= f (x + 2h) – f (x + h)
= ∆f (x + h)
= ∆Ef (x)

Hence E∆ = ∆E.

Example E5.5

Show that ∆log f (x) = log 
( )1
( )

f x
f x

 ∆
+ 

 
Solution:
Let h be the interval of differencing

   f (x + h) = Ef (x) = (∆ + 1) f (x) = ∆ f (x) + f (x)

  
( ) ( ) 1

( ) ( )
f x h f x

f x f x
+ ∆

⇒ = +

Taking logarithms on both sides we get

( ) ( )log log 1
( ) ( )

f x h f x
f x f x

   + ∆
= +   

   

⇒ log f (x + h) – log f (x) = log ( )1
( )

f x
f x

 ∆
+ 

 
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⇒ ∆log f(x) = log ( )1
( )

f x
f x

 ∆
+ 

 

Example E5.6

Evaluate 
2

3x
E

 ∆
  

Solution:
Let h be the interval of differencing

2
3x

E
 ∆
  

= (∆2E–1) x3

= (E – 1)2 E–1 x3

= (E2 – 2E + 1) E–1 x3

= (E – 2 + E–1)x3

= Ex3 – 2x3 + E–1 x3

= (x + h)3 – 2x3 + (x – h)3

= 6xh

Note: If h = 1, then 
2

3 6x x
E

 ∆
=  

Example E5.7

Prove that ex =
2

2
.

x
x

x
Eee

E e
∆

∆
, the interval of differencing being h.

Solution:
We know that

Ef(x) = f (x + h)
Hence Eex = ex+h,
Again ∆ex = ex+h – ex = ex(eh – 1)
⇒ ∆2ex = ex . (eh – 1)2

Hence  
2

xe
E

 ∆
  

= (∆2E–1) ex = ∆2ex– h = e–h(∆2ex) = e– hex(eh – 1)2

Therefore, the right hand side = e–hex (eh – 1)
( 1)

x h

x h
e

e e

+

−
 = ex

Relation between E and ∇ :
∇ f (x) = f (x) – f (x – h) = f (x) – E–1f (x)
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⇒ ∇ = 1 – E–1

∇ =
1E

E
−

.

Example E5.8

Prove the following (a) (1 + ∆ ) (1 – ∆ ) = 1 (b) ∆ ∇ = ∆ – ∇
Solution:

(a)  (1 +∆) (1 – ∇ ) f (x) = EE–1f (x) = E f (x – h) = f (x) = 1. f (x).

∴    (1 +∆) (1 – ∇ ) = 1

(b) ∇∆ f (x) = (E – 1)(1 – E–1) f (x) = (E – 1) [ f (x) – f (x – h)]

Proofs for the Relations among the Operators:
1. ∆ = E – 1

Since ∆f (x) = f (x + h) – f (x)
or ∆f (x) = E[f (x)] – f (x) = (E – 1) f (x)
Since f (x) is arbitrary, so ignoring it, we have
∆ = E – 1 or E = 1 + ∆

2. ∇ = 1 – E–1

We have ∇f (x) = f (x) – f (x – h)
= f (x) – E–1[f (x)]
= (1 – E–1) f (x)

Hence ∇ = 1 – E–1

3. δ = E1/2 – E–1/2

We have δ[ f (x)] = f (x + h/2) – f (x – h/2)
= E1/2 . [ f (x)] – E–1/2 . [f (x)]
= (E1/2 – E–1/2) f (x)

Hence δ = E1/2 – E–1/2

4. ∆ = E∇ = ∇E = δE1/2

We have E∇[f (x)] = E[ f(x) – f (x – h)]
= E[f(x)] – E[ f (x – h)]
= f (x + h) – f (x) = ∆ f (x)

Hence E∇ = ∆
Again, ∇E [ f (x)] = ∇f (x + h) =  f (x + h) – f(x) = ∆ f(x)
Hence ∇E = ∆
Also, δE1/2 . [f (x)] = δ[ f(x + h/2)]

= f (x + h) – f (x) = ∆ f (x)
Hence δE1/2 = ∆
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5. E = ehD

where  
dD
dx

=

We know
2

...[ ( )] ( ) ( ) ( ) ( )
2!
hE f x f x h f x hf x f x= + = + + +′ ′′ , by Taylor’s series

2 2 2
2 .......( ) ( ) ( ) 1 ( ) ( )

2! 2!
hDh h Df x hDf x D f x hD f x e f x

 
= + + + = + + + =  

Hence E = ehD.

6. 1/ 2 1/ 21
( )

2
u E E−= +

Since         1/ 2 1/ 2 1/ 2 1/ 21 1 1
[ ( )] [ ( / 2) ( / 2) [ ( ) ( )] [ ] ( )

2 2 2
u f x f x h f x h E f x E f x E E f x− −= + + − = + = +

Hence 1/ 2 1/ 21
( )

2
u E E−= +

7. ∆∇ = ∆∇ = δ2

Since ∆∇f (x) = ∆(f (x) – f (x – h))
= ∆( f (x) – ∆ f (x – h)
= [f (x + h) – f (x)] – [f (x) – f (x – h)]
= δ . f (x + h/2) – δf(x – h/2) = δ2f(x)

Hence ∆∇ = δ2

Also ∇∆f(x) = ∇ (f (x + h) – f (x))
= ∇f (x + h) – ∇f(x)
= [ f (x + h) – f(x)] – [ f (x) – f(x – h)]
= δ . f (x + h/2) – δf (x – h/2) = δ2f (x)

Hence ∇∆ = δ2

8. (1 + ∆)(1 – ∆) = 1
L.H.S. = E . E–1 = E1–1 = E0 = 1 = R.H.S.
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Hence the result. The relationships among the various operators are shown in Table 5.6.

Table 5.6: Relationship among the operators

 E ∆ ∇ δ 
E E ∆ + 1 (1 – ∇)–1 

2 21 11 1
2 4

 + δ + δ + δ  
 

∆ E – 1 ∆ (1 – ∇)–1 – 1 
2 21 11

2 4
 δ + δ + δ  

 

∇ 1 – E–1 1 – (1 + ∆)–1 ∇ 
2 21 11

2 4
 − δ + δ + δ  

 

δ E1/2 – E–1/2 ∆(1 + ∆)–1/2 ∇(1 – ∇)–1/2 δ 
u 1/2 1/21 (E E )

2
−+  1/211 (1 )

2
 + ∆ + ∆  

 1/ 211 (1 )
2

− − ∆ − ∆  
 211

4
 + δ  

 

5.2.8 Representation of a Polynomial using Factorial Notation
A polynomial of degree n can be expressed as a fractional polynomial of the same degree. Let f (x) be a
polynomial of degree which is to be expressed in factorial notation and let

f (x) = a0 + a1x1 + a2x2 + … + anxn (5.20)
where a0, a1, …., an are constants and a0 ≠ 0 then

∆ f (x) = ∆[a0 + a1x1 + … + anxn]
⇒ ∆ f (x) = a1 + 2a2x1 + … + ranx(n–1)

Hence ∆2f (x) = ∆[a1 + 2a2x1 + … + ranx(n–1)]
or ∆2f (x) = 2a2 + 2 × 3a3x1 + … + n(n – 1)x(n–2)

….

    (0) !...( ) ( 1) 2 1r r r
n nf x a n x a∆ = − × =

Substituting x = 0 in the above, we obtain

       
2

0 1 2
(0) (0) (0)(0) , , ,....,

1! 2! !

n

n
f f ff a a a a

n
∆ ∆ ∆

= = = =

Putting the values of a0, a1, a2, …, an in Eq.(5.20), we get

2
1 2(0) (0) (0)( ) (0) ....

1! 2! !

n
nf f ff x f x x x

n
∆ ∆ ∆= + + + +

Example E5.9

Evaluate (a)
2

2x
E

 ∆
  

(b) ∆ sin x

(c) ∆ log x (d) tan–1 x.
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Solution:

(a)
2 2 2

2 2 2( 1) 2 1E E Ex x x
E E E

     ∆ − − +
= =         

= (E – 2 + E–1) x2 = Ex2 – 2x2 + E–1x2 = (x + 1)2 – 2x2 + (x + 1)2 = 2.

(b) ∆ sin x = sin(x + h) – sin x =  2 cos sin 2cos sin
2 2 2 2

x h x x h x h hx+ + + −     = +          

Hence ∆ sin x = 2 cos sin
2 2
h hx +  

(c) ∆ log x = log(x + h) – log x = log = log 1x h h
x x
+  +  

Hence ∆ log x = log 1 h
x

 +  

∆ tan–1 = tan–1(x + h) – tan–1 = tan–1 –1
2= tan

1 ( ) 1
x h x h

x h x hx x
 + −  
   + + + +  

Example E5.10
Find (a) ∆2ex                (b)  ∆ log x

Solution:
(a) ∆2ex = ∆(∆ex) = ∆[ex+h – ex] = ∆[ex(eh – 1)] = (eh – 1) ∆ex = (eh – 1)(ex+h – ex) = (eh – 1)ex

Hence ∆2ex = (eh – 1)2ex

(b) See sol. E5.9 (c).

Example E5.11

Evaluate 
2

3x
E

 ∆
  

Solution:
Let h = interval of differencing.

2
3 2 1 3 2 1 3( ) ( 1)x E x E E x

E
− − ∆

= ∆ = −  
= (E2 – 2E + 1)E–1x3 = (E – 2 + E–1)x3 = Ex3 – 2x3 + E–1x3

    = (x + h)3 – 2x3 + (x – h)3 = 6xh

Example E5.12
Given u0 = 1, u1 = 11, u2 = 21, u3 = 28, u4 = 30,

find ∆4u0.
Solution:

∆4u0 = (E – 1)4u0 = (E4 – 4c1E3 + 4c2E2 – 4c3E + 1)u0 = E4y0 – 4E3u0 + 6E2u0 – 4Eu0 + u0
= u4 – 4u3 + 6u2 – 4u1 + u0 = 30 – 112 + 126 – 44 + 1 = 1.
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Example E5.13
Estimate the missing term in the following table.

x 0 1 2 3 4 
y = f(x) 4 3 4 ? 12 

Solution:
We are given four values, so the third differences are constant and the fourth differences are zero.
Hence ∆4f (x) = 0 for all values of x.
That is (E – 1)4f (x) = 0

(E4 – 4E3 + 6E2 – 4E + 1) f (x) = 0
E4f (x) – 4E3f (x) + 6E2f (x) – 4Ef (x) + f (x) = 0
f (x + 4) – 4 f (x + 3) + 6 f (x + 2) – 4 f (x + 1) + f (x) = 0

where the interval of differencing is 1.
Now substituting x = 0, we obtain

f(4) + 4f (3) + 6 f (2) – 4 f (1) + f (0) = 0
12 + 4f(3) + 6(4) – 4(3) + 4 = 0

or f (3) = 7.
Example E5.14
Find ∆3(1 – 3x) (1 – 2x) (1 – x).
Solution:
Let f (x) = (1 – 3x)(1 – 2x)(1 – x) = –6x3 + 11x2 – 6x + 1
Here, f (x) is a polynomial of degree three and the coefficient of x3 is (–6).
Hence ∆3f(x) = (–6)3! = –36.

Example E5.15
Evaluate ∆(eax log bx).

Solution:
Let f (x) = eax and g(x) = log bx.
Hence ∆ f (x) = ea (x+h) – eax = eax(eah – 1)

∆g(x) = log b(x + h) – log bx = log 1 h
x

 +  

Also ∆( f(x) . g(x)) = f (x + h) ∆g(x) + g(x) . ∆ f (x)
= ea(x+h) log(1 + h/x) + log bx . eax(eah – 1)
= eax . [eah log(1 + h/x) + (eah – 1)log bx].

Example E5.16
If m is a positive integer and the interval of differencing is 1, show that

∆2x (–m) = m (m + 1) x (–m–2)
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Solution:
( ) 1

...( 1)( 2) ( )
mx

x x x m
− =

+ + +

( ) 1 1[ ] ... ...( 2)( 1) ( 1) ( 1) ( )
mx

x x x m x x m
−∆ = −

+ + + + + +

1 1 1
...( 2) ( ) ( 1) ( 1)x x m x m x

 
= − + + + + + 

( 1)( 1) ( )...( 1)( 2) ( 1)
mm m x

x x x m
− −−= = −

+ + + +

∆2(x (–m)) = (–m)(–m – 1)x (–m–2) =  m(m + 1)x (–m–2).

Example E5.17
Express f (x) = 3x3 + x2 + x + 1, in the factorial notation, interval of differencing being unity.

Solution:
Here f (x) is a polynomial of degree 3.

∴ We can write

f (x) = f (0) + 
2 3

31 2
(0) (0) (0) .

1! 2! 3!
f f fx x x∆ ∆ ∆

+ +

The interval of differencing is unit and finding the values of the function at x = 0, 1, 2, 3, we get
f (0) = 1, f (1) = 6, f (2) = 31, f (3) = 94.

The difference table (Table E5.17) for the above values is given below:

Table E5.17

x f(x) ∆f(x) ∆2f(x) ∆3f(x) 
0   1    
    5   

1   6  20  
  25  16 

2 31  38  
  63   

3 94    

From the table we have f (0) = 1, ∆ f (0) = 5, ∆2f (0) = 20, ∆3f (0) = 18.
Substituting the above values in f (x), we get

f(x) = 1+ 5x1 + 
20
2!

x2 +
18
3!

x3,

Hence f (x) = 3x3 + 10x2 + 5x + 1.
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5.3 INTERPOLATION WITH EQUAL INTERVALS

Here, we assume that for function y = f (x), the set of (n + 1) functional values y0, y1, …., yn are given
corresponding to the set of (n + 1) equally spaced values of the independent variable, xi = x0 + ih, i = 0, 1,
..., n, where h is the spacing.

5.3.1 Missing Values
Let a function y = f (x) is given for equally spaced values x0, x1, x2, …., xn of the argument and y0, y1, y2, ….,
yn denote the corresponding values of the function. If one or more values of y = f (x) are missing, we can
determine the missing values by employing the relationship between the operators E and ∆.

5.3.2 Newton’s Binomial Expansion Formula
Suppose y0, y1, y2, …., yn denote the values of the function y = f (x) corresponding to the values x0, x0 + h,
x0 + 2h, …., x0 + nh of x. Let one of the values of y is missing since n values of the functions are known.
Therefore, we have

∆ny0 = 0
or (E – 1)ny0 = 0 (5.21)

Expanding Eq.(5.21), we have

[En – nC1En–1 + nC2En–2 + … + (–1)n]y0 = 0 (5.22)

or Eny0 – nEn–1y0 + 
( 1)

2!
n n −

En–2y0 + … + (–1)ny0 = 0

or yn – nyn–1 + 
( 1)

2
n n −

yn–2 + … + (–1)ny0 = 0 (5.23)

Equation (5.23) is quite useful in determining the missing values without actually constructing the difference
table.

Example E5.18
Determine the missing entry in the following table.

x 0 1 2 3 4 
y = f(x) 1 4 17 – 97 

Solution:
Let y0 = 1, y1 = 4, y2 = 17 and y4 = 97. We are given four values of y. Let y be a polynomial of degree 3.
Hence ∆4y0 = 0
or (E – 1)4y0 = 0

(E4 – 4E3 + 6E2 – 4E + 1)y0 = 0
E4y0 – 4E3y0 + 6E2y0 – 4Ey0 + y0 = 0

or y4 – 4y3 + 6y2 – 4y1 + y0 = 0
That is 97 – (4y3) + 6(17) – 4(4) + 1 = 0
or y3 = 46.
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Example E5.19
Find the missing entry in the following table.

x 0 1  2 3    4    5 
y = f(x) 1 3 11 – 189 491 

Solution:
Here, we are given y0 = 1, y1 = 3, y2 = 11, y4 = 189 and y5 = 491. Since five values are given, we assume that
y is a polynomial of degree 4.
Hence ∆5y0 = 0
or (E – 1)5y0 = 0 (E.1)

(E5 – 5E4 + 10E3 – 10E2 + 5E – 1)y0 = 0
or y5 – 5y4 + 10y3 – 10y2 + 5y1 – y0 = 0 (E.2)

Substituting the given values for y0, y1, …., y5 in Eq.(E.2), we get

491 – 5(189) + 10y3 – 10(11) + 5(3) – 1 = 0
or 10y3 = 550
or y3 = 55.

Example E5.20
Find the missing entries in the following table.

x 0 1 2   3 4    5 
y = f(x) 1 – 11 28 – 116 

Solution:
Here, we are given y0 = 1, y2 = 11, y3 = 28, and y5 = 116. Since three values are known, we assume y = f (x)
as a polynomial of degree three.
Hence ∆4y0 = 0
or (E – 1)4y0 = 0
That is (E4 – 4E3 + 6E2 – 4E + 1)y0 = 0
or y4 – 4y3 + 6y2 – 4y1 + y0 = 0

y4 – 4(28) + 6(11) – 4y1 + 1 = 0
y4 – 4y1 = 45 (E.1)

and ∆5y0 = 0
or (E – 1)5y0 = 0
or (E5 – 5E4 + 10E3 – 10E2 + 5E – 1)y0 = 0

y5 – 5y4 + 10y3 – 10y2 + 5y1 – y0 = 0
116 – 5y4 + 10(28) – 10(11) + 5y1 – 1 = 0

or –5y4 + 5y1 = –285 (E.2)
Solving Eqs.(E.1) and (E.2), we obtain

y1 = 4 and y4 = 61.



142 // Numerical Methods //

Sanjay IInd Proof—13/8/2009

5.3.3 Newton’s Forward Interpolation Formula
Let y = f (x), which takes the values y0, y1, y2, …., yn, that is the set of (n + 1) functional values y0, y1, y2, ….,
yn  are given corresponding to the set of (n + 1) equally spaced values of the independent variable,
xi = x0 + ih, i = 0, 1, 2, …., n where h is the spacing. Let φ(x) be a polynomial of the nth degree in x taking
the same values as y corresponding to x = x0, x1, …., xn. Then, φ(x) represents the continuous function
y = f (x) such that f (xi) = φ(xi) for i = 0, 1, 2, …., n and at all other points f (x) = φ(x) + R(x) where R(x) is called
the error term (remainder term) of the interpolation formula.
Let φ(x) = a0 + a1(x – x0) + a2(x – x0)(x – x1) + a3(x – x0)(x – x1)(x – x2) + …

         + an(x – x0)(x – x1)(x – x2) … (x – xn–1) (5.24)
and φ(xi) = yi ; i = 0, 1, 2, …., n (5.25)
The constants a0, a1, a2, …., an can be determined as follows:
Substituting x = x0, x1, x2, …., xn successively in Eq.(5.24), we get

a0 = y0 (5.26)
y1 = a0 + a1(x1 – x0)

or y1 = y0 + a1(x1 – x0)          [using Eq.(5.26)]

                          
1 0 0

1
1 0

y y y
a

x x h
− ∆

= =
− (5.27)

y2 = a0 + a1(x2 – x0) + a2(x2 – x0)(x2 – x1)

or y2 – y0 – a1(x2 – x0) = a2(x2 – x0)(x2 – x1)

or  1 0
2 0 2 0 2 2 0 2 1

1 0

( )
( ) ( ) ( )( )

( )
y y

y y x x a x x x x
x x

−
− − − = − −

−

or          1 0
2 0 2

( )2
( ) 2

y y h
y y a hh

h
−

− − =

or
2

2 1 0 0
2 2 2

2
2 2!

y y y y
a

h h
− + ∆

= = (5.28)

Similarly, we obtain

         
3

0 0
3 3 ,....,

3! !

n

n n
y y

a a
h n h

∆ ∆
= =

Hence, from Eq.(5.24), we have

2
0 0 0

0 0 0 1 0 1 12
...( ) ( ) ( )( ) ( )( ) ( )

2! !

n

nn
y y y

x y x x x x x x x x x x x x
h h n h −

∆ ∆ ∆
φ = + − + − − + − − − (5.29)

Let x = x0 + uh
or x – x0 = uh
and x – x1 = (x – x0) – (x1 – x0) = uh – h = (u – 1)h (5.30)

x – x2 = (x – x1) – (x2 – x1) = (u – 1)h – h = (u – 2)h, etc.
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Using the values from Eq.(5.30), Eq.(5.29) reduces to

             2 3
0 0 0 0 0

...( 1) ( 1)( 2) ( 1) ( ( 1))...( )
2! 3! !

nu u u u u u u u nx y u y y y y
n

− − − − − −
φ = + ∆ + ∆ + ∆ + + ∆ (5.31)

The formula given in Eq.(5.31) is called the Newton’s forward interpolation formula. This formula is used to
interpolate the values of y near the beginning of a set of equally spaced tabular values. This formula can
also be used for extrapolating the values of y a little backward of y0.

Example E5.21

Given that 15500 = 124.4990, 15510 = 124.5392, 15520 = 124.5793 and 15530 = 124.6194, find the value

of 15516 .

Solution:
The difference table is given below:

x y x=  ∆y ∆2y 

15500 x0 124.4990 y0   
  0.0402  
15510 124.5392  0 ∆2y0 
  0.0401  
15520 124.5793  0 
  0.0401  
15530 124.6194   

Here x0 = 15500, h = 10 and x = 15516

     0 15516 15500
1.6

10
x x

u
h
− −

= = =

Newton’s forward difference formula is

2
0 0 0

( 1) ...( )
2!

u uf x y u y y−
= + ∆ + ∆ +

or f(15516) = 124.4990 + 1.6(0.0402) + 0 = 124.56323

Example E5.22
A second degree polynomial passes through the points (1, –1), (2, –2), (3, –1) and (4, 2). Find the polynomial.

Solution:
The difference table is constructed with the given values of x and y as shown below:

x y ∆y ∆2y ∆3y 
1 –1    
  –1   

2 –2  2  
  1  0 

3 –1  2  
  3   

4 2    
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Here x0 = 1, h = 1, y0 = –1, ∆y0 = –1 and ∆2y0 = 2

0 ( 1)
x x

u x
h
−

= = −

From the Newton’s forward interpolation formula, we have

        2
0 0 0

( 1) ...( )
2!

u uy f x y u y y−
= = + ∆ + ∆ +

or    2( 1)( 1 1)
( ) 1 ( 1)( 1) 2 4 2

2
x xf x x x x− − −

= − + − − + × = − +

Example E5.23

Find y = e3x for x = 0.05 using the following table.

x 0 0.1 0.2 0.3 0.4 
e3x 1 1.3499 1.8221 2.4596 3.3201 

Solution:
The difference table is shown in below:

x y = e3x ∆y ∆2y ∆3y ∆4y 
0.00 1.0000     
  0.3499    
0.10 1.3409  0.1224   
  0.4723  0.0428  
0.20 1.8221  0.1652  0.0150 
  0.6375  0.0578  
0.30 2.4596  0.2230   
  0.8605    
0.40 3.3201     

We have x0 = 0.00, x = 0.05, h = 0.1

Hence 0 0.05 0.00
0.5

0.1
x x

u
h
− −

= = =

Using Newton’s forward formula

   2 3 4
0 0 0 0 0

( 1) ( 1)( 2) ( 1)( 2)( 3) ...( )
2! 3! 4!

u u u u u u u u uf x y u y y y y− − − − − −
= + ∆ + ∆ + ∆ + ∆ +

f (0.05) = 1.0 + 0.5(0.3499) + 
0.5(0.5 1) (0.5)(0.5 1)(0.5 2)

(0.1224) (0.0428)
2 6

− − −
+

0.5(0.5 1)(0.5 2)(0.5 3)
(0.0150)

24
− − −

+

f (0.05) = 1.16172
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Example E5.24
The values of sin x are given below for different values of x. Find the value of sin 42º.

x 40 45 50 55 60 
y = f(x) sin x   0.6428   0.7071   0.7660   0.8192   0.8660 

Solution:
x = 42º is near the starting value x0 = 40º. Hence, we use Newton’s forward interpolation formula.

x y = sin x ∆y ∆2y ∆3y ∆4y 
40º 0.6428     
  0.0643    
45º 0.7071  –0.0054   
  0.0589  –0.0004  
50º 0.7660  –0.0058  0 
  0.0531  –0.0004  
55º 0.8192  –0.0062   
  0.0469    
60º 0.8660     

    0 42º 40º
0.4

5
x x

u
h
− −

= = =

We have y0 = 0.6428, ∆y0 = 0.0643, ∆2y0 = –0.0054, ∆3y0 = –0.0004

Putting these values in Newton’s forward interpolation formula we get

2 3
0 0 0 0

( 1) ( 1)( 2) ...( )
2! 3!

u u u u uf x y u y y y− − −
= + ∆ + ∆ + ∆ +

         
0.4(0.4 1) 0.4 (0.4 1)(0.4 2)

(42º ) 0.6428 0.4(0.0643) ( 0.0054) ( 0.0004) 0.66913
2 6

f − − − −
= + + − + − =

Example E5.25
The profits of a company (in thousands of rupees) are given below:

Year (x) 1990 1993 1996 1999 2002 
Profit y = f(x) 120 100 111 108 99 

Calculate the total profits between 1990–2002.

Solution:
The forward difference table is constructed as shown further:
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x y ∆y0 ∆2y0 ∆3y0 ∆4y0 
1990 120     
  –20    
1993 100  31   
  11  –45  
1996 111  –14  53 
  –3  8  
1999 108  –6   
  –9    
2002 99     

To calculate profits at 1991:

Let   x0 = 1990, x = 1991, h = 3, 0x x
p

h
−

= = 0.33

Using Newton’s forward interpolation formula we obtain

2 3 4
0 0 0 0 0

( 1) ( 1)( 2) ( 1)( 2)( 3)
(1991)

2! 3! 4!
u u u u u u u u uy y u y y y y− − − − − −

= + ∆ + ∆ + ∆ + ∆

          
0.33(0.33 1) 0.33(0.33 1)(0.33 2)

120 0.33( 20) (31) ( 45)
2 6

− − −
= + − + + −

0.33(0.33 1)(0.33 2)(0.33 3)
(53) 104.93

24
− − −

+ =

or 104.93 thousand rupees.
As an example, consider the difference table (Table E5.25) of f (x) = sin x for x = 0° to 50°:

Table E5.25

x(deg) f(x)=sin x ∆ ∆2 ∆3 ∆4 ∆5 
  0 0 0.1736     
10 0.1736 0.1684 – 0.0052 – 0.0052   
20 0.3420 0.1580 – 0.0104 – 0.0048 0.0004 0 
30 0.5000 0.1428 – 0.0152 – 0.0044 0.0004  
40 0.6425 0.1232 – 0.0196    
50 0.766      

Since the fourth order differences are constant, we conclude that a quartic approximation is appropriate. In
order to determine sin 5° from the table, we use Newton’s forward difference formula (to fourth order); thus,

taking xj = 0, we find a =
5 0 1

= . 
10 2
−

Hence sin 5o = sin 0o + ½ (0.1736) + (½)(½)(–½) (–0.0052) + (1/6)(½)(–½)(–3/2)(–0.0052)
           + (1/24)(½)(–½)(–3/2)(–5/2)(0.0004) = 0 + 0.0868 + 0.0006(5) – 0.0003(3) – 0.0000(2) = 0.0871.
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In order to determine sin 45° from the table, we use Newton’s backward difference formula (to fourth order);

thus, taking xj= 40, we find b = 
45 40 1

10 2
−

=

and   sin 45o  = sin 40o + 2
1

(0.1428) + 2
1

2
1

2
3

(– 0.0152) + 6
1

2
1

2
3

2
5

(– 0.0048) + 24
1

2
1

2
3

2
5

2
7

(0.0004)

      = 0.6428 + 0.0714 – 0.0057 – 0.0015 + 0.00001 = 0.7071
Example E5.26
If f (x) is known at the following data points 

xi 0 1 2 3 4 
fi 1 7 23 55 109 

Find f (0.5) using Newton’s forward difference formula.
Solution:
Forward difference table is prepared as shown in Table E5.26.

Table E5.26

x   f ∆f ∆2f ∆3f ∆4f 
0   1     
  6    

1   7  10   
  16  6  

2  23  16  0 
  32  6  

3  55  22   
  54    

4  109     

By Newton’s forward difference formula

2 3
0 0 0 0 0

( 1) ( 1)( 2)(  + ) = 
2! 3!

a a a a af x ah f a f f f− − − + ∆ + ∆ + ∆  
To find f (0.5):
At x = 0.5, a = (x – x0) / h = (0.5 – 0)/1 = 0.5

Hence
0.5(0.5 1) 0.5(0.5 1)(0.5 2)(0.5) 1 0.5 6 10 6

2! 3!
f − − − = + × + +  

  = 1 + 3 + 2.5 × (– 0.5) + (– 0.25)(– 1.5) = 3.125

Example E5.27
Find f (0.15) using Newton backward difference formula from Table E5.27.
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Table E5.27

x f(x) f∇  f2∇  f3∇  f4∇  
0.1 0.09983     

  0.09884    
0.2 0.19867  – 0.00199   

  0.09685  – 0.00156  
0.3 0.29552   – 0.00355  0.00121 

  0.0939  – 0.00035  
0.4 0.38942  – 0.0039   

  0.09    
0.5 0.97943     

Solution:
Using Newton-Gregory’s formula:

2 3 4( 1) ( 1)( 2) ( 1)( 2)( 3)( )
2! 3! 4!n n n n n

b b b b b b b b bf x f n f f f f+ + + + + + = + ∇ + ∇ + ∇ + ∇  

where in present case: h = 0.1, n = 5

              b = (x – xn) /h = (0.15 – 0.5)/0.1 =  –3.5

Hence     f (0.15) = 0.97943 + 
3.5( 3.5 1) 3.5( 3.5 1)( 3.5 2)

3.5 0.09 ( 0.0039) ( 0.00035)
2! 3!

− − + − − + − +
− × + − + −

    
3.5( 3.5 1)( 3.5 2)( 3.5 3)

(0.00121)
4!

− − + − + − +
+

= 0.97943 – 0.315 – 0.01706 + 0.000765625 + 0.00033086 = 0.14847

5.3.4 Newton’s Backward Interpolation Formula
Newton’s forward interpolation formula is not suitable for interpolation values of y near the end of a table of
values.

Let y = f (x) be a function which takes the values y0, y1, y2, …., yn corresponding to the values x0, x1, x2,
…., xn of the independent variable x. Let the values of x be equally spaced with h as the interval of
differencing.

That is xi = x0 + ih,    i = 0, 1, 2, …., n

Let φ (x) be a polynomial of the nth degree in x taking the same values of y corresponding to x = x0, x1,
…., xn. That is, φ(x) represents y = f (x) such that f (xi) = φ(xi), i = 0, 1, 2, …. Hence we can write φ(x) as

φ(xi) = yi, i = n, n – 1, …., 1, 0
and xn – i = xn– ih, i = 1, 2, …., n
Let ‘φ’(x) = a0 + a1(x – xn) + a2(x – xn)(x – xn–1) + … + an(x – xn)(x – xn–1) … (x – x0) (5.32)
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Substituting x = xn, xn–1, …., x1, x0 successively, we obtain
a0 = yn (5.33)

yn–1 = a0 + a1(xn–1 – xn)

or
1

1
1

n n n

n n

y y y
a

x x h
−

−

− ∇
= =

− (5.34)

Similarly, we obtain
2

2 2 ,....,
2! !

n
n n

n n
y y

a a
h n h

∇ ∇
= = (5.35)

Substituting the values from Eqs.(5.33), (5.34) and (5.35) in Eq.(5.32), we get

2

1 1 02
... ...( ) ( ) ( )( ) ( )( ) ( )

2! !

n
n n n

n n n n n nn
y y y

x y x x x x x x x x x x x x
h h n h− −

∇ ∇ ∇
φ = + − + − − + + − − − (5.36)

Now, setting x = xn + vh, we obtain
x – xn = vh

x – xn–1 = (v + 1)h
…..

x – x0 = (v + n – 1)h

Hence, Eq.(5.36) reduces to

2( 1) ( 1)......( ) ( 1)
2! !

n
n n n

v v v nx y y v v y
n

+ + −
φ = + ∇ + + + ∇ (5.37)

where     nx x
v

h
−

=

The formula given in Eq.(5.37) is called the Newton’s backward interpolation formula. This formula is used
for interpolating values of y near the end of the tabulated values and also used for extrapolating values of
y a little backward of yn.

Example E5.28
Calculate the value of f (84) for the data given in the table below:

x 40 50 60 70 80 90 
f(x) 204 224 246 270 296 324 

Solution:
The value of 84 is near the end of Table E5.28. Hence, we use the Newton’s backward interpolation formula.
The difference table is shown below.
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Table E5.28

x f(x) ∇ ∇2 ∇3 ∇4 ∇5 
40 204      
  20     

50 224  2    
  22  0   

60 246  2  0  
  24  0  0 

70 270  2  0  
  26  0   

80 296  2    
  28     

90 324      

We have xn = 90, x = 84, h = 10, tn = yn = 324, ∇tn = ∇yn = 28, ∇2yn = 2 and f h = f h.
∇3yn = ∇4yn = ∇5yn = 0,

    
84 90

0.6
10

− −
= = = −nx x

u
h

From Newton’s backward formula

             2( 1) ...(84)
2n n n

u uf t u t t+
= + ∇ + ∇ +

             
( 0.6)( 0.6 1)

(84) 324 0.6 28 2 324 16.8 0.24 306.96
2

f − − +
= − × + = − − =

Example E5.29
Use Gauss forward formula to find y at x = 30 given the following table of values:

x 21 25 29 33 37 
y 18.4708 17.8144 17.1070 16.3432 15.5154 

Solution:
We construct the following difference Table E5.29:

Table E5.29

x y ∆y ∆2y ∆3y ∆4y 
x0 – 2h = 21 18.4708     
  – 0.6564    
x0 – h = 25 17.8144  – 0.0510   
  – 0.7074  – 0.0054  
x0 = 29 17.1070  – 0.0564  – 0.002 
  – 0.7638  – 0.0076  
x + h + 33 16.3432  – 0.0640   
  – 0.8278    
x0 + 2h = 37 15.5154     
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Here h = 4, u = 
30 29 1

4 4
−

= = 0.25

u = 0.25 lies between 0 and 1.
Hence, the Gauss’s forward formula is suitable. Substituting in the Gauss’s interpolation formula

  2 3 4
0 0 1 1 2

( 1) ( 1) ( 1) ( 1) ( 1)( 2) ... =  +  +
2! 3! 4!

u u u u u u u u uy y u y y y y− − −
− + − + − −

∆ ∆ + ∆ + ∆ +

We get y0.25 = f (0.25) = 17.1070 + (0.25)(– 0.7638) +

        
(0.25)( 0.75) (1.25)(0.25)( 0.75)

( 0.0564)
2 6
− −

× − +

  × )0076.0(− +
(1.25)(0.25)( 0.75)( 1.75)

24
− −

(–0.0022) = 16.9216

Example E5.30
From the following table estimate the number of students who obtained marks in computer programming
between 75 and 80.

Marks 35–45 45–55 55–65 65–75 75–85 
No. of students 20 40 60 60 20 

Solution:
The cumulative frequency table is shown in Table E5.30.

Table E5.30

Marks less than 
(x) 

No. of students 
(y) 

∇y ∇2y ∇3y ∇4y 

45   20     
55   60 40    
65 120 60 20   
75 180 60 0 –20  
85 200 20 –40 –40 –20 

To find the number of students with marks less than 80

Let xn = 85, x = 80, h = 10, 0.5nx x
p

h
−

= = −

Then using Newton’s backward interpolation formula we obtain

      2 3 4( 1) ( 1)( 2) ( 1)( 2)( 3)
2! 3! 4!n n n n n

v v v v v v v v vy y p y y y y+ + + + + +
= + ∇ + ∇ + ∇ + ∇

  
0.5( 0.5 1) 0.5( 0.5 1)( 0.5 2)

200 ( 0.5)(20) ( 40) ( 40)
2 6

− − + − − + − +
= + − + − + −

           
0.5( 0.5 1)( 0.5 2)( 0.5 3)

( 20) 198.2813
24

− − + − + − +
+ − =
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So number of students getting marks in computer programming between 75 and 80
= 198 – 180 = 18.

5.3.5 Error in the Interpolation Formula
Let φ(x) denote the interpolating polynomial. Also, let the function f (x) be continuous and possess
continuous derivatives within the interval (x0, xn). Now, defining the auxiliary function F(t) as

     0 1

0 1

...( )( ) ( )
( ) ( ) ( ) { ( ) ( )} ...( )( ) ( )

n

n

t x t x t x
F t f t t f x x

x x x x x x
− − −

= − φ − − φ
− − − (5.38)

The expression (t – x0) (t – x1)… (t – xn) is a polynomial of degree (n + 1) in t and the coefficient of t = 1.
Hence, the  (n + 1)th  derivative f polynomial is (n + 1)!. That is

1 1

0 1

( 1)!
( ) ( ) { ( ) ( )} 0...( )( ) ( )

n n

n

nF f f x x
x x x x x x

+ + +
ξ = ξ − − φ =

− − −
(5.39)

or            
1

0 1
( ) ...( ) ( ) ( )( ) ( )

( 1)!

n

n
ff x x x x x x x x
n

+ ξ
− φ = − − −

+
(5.40)

Let R(x) denote the error in the formula. Then
      R(x) = f (x) – φ(x)

Hence
1

0 1
( ) ...( ) ( )( ) ( )

( 1)!

n

n
fR x x x x x x x
n

+ ξ= − − −
+

Since x – x0 = uh or x – x1 = (u – 1)h, …. (x – xh) = (u – n)h where h is the interval of differencing, we have

Error     
1 1( ) ...( ) ( 1)( 2) ( )

( 1)!

n nh fR x u u u u n
n

+ + ξ= − − −
+

Now, employing the relation

  
1D
h

= ∆

we have     1 1
1

1n n
nD

h
+ +

+= ∆

or
1

1 0( )
( )

1

n
n f x

f
n

+
+ ∆

ξ =
+

(5.41)

The error in the forward interpolation formula is given by

     
1

0 ...( ) ( 1)( 2) ( )
( 1)!

n y
R x u u u u n

n

+∆
= − − −

+ (5.42)

In a similar manner, by taking the auxiliary function F(t) in the form

1 0

1 0

...( )( ) ( )
( ) ( ) ( ) { ( ) ( )} ...( )( ) ( )

n n

n n

t x t x t x
F t f t t f x x

x x x x x x
−

−

− − −
= − φ − − φ

− − −
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and proceeding as above, we obtain the error in the Newton’s backward interpolation formula as
1

...( ) ( 1) ( )
( 1)!

n
ny

R x u u u n
n

+∇
= + +

+
(5.43)

where     nx x
u

h
−

=

Example E5.31
Using Newton’s forward interpolation formula find the value of cos 52º from the following data and estimate
the error.

x 45º 50º 55º 60º 
y = cos x 0.7071 0.6428 0.5736 0.5 

Solution:
The difference table is given below:

x y = cos x ∆y ∆2y ∆3y 
45º 0.7071    
  – 0.0643   
50º 0.6428  – 0.0049  
  – 0.0692  0.0005 
55º 0.5736  – 0.0044  
  – 0.0736   
60º 0.5    

Here x0 = 45º, x1 = 52º, y0 = 0.7071, ∆y0 = – 0.0643, ∆2y0 = – 0.0049 and ∆3y0 = 0.0005.

0 52º 45º
1.4

5º
x x

u
h
− −

= = =

From Newton’s forward interpolation formula

2 3
0 0 0 0

( 1) ( 1)( 2) ...
2! 3!

u u u u uy u u y y y− − −
= + ∆ + ∆ + ∆ +

Hence     
1.4(1.4 1) (1.4)(1.4 1)(1.4 2)

(52) 0.7071 1.4( 0.0643) ( 0.0049) (0.0005)
2 6

0.615680

y f − − −
= = + − + − +

=

Error 1
0

...( 1)( 2) ( )
1

nu u u u n y
n

+− − −
= ∆

+
 where n = 2.

  3
0

( 1)( 2) 1.4(1.4 1)(1.4 2)
(0.0005)

3! 6
u u u y− − − −

= ∆ =

  Error = –0.000028
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5.4 INTERPOLATION WITH UNEQUAL INTERVALS

The Newton’s forward and backward interpolation formulae are applicable only when the values of n are
given at equal intervals. In this section, we present Lagrange’s formula for unequal intervals.

5.4.1 Lagrange’s Formula for Unequal Intervals
Let y = f (x) be a real valued continuous function defined in an interval [a, b]. Let x0, x1, x2, …., xn be
(n + 1) distinct points which are not necessarily equally spaced and the corresponding values of the function
are y0, y1, …., yn. Since (n + 1) values of the function are given corresponding to the (n + 1) values of the
independent variable x, we can represent the function y = f (x) is a polynomial in x of degree n.
Let the polynomial is represented by

f (x) = a0(x – x1)(x – x2)…(x – xn) + a1(x – x0)(x – x2)…(x – xn)
  + a2(x – x0)(x – x1)(x – x3)…(x – xn) + … + an(x – x0)(x – x1)…(x – xn–1) (5.44)

Each term in Eq.(5.44) being a product of n factors in x of degree n, putting x = x0 in Eq.(5.44) we obtain
f (x) = a0(x0 – x1)(x0 – x2)…(x0 – xn)

or  0
0

0 1 0 2 0

( )
...( )( ) ( )n

f x
a

x x x x x x
=

− − −

Putting x = x2 in Eq.(5.44) we obtain
f(x1) = a1(x1 – x0)(x1 – x2)…(x1 – xn)

or 1
1

1 0 1 2 1

( )
...( )( ) ( )n

f x
a

x x x x x x
=

− − −

Similarly putting    x = x2, x = x3, x = xn in Eq.(5.44) we obtain

 
2

2
2 0 2 1 2

( )
...( )( ) ( )n

f x
a

x x x x x x
=

− − −

� �

and  
0 1 1

( )
...( )( ) ( )

n
n

n n n n

f x
a

x x x x x x −
=

− − −

Substituting the values of a0, a1, ... , an in Eq.(5.44) we get

   
1 2 0 2

0 1
0 1 0 2 0 1 0 1 2 1

... ...( )( ) ( ) ( )( ) ( ) ...( ) ( ) ( )... ...( )( ) ( ) ( )( ) ( )
n n

n n

x x x x x x x x x x x x
y f x f x f x

x x x x x x x x x x x x
− − − − − −

= = + +
− − − − − −

             
0 1 1

0 1 1

...( )( ) ( )
( )...( )( ) ( )

n
n

n n n n

x x x x x x
f x

x x x x x x
−

−

− − −
+

− − − (5.45)

The formula given by Eq.(5.45) is known as the Lagrange’s interpolation formula.
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Example E5.32
Apply Lagrange’s interpolation formula to find a polynomial which passes through the points (0, –20),
(1, –12), (3, –20) and (4, –24).

Solution:
We have x0 = 0, x1 = 1, x2 = 3, x3 = 4, y0 = f (x0) = –20, y1 = f (x1) = –12, y2 = f (x2) = –20 and y3 = f (x3) = –24.
The Lagrange’s interpolation formula is

1 2 3 0 2 3
0 1

0 1 0 2 0 3 1 0 1 2 1 3

( )( )( ) ( )( )( )
( ) ( ) ( )

( )( )( ) ( )( )( )
x x x x x x x x x x x x

f x f x f x
x x x x x x x x x x x x

− − − − − −
= +

− − − − − −

0 1 3 0 1 2
2 3

2 0 2 1 2 3 3 0 3 1 3 2

( )( )( ) ( )( )( )
( ) ( )...( )( ) ( ) ( )( )( )

x x x x x x x x x x x x
f x f x

x x x x x x x x x x x x
− − − − − −

+ +
− − − − − −

Hence ( 1)( 3)( 4) ( 0)( 3)( 4)( ) ( 20) ( 12)
(0 1)(0 3)(0 4) (1 0)(1 3)(1 4)
x x x x x xf x − − − − − −

= − + −
− − − − − −

( 0)( 1)( 4) ( 0)( 1)( 3)( 20) ( 24)
(3 0)(3 1)(3 4) (4 0)(4 1)(4 3)
x x x x x x− − − − − −+ − + −

− − − − − −

or f (x) = x3 – 8x2 + 15x + 20 is the required polynomial.

Example E5.33
Using Lagrange’s interpolation formula find a polynomial which passes the points (0, –12), (1, 0), (3, 6),
(4, 12).
Solution:
We have x0 = 0, x1 = 1, x2 = 3, x3 = 4, y0 = f (x0) = –12, y1 = f (x1) = 0, y2 = f (x2) = 6, y3 = f (x3) = 12.

Using Lagrange’s interpolation formula we can write

1 2 3 0 2 3
0 1

0 1 0 2 0 3 1 0 1 2 1 3

( )( )( ) ( )( )( )
( ) ( ) ( )

( )( )( ) ( )( )( )
x x x x x x x x x x x x

f x f x f x
x x x x x x x x x x x x

− − − − − −
= +

− − − − − −

0 1 3 0 1 2
2 3

2 0 2 1 2 3 3 0 3 1 3 2

( )( )( ) ( )( )( )
( ) + ( )

( )( )( ) ( )( )( )
x x x x x x x x x x x x

f x f x
x x x x x x x x x x x x

− − − − − −
+

− − − − − −

Substituting the values, we get:

  
( 1)( 3)( 4) ( 0)( 3)( 4) ( 0)( 1)( 4)

( ) = 12 0 6
12 6 6

x x x x x x x x xf x − − − − − − − − −
− × − × + ×

−

    
( 0)( 1)( 3)

+ 12 ( 1)( 3)( 4) ( 0)( 1)( 4) ( 0)( 1)( 3)
12

x x x x x x x x x x x x− − −
× = − − − − + − − − − + − − −

Example E5.34
Using Lagrange’s interpolation formula, find the value of y corresponding to x = 10 from the following data.

x 5 6 9 11 
y = f(x) 380 –2 196 508 



156 // Numerical Methods //

Sanjay IInd Proof—13/8/2009

Solution:
The Lagrange’s interpolation formula is

1 2 3 0 2 3
0 1

0 1 0 2 0 3 1 0 1 2 1 3

( )( )( ) ( )( )( )
( )

( )( )( ) ( )( )( )
x x x x x x x x x x x x

y f x y y
x x x x x x x x x x x x

− − − − − −
= = +

− − − − − −

          
0 1 3 0 1 2

2 3
2 0 2 1 2 3 3 0 3 1 3 2

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

x x x x x x x x x x x x
y y

x x x x x x x x x x x x
− − − − − −

+ +
− − − − − − (E.1)

Here, we have x0 = 5, x1 = 6, x2 = 9, x3 = 11, y0 = 380, y1 = –2, y2 = 196 and y3 = 508. Substituting these values
in Eq.(E.1), we get

         
(10 6)(10 9)(10 11) (10 5)(10 9)(10 11)(10) (380) ( 2)

(5 6)(5 9)(5 11) (6 5)(6 9)(6 11)
f − − − − − −

= × + × −
− − − − − −

(10 5)(10 6)(10 11) (10 5)(10 6)(10 9)(196) (508)
(9 5)(9 6)(9 11) (11 5)(11 6)(11 9)

− − − − − −
+ × + ×

− − − − − −

or f (10) = 330.

5.4.2 Hermite’s Interpolation Formula
Hermite’s interpolation formula provides an expression for a polynomial passing through given points with
given slopes. The Hermite interpolation accounts for the derivatives of a given function. Let xi, fi, f i',
(for i = 0, 1, 2,…, n) be given.

The polynomial f (x) of degree (2n + 1) for which f (xi) = fi and f '(xi) = f 'i is given by:

0 0
( ) = ( ) ( )

n n

j i j i
j j

f x h x f h x f
= =

+ ′∑ ∑

where              2( )
( ) = 1 ( )[ ( )]

( )
n j

j j j
n j

q x
h x x x L x

q x
′′

− −
′

2( ) ( )[ ( )]j j jh x x x L x= −

 qn(x) = (x – x0) (x – x1)…(x – xn)

( )
( ) =

( ) ( )
n

j
j n j

q xL x
x x q x− ′

It is used to write the interpolation formulae in finite element analysis. Famous cubic polynomials are derived
from two points with their slopes. It is used to represent bending motion of a beam. For example, in the case
of a beam finite element, suppose we need to obtain cubic polynomials that satisfy the following cases:

(1) Consider:  y = ax3 + bx2 + cx + d in  [0, 1].
(2) Apply conditions
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        @ x = 0               @ x = 1
       Case 1: y = 1, y' = 0   y = y' = 0
       Case 2: y = 0, y' = 1  y = y' = 0      
       Case 3: y = 0, y' = 0  y = 1, y' = 0
       Case 4: y = 0, y' = 0   y = 0, y' = 1

(3) Solve each case for a, b, c, d.
Then we obtain:

2 2 3 2( ) 1 0 1 2 ( 1) 2 3 1y x x x x x x x= + − + − = − +
2 2 3 2( ) 0 1 1 1 ( 1) 2y x x x x x x x x= + − + − = − +
2 2 3 2( ) 0 0 1 2 ( 1) 2 3y x x x x x x x= + + − − = − +
2 2 3 2( ) 0 0 0 1 ( 1)y x x x x x x x= + + + − = −

These polynomials are plotted in Figure 5.1.
For cases involved with higher order derivatives, the principle is same. When y(n)(xi) is used, all lower
derivatives and y(xi) itself must be included in the constraints. For example, you can not have y′(xi) as a
constraint but not y(xi), nor y(2)(xi) but not y'(xi) and y(xi).
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y
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Fig. 5.1: Hermite interpolation
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Example E5.35
Construct displacements in a beam element from Hermite polynomials.

Solution:
Consider the beam of length L. The Hermite polynomials are:

3 2

1( ) 2 3 1x xN x
L L

   = − +      

 
3 2

2 2( ) 2x xN x x
LL

= − +

 
3 2

3 ( ) 2 3x xN x
L L

   = − +      

 
3 2

4 2( ) x xN x
LL

= −

These polynomial interpolation functions may be thought of as the fundamental modes of deflection. The
deflection w(x) of any statically loaded beam can be written in terms of these modes as

 1 1 2 1 3 2 4 2( )w x N W N N W N= + θ + + θ

where the subscripts associate quantities with positions (or nodes) 1 and 2 on the beam and
, , 1, 2,i iW iθ = are the deflection and slope, respectively, at each node.

5.4.3 Inverse Interpolation
In interpolation, we estimate the missing value of the function y = f (x) corresponding to a value x intermediate
between two given values. In inverse interpolation, we interpolate the argument x corresponding to an
intermediate value y of the entry.

5.4.4 Lagrange’s Formula for Inverse Interpolation
In Lagrange interpolation formula y is expressed as a function of x as

      
1 2 0 2

0 1
0 1 0 2 0 1 0 1 2 1

... ...( )( ) ( ) ( )( ) ( ) ...( ) ... ...( )( ) ( ) ( )( ) ( )
n n

n n

x x x x x x x x x x x x
y f x y y

x x x x x x x x x x x x
− − − − − −

= = + +
− − − − − −

              
0 1 1

0 1 1

...( )( ) ( )
...( )( ) ( )

n
n

n n n n

x x x x x x
y

x x x x x x
−

−

− − −
+

− − − (5.46)

By interchanging x and y in Eq.(5.46) we can express x as a function of y as follows:

        
1 2 0 2

0 1
0 1 0 2 0 1 0 1 2 1

... ...( )( ) ( ) ( )( ) ( ) ...
... ...( )( ) ( ) ( )( ) ( )

n n

n n

y y y y y y y y y y y y
x x x

y y y y y y y y y y y y
− − − − − −

= + +
− − − − − −

0 1 1

0 1 1

...( )( ) ( )
...( )( ) ( )

n
n

n n n n

y y y y y y
x

y y y y y y
−

−

− − −
+

− − −
(5.47)

Equation (5.47) can be used for inverse interpolation.
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Example E5.36
The following table gives the values of y corresponding to certain values of x. Find the value of x when
y = 167.59789 by applying Lagrange’s inverse interpolation formula.

x 1 2 5 7 
y = f(x) 1 12 117 317 

Solution:
Here x0 = 1, x1 = 2, x2 = 5, x3 = 7, y0 = 1, y1 = 12, y2 = 117, y3 = 317 and y = 167.59789.
The Lagrange’s inverse interpolation formula is given by

1 2 3 0 2 3
0 1

0 1 0 2 0 3 1 0 1 2 1 3

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

y y y y y y y y y y y y
x x x

y y y y y y y y y y y y
− − − − − −

= +
− − − − − −

     
0 1 3 0 1 2

2 3
2 0 2 1 2 3 3 0 3 1 3 2

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )

y y y y y y y y y y y y
x x

y y y y y y y y y y y y
− − − − − −

+ +
− − − − − −

Hence (167.59789 12)(167.59789 117)(167.59789 317) (1)
(1 12)(1 117)(1 317)

x − − −
=

− − −

(167.59789 1)(167.59789 117)(167.59789 317) (12)
(12 1)(12 117)(12 317)
− − −+

− − −

(167.59789 1)(167.59789 12)(167.59789 317) (117)
(117 1)(117 117)(117 317)

− − −
+

− − −

(167.59789 1)(167.59789 12)(167.59789 117) (317)
(317 1)(317 12)(317 117)

− − −
+

− − −

or x = 5.65238.

5.5 CENTRAL DIFFERENCE INTERPOLATION FORMULAE

In this section, we derive some important interpolation formulae by means of central differences of a function,
which are quite frequently employed in engineering and scientific computations.

In particular, we develop central difference formulae which are best suited for interpolation near the
middle of a tabulated data set. The following central difference formulae are presented:

1. Gauss’s forward interpolation formula
2. Gauss’s backward interpolation formula
3. Bessel’s formula
4. Stirling’s formula
5. Laplace-Everett formula
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Let the function y = yx = f (x) be given for (2n + 1) equispaced values of argument x0, x0 ± h, x0 ± 2h, …., x0,
xh. The corresponding values of y be yi (i = 0, ± 1, ±2, …., ± n). Also, let y = y0 denote the central ordinate
corresponding to x = x0. We can then form the difference table as shown in Table 5.7. Table 5.8 shows the
same Table 5.7 written using the Sheppard’s operator δ, in which the relation  = ∆E–1/2 was used. Tables 5.6
and 5.8 are known as central difference tables.

Table 5.7: Central difference table

x y ∆y ∆2y ∆3y ∆4y ∆5y ∆6y 
x0 – 3h y–3       
  ∆y–3      
x0 – 2h y–2  ∆2y–3     
  ∆y–2  ∆3y–3    
x0 – h y–1  ∆2y–2  ∆4y–3   
  ∆y–1  ∆3y–2  ∆5y–3  
x0 y0  ∆2y–1  ∆4y–2  ∆6y–3 
  ∆y0  ∆3y–1  ∆5y–2  
x0 + h y1  ∆2y0  ∆4y–1   
  ∆y1  ∆3y0    
x0 + 2h y2  ∆2y1     
  ∆y2      
x0 + 3h y3       

Table 5.8: Central differences written in terms of Sheppard’s operator δ

x y δy δ2y δ3y δ4y δ5y δ6y 
x0 – 3h y–3       
  δy–5/2      
x0 – 2h y–2  δ2y–2     
  δy–3/2  δ3y–3/2    
x0 – h y–1  δ2y–1  δ4y–1   
  δy–1/2  δ3y–1/2  δ5y–1/2  
x0 y0  δ2y0  δ4y0  δ6y0 
  δy1/2  δ3y1/2  δ5y1/2  
x0 + h y1  δ2y1  δ4y1   
  δy3/2  δ3y3/2    
x0 + 2h y2  δ2y2     
  δy5/2      
x0 + 3h y3       

5.5.1 Gauss’s Forward Interpolation Formula
The Newton’s forward interpolation formula is

2 3
0 0 0 0

( 1) ( 1)( 2) ...( ) ,
2! 3!

u u u u uy f x y u y y y− − −
= = + ∆ + ∆ + ∆ + (5.48)

where 0x x
u

h
−

=  and x = x0 is the origin.
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In deriving the Gauss’s forward interpolation formula, we assume the differences lie on the bottom solid
lines in Table 5.9 and they are of the form

yp = y0 + G1∆y0 + G2∆2y–1 + G3∆3y–1 + G4∆4y–2 + … (5.49)

Table 5.9: Gauss’s forward and backward interpolation formulae

x y ∆y ∆2y ∆3y ∆4y ∆5y ∆6y 
x–4  y–4       
  ∆y–4      
x–3 y–3  ∆2y–4     
  ∆y–3  ∆3y–4    
x–2 y–2  ∆2y–3  ∆4y–4   
  ∆y–2  ∆3y–3  ∆5y–4  
x–1 y–1  ∆2y–2  ∆4y–3  ∆6y–4 
  ∆y–1  ∆3y–2  ∆5y–3  
x0 y0  ∆2y–1  ∆4y–2  ∆6y–3 
  ∆y0  ∆3y–1  ∆5y–2  
x1 y1  ∆2y0  ∆4y–1  ∆6y–2 
  ∆y1  ∆3y0  ∆5y–1  
x2 y2  ∆2y1  ∆4y0   
  ∆y2      
x3 y3  ∆2y2     
  ∆y3      
x4 y4       

where G1, G2, …., Gn are coefficients to be determined. From the Newton’s forward interpolation formula
[Eq.(5.48)], we have

2 3
0 0 0 0 2 0

( 1) ( 1)( 2) ...(1 )
2! 3!

p p
p

u u u u uy E y y y u y y y− − −
= = + ∆ = + ∆ + ∆ + ∆ + (5.50)

Now  ∆2y–1 =  ∆2E–1y0 = ∆2(1 + ∆)–1y0 = ∆2(1 – ∆ + ∆2 – ∆3 + …) y0 = ∆2y0 – ∆3y0 + ∆4y0 – ∆5y0 + …

∆3y–1 = ∆3y0 – ∆4y0 + ∆5y0 – ∆6y0 + …

∆4y–2 =  ∆4E–2y0 = ∆4(1 – ∆)–2y0 = ∆4(1 – 2∆ + 3∆2 – 4∆3 + …) y0

       = ∆4y0 – 2∆5y0 + 3∆6y0–4∆7y0 + ….

and so on.
Hence Eq. (5.49) becomes

yp = y0 + G1∆y0 + G2(∆2y0 – ∆3y0 + ∆4y0 – ∆5y0 + …) + G3(∆3y0 – ∆4y0 + ∆5y0 – ∆6y0 + …)
       + G4(∆4y0 – 2∆5y0 + 3∆6y0 – 4∆7y0) + … (5.51)

Comparing Eqs. (5.50) and (5.51), we have
G1 = u

           2
( 1)

2!
u uG −

=
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3
( 1) ( 1)

3!
u u uG + −

=

4
( 1)( )( 1)( 2)

4!
u u u uG + − −

= , etc. (5.52)

Hence, the Gauss’s forward interpolation formula can be written as

2 3 4
0 0 0 0 0

( 1) ( 1) ( 1) ( 1) ( 1)( 2) ...
2! 3! 4!p

u u u u u u u u uy y u y y y y− + − + − −
= + ∆ + ∆ + ∆ + ∆ +

(5.53)
This formula given by Eq.(5.53) can be used to interpolate the values of y for u (0 < u < 1) measured forwardly
from the origin.
Equation (5.53) can also be written as

2 3 3 4
0 0 1 1 1 1

( 1) ( 1)( 2)
( ) ( ) ( )

2! 3!
u u u u uy f x y u y y y y y− − − −

− − −
= = + ∆ + ∆ + ∆ + ∆ + ∆

                4 5
1 1

( 1)( 2)( 3) ...( )
4!

u u u u y y− −
− − −

+ ∆ + ∆ + (5.54)

or 2 3
4 0 0 1 1

( 1) ( 1) ( 1)
( )

2! 3!
u u u u uy f x y u y y y− −

− + −
= = + ∆ + ∆ + ∆

          4
2

( 1) ( 1)( 2) ...
4!

u u u u y−
+ − −+ ∆ + (5.55)

Equation (5.55) is known as the Gauss’s forward interpolation formula. The Gauss’s forward interpolation
formula employs odd differences above the central line through y0 and even differences on the central line.
Gauss’s forward formula is used to interpolate the values of the function for the value of u such that
0 < u < 1.

5.5.2 Gauss’s Backward Interpolation Formula
The Gauss’s backward interpolation formula uses the differences which lie on the upper dashed line in
Table 5.8 and can be assumed of the form

2 3 4
0 1 1 2 1 3 2 4 2 ...py y G y G y G y G y− − − −= + ∆ + ∆ + ∆ + ∆ +′ ′ ′ ′ (5.56)

where 1 2 3, , ,...., nG G G G′ ′ ′ ′ are coefficients to be determined.
Now following the procedure described in Sec.5.5.1 and comparing with the Newton’s backward interpolation
formula, we find

1G u=′

2
( 1)

2!
u uG +

=′

3
( 2)( 1)( 1)

3!
u u u uG + + −

=′
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4
( 1)( )( 1)( 2)

4!
u u u uG + − −

=′ , etc.

Hence 2 2 3
0 1 1 1 1

( 1) ...( ) ( ) ( )
1! 2!
u u uy f x y y y y y− − − −

−
= = + ∆ + ∆ + ∆ + ∆ + (5.57)

or              2 3 4
0 1 1 2 2

( 1) ( 1) ( 1) ( 2)( 1) ( 1) ...
1! 2! 3! 4!p
u u u u u u u u u uy y y y y y− − − −

+ + − + + −
= + ∆ + ∆ + ∆ + ∆ +

(5.58)
Equation (5.58) is called the Gauss’s backward interpolation formula. Gauss’s backward interpolation formula
employs odd differences below the central line through y0 and even differences on the central line as shown
in Table 5.8. Gauss’s backward interpolation formula is used to interpolate line value of the function for a
negative value of u which lies between –1 and 0 (–1 < u < 0).

Example E5.37
Use Gauss’s forward interpolation formula to find y  for x = 20 given that

x 11 15 19 23 27 
y 19.5673 18.8243 18.2173 17.1236 16.6162 

Solution:
The difference table constructed is shown below:

x y ∆y ∆2y ∆3y ∆4y 
11 19.5673     
  – 0.743    
15 18.8243  0.1360   
  – 0.607  – 0.6227  
19 18.2173  – 0.4867  1.69570 
  – 1.0937  1.0730  
23 17.1236  0.5863   
  – 0.5074    
27 16.6162     

Here h = 4, 0 20 19
0.25

4
x x

u
h
− −

= = =

The Gauss’s forward interpolation formula is

       2 3 4
0 0 1 1 2

( 1) ( 1) ( 1) ( 1)( )( 1)( 2)
2! 3! 4!

u u u u u u u u uy y u y y y y− − −
− + − + − −

= + ∆ + ∆ + ∆ + ∆

                 
0.25(0.25 1) (0.25 1)(0.25)(0.25 1)

18.21730 0.25( 1.09370) ( 0.48670) (1.07300)
2 6

− + −
= + − + − +

(0.25 1)(0.25)(0.25 1)(0.25 2)
(1.69570)

24
+ − −

+

     y20 =  17.97657
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Example E5.38
Use Gauss’s backward interpolation formula to find the sales for the year 1986 from the following data:

Year 1951 1961 1971 1981 1991 2001 
Sales (in thousands) 13 17 22 28 41 53 

Solution:
Here h = 10, x = 1986 and x0 = 1991.

0 1986 1991
0.5

10
− −

= = = −
x x

u
h

x y ∆y ∆2y ∆3y ∆4y ∆5y 
–4 13      

  4     
–3 17  1    

  5  0   
–2 22  1  6  

  6  6  –20 
–1 28  7  –14  

  13  –8   
0 41  –1    
  12     

1 53      

Gauss’s backward interpolation formula is

2 3 4
0 1 1 2 2

( 1) ( 1)( )( 1) ( 1)( )( 1)( 2) ...
2! 3! 4!

u u u u u u u u uy y u y y y y− − − −
+ + − − + +

= + ∆ + ∆ + ∆ + ∆ +

or
( 0.5)( 0.5 1) ( 0.5 1)( 0.5)( 0.5 1)

41 ( 0.5)(13) ( 1.0) ( 8)
2 6

y − − + − + − − −
= + − + − + −

      
( 0.5 1)( 0.5)( 0.5 1)( 0.5 2)

( 14) 33.79688
24

− − − − + − +
− =

5.5.3 Bessel’s Formula
Bessel’s formula uses the differences as shown in Table 5.10 in which brackets mean that the average has to
be taken.

Table 5.10

� � � � � � � � 
x–1 y–1       

x0 
x1 

0

1

y
y

 
 
 

 ∆y0 
2

1
2

0

y

y
− ∆

  ∆ 
 ∆3y–1 

4
2

4
1

y

y
−

−

 ∆
  ∆ 

 ∆5y–2 
6

3

6
2

y

y
−

−

 ∆
  ∆ 

 

� � � � � � � � 
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Hence, the Bessel’s formula assumes the form
2 2 4 4

30 1 1 0 2 1
1 0 2 0 3 1 4 ...

2 2 2p
y y y y y y

y A y A y A y A− − −
−

   + ∆ + ∆ ∆ + ∆
= + ∆ + ∆ + ∆ + +   

     

    
2 2 4 4

31 0 2 1
0 1 0 2 3 1 4

1 ...
2 2 2

y y y yy A y A A y A− − −
−

   ∆ + ∆ ∆ + ∆ = + + ∆ + + ∆ + +           
(5.59)

The Newton’s forward difference interpolation formula is given by

            2 3 4
0 0 0 0 0

( 1) ( 1)( 2) ( 1)( 2)( 3) ...
2! 3! 4!p

u u u u u u u u uy y u y y y y− − − − − −
= + ∆ + ∆ + ∆ + ∆ + (5.60)

Now, comparing Eqs.(5.59) and (5.60) and after simplifying the differences, we get

       1
1
2

A u + =  

2
( 1)

2!
u uA −

=

3

1( 1)
2

3!

u u u
A

 − −  
=

4
( 1)( )( 1)( 2)

4!
u u u uA + − −= , etc. (5.61)

Hence, the Bessel’s formula (5.59) becomes

2 2
31 0

0 0 1

1( 1)
( 1) 2

2! 2 3!p

u u u
y yu uy y u y y−

−

 − −    ∆ + ∆−= + ∆ + + ∆ 
  

       
4 4

2 1( 1)( )( 1)( 2) ....
4! 2

y yu u u u − − ∆ + ∆+ − −+ + 
  

(5.62)

Using the central differences notation, Eq.(5.62) can be written as

2 3 4
0 1/ 2 1/ 2 1/ 2 1/ 2

1 ( 1)
( 1) ( 1) ( 1)( 2)2 ...

2! 3! 4!p

u u u
u u u u u uy y u y y y y

 − −  − + − −
= + δ + µδ + δ + µδ + (5.63)

where           2 2 2
1/ 2 1 0

1
2

y y y− µδ = ∆ + ∆ 

4 4 4
1/ 2 2 1

1
2

y y y− − µδ = ∆ + ∆  , etc. (5.64)
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Example E5.39
Apply Bessel’s interpolation formula to obtain y25, given that y20 = 2860, y24 = 3167, y28 = 3555 and
y32 = 4112.

Solution:
The difference table is shown below:

 x yx ∆y ∆2y ∆3y 
x–1 20 2860    
   307   
x0 24 3167  81  
   388  88 
x1 28 3555  169  
   557   
x2 32 4112    

Here x0 = 24, h = 4 and  0 25 24
0.25

4
x x

u
h
− −

= = =

The Bessel’s formula is

    
2 2

31 0
0 0 1

( 1) ( 1)( 0.5)
2 2 6

y yu u u u uy y u y y−
−

 ∆ + ∆− − −
= + ∆ + + ∆ 

  

0.25(0.25 1) 81 169 0.25(0.25 1)(0.25 0.5)3167 0.25(388) (88) 3252.96875
2 2 6

− + − − = + + + =  

5.5.4 Stirling’s Formula
Consider the mean of the Gauss’s forward and backward interpolation formula given by Eqs.(5.54) and (5.57),
we get

3 32 2
21 0 1 2

0 1
( 1)

2 2 3! 2p
y y y yu u uy y u y− − −

−
 ∆ + ∆ ∆ + ∆− = + + ∆ +       

2 2 2 2
4 5 5

2 2 3
( 1) ( 1)( 4)

4! 5!
u u u u uy y y− − −

− − −  + ∆ + ∆ + ∆  (5.65)

Equation (5.65) is known as the Stirling’s formula. In the central differences notation, Stirling’s formula given
by Eq. (5.65) becomes

2 2 2 2 2
2 3 4

0 0 0 0 0
( 1) ( 1 ) ...

2! 3! 4!p
u u u u uy y u y y y y

 − −= + µδ + δ µδ + δ + 
  

(5.66)

where           0 0 1 1/ 2 1/ 2
1 1
2 2

y y y y y− −µδ = ∆ + ∆ = δ + δ      

and 3 3 3 3 3
0 1 2 1/ 2 1/ 2

1 1
2 2

y y y y y− − −   µδ = ∆ + ∆ = δ + δ    (5.67)
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Stirling formula gives the most accurate result for –0.25 ≤ u ≤  0.25. Hence, x0 should be selected such that
u satisfies this inequality.

Example E5.40
Use Stirling’s interpolation formula to find y28, given that y20 = 48234, y25 = 47354, y30 = 46267, y35 = 44978
and y40 = 43389.

Solution:

Here x = 30 as origin and h = 5. Therefore 
28 30

0.4
5

u −
= = − . The difference table is shown below:

x x 30u
5
−=  yu ∆yu ∆2yu ∆3yu ∆4yu 

20 –2 48234     
     –880    
25 –1 47354  –207   
   –1087      5  
30  0 46267  –202  –103 
   –1289  –98  
35  1 44978  –300   
   –1589    
40  2 43389     

The Stirling’s interpolation formula is
2 2 2 2 3 32 2 2

40 1 1 1 2
0 2

( 1) ( 1) ...
2 2 6 2 24u

y y u y y yu u u uy y u y− − − −
−

   ∆ + ∆ ∆ ∆ + ∆− −
= + + + + ∆ +   

     
2 21087 1289 ( 0.4) ( 0.4)( 0.4 1) 5 9846267 ( 0.4) (202)

2 2 6 2
− − − − − − −   = + − + +      

   
2 2( 0.4) ( 0.4 1) ( 103) 46724.0128

24
− − −

+ − =

5.5.5 Laplace-Everett’s Formula
Eliminating odd differences in Gauss’s forward formula [Eq.(5.54)] by using the relation

∆y0 = y1 – y0

We have ∆3y–1 = ∆2y0 – ∆2y–1

∆5y–2 = ∆4y–1 – ∆4y–2 ….,

Hence 2 2 2
0 1 0 1 0 1

( 1) ( 1) ( 1)
( ) ( ) ( )

1! 2! 3!
u u u u u uy f x y y y y y y− −

− + −
= + − + ∆ + ∆ − ∆

      4 4 4
2 1 2

( 1) ( 1)( 2) ( 2)( 1) ( 1)( 2) ...( )
4! 5!

u u u u u u u u uy y y− − −
+ − − + + − −

+ ∆ + ∆ − ∆ +
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2 2
0 1 1 0

1 1 ( 1) ( 1)(1 ) ( 1)
1 2 1 2 3 3!

u u u uu y uy u u y y−
+ + − = − + + − − ∆ + ∆ × × × 

  
2 4

2 1
1 2 ( 2)( 1) ( 1)( 2) ...( 1) ( 1)( 2)

1 2 3 4 5 5!
u u u u u uu u u u y y− −

+ + + − − + + − − − ∆ + ∆ + × × × 

2 21
0 1 0

( 1)( 2) ( 1) ( 1)
(1 )

1! 3! 3!
uy u u u u u uu y y y−

− − + −
= − + − ∆ + ∆

   4 4
2 1

( 1) ( 1)( 2)( 3) ( 2)( 1) ( 1)( 2) ...
3! 5!

u u u u u u u u u uy y− −
+ − − − + + − −

− ∆ + ∆ + (5.68)

Writing v = 1 – u, i.e., u = 1 – v and changing the terms (5.68) with a negative sign, we get

          2 2 2
0 1 1 0 2

( 1) ( 1) ( 1) ( 1) ( 2)( 1) ( 1)( 2)
1! 3! 3! 5!
u v v v u u u v v v v vy vy y y y y− −

+ − + − + + − −
= + + ∆ + ∆ + ∆

4
1

( 2)( 1) ( 1)( 2) ...
5!

u u u u u y−
+ + − −

+ ∆ + (5.69)

Equation (5.69) can be written as
2 2 2 2 2 2

2 4
4 0 1 2 1

( 1 ) ( 1 )( 2 ) ...( )
3! 5!

v v v v uy f x vy y y uy− −
− − −

= = + ∆ + ∆ + +

       
2 2 2 2 2 2

2 2
0 1

( 1 ) ( 1 )( 2 ) ...
3! 5!

u u u u uy y−
− − −

+ ∆ + ∆ + (5.70)

Equation (5.70) is known as Laplace-Everett’s formula. Equation (5.71) uses only even differences of the
function.

Example E5.41
Use Everett’s interpolation formula to find the value of y when x = 1.60 from the following table.

x 1.0 1.25 1.50 1.75 2.0 2.25 
y = f(x) 1.0543 1.1281 1.2247 1.3219 1.4243 1.4987 

Solution:
The difference table is shown below:

i xi yi ∆yi ∆2yi ∆3yi ∆4yi 
–2 1.00 1.0543     
   0.0738    

–1 1.25 1.1281   0.0228   
   0.0966  – 0.0222  

 0 1.50 1.2247   0.006  0.0268 
   0.0972  0.0046  

 1 1.75 1.3219   0.00520  –0.0378 
   0.1024  –0.0332  

 2 2.0 1.4243  –0.0280   
   0.0744    

3 2.25 1.4987     
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Here x0 = 1.50 and h = 0.25

Therefore 0 1.60 1.50
0.4

0.25
x x

v
h
− −

= = =

and u = 1 – v = 1 – 0.4 = 0.6
The Everett’s interpolation formula is

2 2 2 2 2 2
2 4

1 0 1
( 1 ) ( 1 )( 2 )

3! 5!
v v v v vy vy y y−

 − − −
= + ∆ + ∆ 

  

      
2 2 2 2 2 2

2 4
0 1 2

( 1 ) ( 1 )( 2 )
3! 5!

u u u u uuy y y− −
 − − −+ + ∆ + ∆ 
  

  
0.4(0.16 1) 0.4(0.16 1)(0.16 4)0.4(1.3219) (0.00520) ( 0.03780)

6 120
− − − = + + −  

      
0.6(0.36 1) 0.6(0.36 1)(0.36 4)0.6(1.2247) (0.0006) (0.02680) 1.26316

6 120
− − − + + + =  

5.5.6 Selection of an Interpolation Formula
In general, the selection of an interpolation formula depends to a great extent on the position of the interpolated
value in the given data.

(a) Use Newton’s forward interpolation formula to find a tabulated value near the beginning of the
table.

(b) Use Newton’s backward interpolation formula to find a value near the end of the table.
(c) Use either Stirling or Bessel’s or Laplace-Everett’s formula to find an interpolated value near the

centre of the table.
The coefficients in the central difference formulae are smaller and converge faster than those in Newton’s
forward or Newton’s backward interpolation formulae. Also, after a few terms, the coefficients in the Stirling’s
formula decrease more rapidly than those of the Bessel’s formula. Similarly, the coefficients of Bessel’s formula
decrease more rapidly than those of Newton’s forward or backward formula. Hence, wherever possible, central
difference formula are preferred than the Newton’s formulae. However, as described in (a), (b) and (c) above,
the right selection of an interpolation formula greatly depends on the position of the interpolated value in
the given tabular data set.

5.6 DIVIDED DIFFERENCES

Let the function y = f (x) be given at the point x0, x1, x2, …, xn (which need not be equally spaced) f (x0), f (x1),
f (x2), …, f (xn), denote the (n + 1) values the function at the points x0, x1, x2, …, xn.

Then the first divided differences of f (x) for the arguments x0, x1 is defined as

0 1

0 1

( ) ( )f x f x
x x

−
−
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It is denoted by f (x0, x1) or by [x0, x1]

Likewise f (x1, x2) = 1 2

1 2

( ) ( )f x f x
x x

−
−

f (x2, x3) = 2 3

2 3

( ) ( )f x f x
x x

−
−

, etc.

The second divided difference for the arguments x0, x1, x2 is defined as

f (x0, x1, x2) = 0 1 1 2

0 2

( , ) ( , )f x x f x x
x x

−
−

similarly the third differences for the arguments x0, x1, x2, x3 is defined as

f (x0, x1, x2, x3) = 0 1 2 1 2 3

0 3

( , , ) ( , , )f x x x f x x x
x x

−
−

The first divided differences are called the divided differences of order one, the second divided differences
are called the divided differences of order two and so on.
The divided difference table (Table 5.11) is given below:

Table 5.11

Argument, x Entry ∀f(x) ∀2f(x) ∀3f(x) 
x0 f(x0)    
  f(x0, x1)   

x1 f(x1)  f(x0, x1, x2)  
  f(x1, x2)  f(x0, x1, x2, x3) 

x2 f(x2)  f(x1, x2, x3)  
  f(x2, x3)   

x3 f(x3)    

Example E5.42

If f (x) =
1
x

, then find the divided differences f (a, b) and f (a, b, c)

Solution:

Given       f (x) =
1
x

,

⇒ f (a, b) =

1 1
( ) ( ) 1–

( ) ( )
f a f b b aa b

a b a b ab a b ab

−− −= = =
− − −

and f (a, b, c) =

1 1
( , ) ( , ) 1 1 1f a b f b c c aab bc

a c a c b ac a c abc

− − −   − − + = = =  − − −

Hence f (a, b, c) =
1

abc
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Example E5.43
Prepare the divided difference table for the following data

Table E5.43

x 1   3   4    6    10 
f(x) 0 18 58 190 920 

Solution:
Table E5.43(a) shows the divided differences.

Table E5.43(a)

x f(x) ∀f(x) ∀2f(x) ∀3f(x) ∀4f(x) 
1 0 9 10.33333 –0.33333 0.207672 
3 18 40 8.666667 1.535714  
4 58 66 19.41667   
6 190 182.5    

10 920     

5.6.1 Newton’s Divided Difference Interpolation Formula
A function f (x) is written in terms of divided differences as follows:

f (x) = f (x0) + (x – x0) f (x0, x1) + (x – x0), (x – x1) f (x0, x1, x2) + (x – x0) (x – x1) (x – x2) f (x0, x1, x2, x3)
  + (x – x0) (x – x1) (x – x2) (x – x3) f (x0, x1, x2, x3, x4) + …

Example E5.44
Find the form of the function f (x) under suitable assumption from the following data.

x 0 1   2     5 
f(x) 2 3 12 147 

Solution:
The divided difference table (Table E5.44) is given as under:

Table E5.44

x f(x) ∀f ∀2f ∀3f 
0    2    
    1   

1    3  4  
    9  1 

2   12  9  
  45   

5 147    

We have x0 = 0, f (x0) = 2, f (x0, x1) = 1, f (x0, x1, x2) = 4, f (x0, x1, x2, x3) = 1.
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The Newton’s divided difference interpolation formula for this case is:

f(x) = f (x0) + (x – x0) f (x0, x1) + (x – x0)(x – x1) f (x0, x1, x2)  + (x – x0) (x – x1) (x – x2) f (x0, x1, x2, x3).

Substituting all constants we get:
    f (x) = 2 + 1 (x – 0) + 4 (x – 0)(x – 1) + 1 (x – 0)(x – 1)(x – 2)

Hence  f (x) = x3 + x2 – x + 2.

Example E5.45
Derive the equation of the interpolating polynomial for the data given in Table 5.45 below:

Table E5.45

x(deg) f(x) 
0 3 
1 2 
2 7 
3 24 
4 59 
5 118 

Solution:
First form the divided difference table as shown in Table E5.45(a):

Table E5.45(a)

x f(x) ∀f ∀2f ∀3f ∀4f 
0     3 –1   3 1 0 
1     2   5   6 1 0 
2     7 17   9 1  
3   24 35 12   
4   59 59    
5 118     

Using Newton’s divided difference formula, the interpolating polynomial is:
f (x) = f (x0) + (x – x0) f (x0, x1) + (x – x0)(x – x1) f (x0, x1, x2)  + (x – x0) (x – x1) (x – x2) f (x0, x1, x2, x3)
      = 3 – x + 3x (x – 1) + x (x – 1)(x – 2)
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Figure E5.45 shows the variation of the function with actual values and those obtained from polynomial.

Newton Interpolating Polynomial

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

data points
Newton Polynomial

x

y

Fig. E5.45:  Newton’s polynomial

Main advantage of divided difference table approach is that it has less computational operations. We do not
need to write the polynomial and then use the C0 condition to calculate the constants. Secondly, it is much
easier to incorporate in a computer code. It is important to realise that both the Lagrange and Newton
polynomials are C0 continuous and each would generate the same result.

5.7 CUBIC SPLINE INTERPOLATION

Generally, we use only one polynomial to describe the data over the entire range. Here, we will use different
continuous polynomials to describe the function in each interval of known points. This type of approximation
is called the piecewise polynomial approximation. Therefore, for n + 1 set of data, there will be n piecewise
polynomials formed. Splines of different degree are available in the literature. However, cubic splines are
most widely used.

Cubic spline interpolation method interpolates a function between a given set of data points by means
of piecewise smooth polynomials. Here, the curve passes through the given set of data points. The slope
and its curvature are continuous at each point. The advantage of cubic spline interpolation method is that
these polynomials are of a lower degree and less oscillatory, therefore describing the given data more
accurately. Cubic spline interpolation method is very powerful and widely used. It has several applications
in numerical differentiation, integration, solution of boundary value problems, plotting two-and three-
dimensional graph.

With a cubic spline, an expression for the second derivative can be obtained which will describe the
behaviour of the data most accurately within each interval.
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Fig. 5.2: Cubic spline

The second derivatives of the spline is zero at the end points. Since these end conditions occur naturally in
a beam model (in strength of materials), the resulting curve is known as the natural cubic spline. The pins,
i.e., the data points, are called the knots of the spline in a beam model.

Figure 5.2 shows a cubic spline that spans n knots. Let us denote fi, i+1(x) be the cubic polynomial that
spans the segment between knots i and i + 1. In Fig. 5.2, we note that the spline is a piecewise cubic curve,
assembled together form the n – 1 cubics f 1, 2(x), f 2, 3 (x), …., fn–1, n (x), all of which have different coefficients.

Denoting the second derivative of the spline at knot i by ki, the continuity of second derivatives requires
that

1, , 1( ) ( )− += =′′ ′′i i i i i i if x f x k (5.71)

In Eq.(5.71), ki is unknown, except for
 k1 = kn = 0 (5.72)

We know that the expression for , 1( )i if x+′′ is linear and the starting point for obtaining the coefficients of

fi, i +1(x) is , 1( ).i if x+′′

Hence, we can write using Lagrange’s two-point interpolation,

, 1 1 1( ) ( ) ( )i i i i i if x k x k x+ + += +′′ � � (5.73)

where    1

1
( ) i

i
i i

x x
x

x x
+

+

−
=

−
�

and  1
1

( ) i
i

i i

x x
l x

x x+
+

−
=

− (5.74)

Hence 1 1
, 1

1

( ) ( )
( ) i i i i

i i
i i

k x x k x x
f x

x x
− +

+
+

− − −
=′′

−
(5.75)

Integrating Eq. (5.75) twice with respect to x, we get
3 3

1 1
, 1 1

1

( ) ( )
( ) ( ) ( )

6( )
i i i i

i i i i
i i

k x x k x x
f x A x x B x x

x x
+ +

+ +
+

− − −
= + − − −′′

− (5.76)



// Finite Differences and Interpolation // 175

Sanjay IInd Proof—13/8/2009

or            
3 3

1 1

1

( ) ( )
6( )

i i i i

i i

k x x x x x
Cx D

x x
+ +

+

− − −
= + +

−
(5.77)

where A and B are constants of integration, C = A – B and D = –Axi +1 + Bxi.
Now applying the condition fi, i +1(xi) = yi, Eq. (5.76) becomes

3
1

1
1

( )
( )

6( )
i i i

i i i
i i

k x x
A x x y

x x
+

+
−

−
+ − =

− (5.78)

Hence 1
1

( )
6

i i
i i

i i

y k
A x x

x x +
+

= − −
−

(5.79)

Similarly, applying the condition fi, i +1(xi +1) = yi +1, gives

1 1
1

1
( )

6
i i

i i
i i

y k
B x x

x x
+ +

+
+

= − −
− (5.80)

From Eqs. (5.79) and (5.80), we obtain

       
3 3

1 1
, 1 1 1 1

1 1

( ) ( )
( ) ( )( ) ( )( )

6 6
i i i i

i i i i i i i i
i i i i

k x x k x x
f x x x x x x x x x

x x x x
+ +

+ + + +
+ +

   − −
= − − − − − − −   − −      

       
1 1

1

( ) ( )i i i i

i i

y x x y x x
x x
+ +

+

− − −
+

− (5.81)

We note here that the second derivatives ki of the spline at the interior knots are found from the slope
continuity conditions

1 , 1( ) ( )i i i i if x f x− +=′ ′ i = 1, 2, 3, …., n – 1 (5.82)

Applying the conditions given by Eq.(5.82) in Eq. (5.81) and after some mathematical manipulations or
simplifications, we obtain the simultaneous equations:

ki –1(xi – 1 – xi) + 2ki(xi –1 – xi +1) + ki +1(xi – xi+1)

   
1 1

1 1
6 i i i i

i i i i

y y y y
x x x x

− +

− +

 − −
= − − − 

   i = 2, 3, …., n – 1 (5.83)

If the data points are equally spaced at intervals h, then, we have
 h = xi –1 – xi = xi – xi +1 (5.84)

and Eq.(5.83) becomes

1 1 1 12
64 2i i i i i ik k k y y y

h− + − ++ + = − +      i = 2, 3, …., n – 1 (5.85)
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There are two boundary conditions normally used. They are

1. Natural boundary condition
The second derivatives of the data at the end points x0 and xn are arbitrarily assumed to be zero. This
condition is known as the free or natural boundary condition. The polynomials resulting from this condition
are referred to as natural or free cubic splines. They may not provide very accurate values close to the
boundaries, but they are accurate enough in the interior region.

2. Clamped boundary condition
When the first derivative of the data are known at the end point x0 and xn, the corresponding boundary
conditions are known. This condition is known as the clamped boundary condition.

Example E5.46
Given the data points:

x 1 2 3 4 5 
y 13 15 12 9 13 

Find the natural cubic spline interpolation at x = 3.4.
Solution:
For equally spaced knots, the equations for the curvatures are written as

1 1 1 12
64 ( 2 )i i i i i ik k k y y y

h− + − ++ + = − +   ;    i = 2, 3, 4

Here we have k1 = k5 and h = 1.

Hence 4k2 + k3 = 6[13 – 2(15) + 12] = –30
k2 + 4k3 + k4 = 6[15 – 2(12) + 9]   = 0

k3 + 4k4 = 6[12 – 2(9) + 13]   = 42 (E.1)
Solving Eq.(E.1), we obtain

k2 = –7.286, k3 = –0.857, k4 = 10.714
The interpolant between knots 2 and 3 is given by

33
3 34 4

3,4 4 3 4 3 3 4
3 4 3 4

( )( )
( ) ( )( ) ( )( )

6 6
k x xx x k

f x x x x x x x x x
x x x x

   −−
= − − − − − − −  − −      

3 4 4 3

3 4

( ) ( )y x x y x x
x x

− − −
+

−

Hence, the natural cubic spline interpolation at x = 3.4 is

3 3

3,4
0.857 (3.4 4) 10.714 (3.4 3)(3.4) (3.4 4)(3 4) (3.4 3)(3 4)

6 3 4 6 3 4
f

   − − −
= − − − − − − −   − −      
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12(3.4 4) 9(3.4 3)
0.054848 0.599984 10.8 10.2552

3 4
− − −

+ = − + =
−

Example E5.47
Find the natural spline that passes through the points given below:

i 1 2 3 
xi 0 1 2 
yi 0 2 1 

Find the first and second derivatives at x = 1 noting that the interpolant consists of two cubics, one valid in
0 ≤ x ≤ 1, the other in 1 ≤ x ≤ 2.
Solution:
For natural spline, we have k1 = k3 = 0. The equation for k1 is given by

1 2 3 1 2 32
64 ( 2 )k k k y y y

h
+ + = − +

Hence   2 2
60 4 0 [0 2(2) 1]

1
k+ + = − +

or               k2 = –4.5
The interpolant in 0 ≤ x ≤ 1 is given by

3
2 1 1 2 2 1

1,2 1 1 2
1 2 1 2

( ) ( ) ( )
( ) ( )( )

6
k x x y x x y x x

f x x x x x
x x x x

 − − − −
= − − − − + − −  

         
3

34.5 ( 0) 0 2( 0)( 0)(0 1) 0.75 2.75
6 0 1 0 1

x xx x x
 − − −= − − − + = + − − 

The interpolant in 1 ≤ x ≤ 2 is given by
3

3 2 3 3 22
2,3 3 2 3

2 3 2 3

( ) ( ) ( )
( ) ( )( )

6
x x y x x y x xk

f x x x x x
x x x x

 − − − −
= − − − − + − −  

         
3

34.5 ( 2) 2( 2) ( 1)( 2)(1 2) 0.75( 2) 1.75 4.5
6 1 2 1 2

x x xx x x
 − − − −

= − − − − + = − − − + − − 

Now 2 2
1,2 ( ) 3(0.75) 2.75 2.25 2.75f x x x= − + = − +′

2 2
2,3 ( ) 3(0.75)( 2) 1.75 2.25( 2) 1.75f x x x= − − = − −′

2
1,2 (1) 2.25(1) 2.75 0.5f = − + =′

2
2,3 (1) 2.25(1 2) 1.75 0.5f = − − =′
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1,2 (1) 2.25(2) 4.5f = − = −′′

2,3 (1) 2.25(2)(1 2) 4.5f = − = −′′

Hence 1,2 2,3(1) (1) 0.5f f= =′ ′

and 1,2 2,3(1) (1) 4.5f f= = −′′ ′′

Example E5.48
Use the end conditions with a cubic spline that has constant second derivatives within its first and last
segments (noting the end segments are parabolic). The end conditions for this spline are given as k1 = k2
and kn–1 = kn. The data points are given below:

i 1 2 3 4 
x 0 1 2 3 
y 1 1 0.5 0 

Solution:
With evenly spaced knots, the equations for the curvatures are given by

1 1 1 12
64 ( 2 ), 2,3i i i i i ik k k y y y i

h− + − ++ + = − + = (E.1)

With k1 = k2, k4 = k3 and h = 1, Eq.(E.1) becomes
5k2 + k3 = 6(1 – 2(1) + 0.5) = –3 (E.2)
k2 + 5k3 = 6[1 – 2(0.5) + 0] = 0

Solving Eq. (E.2), we get k2 = –5/8, k3 = 1/8. The interpolant can now be evaluated from

    
3 3

1 1
, 1 1 1 1

1 1

( ) ( )
( ) ( )( ) ( )( )

6 6
i i i i

i i i i i i i i
i i i i

k x x k x x
f x x x x x x x x x

x x x x
+ +

+ + + +
+ +

   − −
= − − − − − − −   − −      

  
1 1

1

( ) ( )i i i i

i i

y x x y x x
x x
+ +

+

− − −
+

− (E.3)

Substituting xi – xi +1 = –1 and i = 3, Eq. (E.3) becomes

        3 33 4
3,4 4 4 3 3 3 4 4 3( ) [ ( ) ( )] [ ( ) ( ) ( ) ( )

6 6
k k

f x x x x x x x x x y x x y x x= − − + − − − − + − − − + −

Hence,    3 3
3,4

1/ 8 1/ 8
(2.6) [ (2.6 3) (2.6 3)] [ (2.6 2) (2.6 2)] 0.5(2.6 3) 0 0.1853

6 6
f = − − + − − − − + − − − + =

5.8 SUMMARY

Interpolation is the method of computing the value of the function y = f (x) for any given value of the
independent variable x when a set of values of y = f (x) for certain values of x are given. The study of
interpolation is based on the assumption that there are no sudden jump in the values of the dependent
variable for the period under consideration. In this chapter, the study of interpolation was presented based
on the calculus of finite differences. Some important interpolation formulae by means of forward, backward
and central differences of a function, which are frequently used in scientific and engineering calculations
were also presented.
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Problems
5.1 Show that

(a) ∆∇ = ∆ – ∇
(b) ∇ = ∆E–1

(c) En = (1 + ∆)n

(d)
2

2

x
x x

x
Eee e

E e

 ∆=   ∆ 
 (h = interval of differencing)

(e) ∆nsin (ax + b) = 2sin sin
2 2

na aax b n
 + π   + +        

(interval of differencing = 1)

( f ) ∆2 = (1 + ∆)δ2

(g) ∆3y2 = ∇3y5

(h) δ = ∆(1 +∆)–1/2

(i) ∇ = 1 – (1 +∇)–1

(j)
∆ ∇− = ∆ + ∇
∇ ∆

5.2 Find the following:
(a) ∆eax

(b) ∆ sin x
(c) ∆ tan–1x

(d) 2
5 12

5 6
x

x x
+ ∆  + + 

(e)
1n

x
 ∆   

( f )
2

3x
E

 ∆
    (with interval of differencing = 1)

(g) 2(1 )x
∆

+

(h) ∆ sin (ax + b)
(i) ∆2(3ex)

5.3 Construct a forward difference table for the following data:

(a) x 45 55 65 75 
y = f(x) 20 60 120 180 
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(b) x 40 50 60 70 80 90 
y = f(x) 204 224 246 270 296 324 

5.4 Construct a difference table for y = x3 + 2x + 3 for x = 1, 2, 3, 4, 5.
5.5 Given u0 = 1, u1 = 5, u2 = 10, u3 = 30, u4 = 30, find ∆4u0.
5.6 Given u0 = 5, u1 = 24, u2 = 81, u3 = 200, u4 = 100 and u5 = 8, find ∆5u0.
5.7 Estimate the missing term in the following tables:

(a) x 1 2 3 4 5 
y = f(x) 5 14 ? 74 137 

(b) x 1 2 3 4 5 
y = f(x) 8 17 38 ? 140 

(c) x 0 1 2 3 4 
y = f(x) 3 2 3 ? 11 

5.8 If m is a positive integer and the interval of differencing is 1, show that xm = x(x – 1) … [x – (x – 1)].
5.9 Express the following in the factorial notation. Take interval of differencing as equal to 1.

(a) y = f (x) = 3x3 + x2 + x + 1
(b) y = f (x) = x4 – 5x3 + 3x + 4

5.10 Find the missing entry in the following tables:

(a) x 0 1 2 3 4 
y = f(x) 1 3 13 — 81 

(b) x 0 1 2 3 4 
y = f(x) 1 0 — 28 69 

(c) x 0 1 2 3 4 
y = f(x) 1 –2 –1 — 37 

(d) x 0 1 2 3 4 
y = f(x) 1 4 — 28 61 

(f ) x 0 1 2 3 4 
y = f(x) –6 –3 4 — 54 

5.11 Find the missing entry in the following tables:

(a) x 0 1 2 3 4 
y = f(x) 1 3 — 55 189 

(b) x 0 1 2 3 4 
y = f(x) 1 –3 –1 — 165 

(c) x 0 1 2 3 4 
y = f(x) –31 –35 — 5 133 
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(d) x 0 1 2 3 4 
y = f(x) –23 –27 — 13 141 

(e) x 0 1 2 3 4 
y = f(x) 2 –2 0 — 166 

5.12 Interpolate the missing entries in the following tables:

(a) x 0 1 2 3 4 
y = f(x) 1 — 13 — 81 

(b) x 0 1 2 3 4 
y = f(x) 1 –2 — — 37 

(c) x 0 1 2 3 4 
y = f(x) 1 — 11 — 61 

(d) x 0 1 2 3 4 
y = f(x) –6 — 4 — 54 

(e) x 0 1 2 3 4 
y = f(x) –6 — 12 — 118 

5.13 Given that 12600 = 112.24972, 12610 = 112.29426, 12620 = 112.33877, 12630 = 112.38327. Find

the value of 12616 .

5.14 Evaluate y = e2x for x = 0.25 from the data in the following table.

x 0.2 0.3 0.4 0.5 0.6 
e2x 1.49182 1.82212 2.22554 2.71828 3.32012 

5.15 The values of sin x are given below for different values of x. Find the value of sin 42º.

x 40º 45º 50º 55º 60º 
y = sin x 0.64279 0.70711 0.76604 0.81915 0.86603 

5.16 In an examination the number of students who obtained marks between certain limits was as follows:

Marks 30–40 40–50 50–60 60–70 70–80 
No. of students 18 40 64 50 28 

Find the number of students whose scores lie between 70 and 75.
5.17 From the following table estimate the number of students who obtained marks in the examination between

50 and 55.

Marks 35–45 45–55 55–65 65–75 75–85 
No. of students 31 42 51 35 31 

5.18 A second degree polynomial passes through the points (2, –1), (3, 1), (4, 5) and (5, 11). Find the
polynomial.
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5.19 A second degree polynomial passes through the points (1, 5), (2, 11), (3, 19) and (4, 29). Find the
polynomial.

5.20 Find a cubic polynomial which takes the following values.

x 0 1 2 3 
f(x) 1 4 17 46 

5.21 Refer to Problem P5.11. Find f (1.5).
5.22 Refer to Problem P5.10. Find f (3.5).

5.23 The table below gives the values of f (x) for 0.10 ≤  x ≤  0.30. Find f (0.12) and f (0.26).

x 0.1 0.15 0.2 0.25 0.30 
f(x) 0.0998 0.1494 0.1987 0.2474 0.2955 

5.24 The population (in thousands) of a small town is given in the following table. Estimate the population
in the years 1965 and 1995.

Year, x 1961 1971 1981 1991 2001 
Population y = f(x) 

(in thousands) 
46 66 81 93 101 

5.25 Using Newton’s forward interpolation formula find the value of sin 52º from the following data. Estimate
the error.

x 40º 45º 50º 55º 60º 
y = sin x 0.64279 0.70711 0.76604 0.81915 0.86603 

5.26 Find the polynomial of degree three relevant to the following data using Lagrange’s interpolation formula.

x 1 2 3 5 
f(x) –12 –14 –20 –20 

5.27 Find the polynomial of the least degree which attains the prescribed values at the given point using
Lagrange’s interpolation formula.

x 1 2 4 5 
y = f(x) –27 –44 –84 –95 

5.28 Find the polynomial of degree three relevant to the following data using Lagrange’s interpolation formula.

x 1 3 5 6 
y = f(x) 71 115 295 466 

5.29 Find the polynomial of degree three relevant to the following data using Lagrange’s interpolation formula.

x 0 1 2 4 
y = f(x) 2 5 12 62 
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5.30 Using Lagrange’s interpolation formula, find the value of y corresponding to x = 8 from the following
table:

x 1 3 6 9 
y = f(x) 71 115 466 1447 

5.31 Using Lagrange’s interpolation formula, find the value of y corresponding to x = 6 from the following
table:

x 0 3 5 7 
y = f(x) 2 29 117 317 

5.32 Using Lagrange’s interpolation formula, find the value of y corresponding to x = 4 from the following
table:

x 0 1 3 5 
y = f(x) –20 –12 –20 –20 

5.33 Using Lagrange’s interpolation formula, find the value of y corresponding to x = 9 from the following
table:

x 5 6 11 13 
y = f(x) 380 –2 508 1020 

5.34 The following table gives the values of y corresponding to certain values of x. Find the value of x
when y = 420.61175 by applying Lagrange’s inverse interpolation formula.

x 1 2 5 6 
y = f(x) 71 82 295 466 

5.35 The following table gives the values of y corresponding to certain values of x. Find the value of x
when y = –76.0188 by applying Lagrange’s inverse interpolation formula.

x 1 2 4 5 
y = f(x) –27 –65 –84 –95 

5.36 The following table gives the values of y corresponding to certain values of x. Find the value of x
when y = 89.64656 by applying Lagrange’s inverse interpolation formula.

x 1 2 5 6 
y = f(x) 71 82 295 466 

5.37 The following table gives the values of y corresponding to certain values of x. Find the value of x
when y = –16.875 by applying Lagrange’s inverse interpolation formula.

x 0 1 3 5 
y = f(x) –20 –12 –20 –20 

5.38 Apply Gauss’s forward interpolation formula to find the value of f (x) at x = 11 from the following table:

x 1 5 9 13 17 
f(x) 13 16 18 21 26 
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5.39 Find the value of f (x) at x = 10 by applying Gauss’s forward interpolation formula from the following
data:

x 0 4 8 12 16 
f(x) 23 28 36 39 45 

5.40 Find the value of f (9) by applying Gauss’s forward interpolation formula from the following data:

x 0 4 8 12 16 
f(x) 15 25 34 37 42 

5.41 Apply Gauss’s forward interpolation formula to find the value of f (12.2) from the following data:

x 10 11 12 13 14 
f(x) 23967 28060 31788 35209 38368 

5.42 Find the value of f (9) by applying Gauss’s forward interpolation formula from the following data:

x 0 4 8 12 16 
f(x) 17 19 35 38 41 

5.43 Use Gauss’s forward interpolation formula to find y for x = 10 given that

x 0 4 8 12 16 
y = f(x) 15 25 34 37 42 

5.44 Use Gauss’s backward interpolation formula to find the sales for the year 1966 given the following
data:

Year  1931 1941 1951 1961 1971 1981 
Sales (in millions) 5 7 12 17 23 31 

5.45 Apply Gauss’s backward interpolation formula and find the population of a city in 1946 based on the
following data:

Year 1931 1941 1951 1961 1971 
Population (in millions) 16 21 29 41 54 

5.46 Use Gauss’s backward interpolation formula to find the sales for the year 1966 based on the following
data:

Year  1951 1961 1971 1981 1991 
Sales (in millions) 23 32 43 52 61 

5.47 Apply Gauss’s backward interpolation formula to find the population of a city in 1986 based on the
following data:

Year 1951 1961 1971 1981 1991 2001 
Population (in millions) 15 21 25 29 47 61 
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5.48 Use Gauss’s backward interpolation formula to find the sales for the year 1986 based on the following
data:

Year 1951 1961 1971 1981 1991 2001 
Sales (in millions) 1 3 6 11 17 23 

5.49 Apply Bessel’s interpolation formula to obtain y25, given that y20 = 515, y24 = 438, y28 = 348 and
y32 = 249.

5.50 Apply Bessel’s interpolation formula to obtain y16, given that y15 = 0.345, y20 = 0.375, y25 = 0.478 and
y30 = 0.653.

5.51 Apply Bessel’s interpolation formula to obtain y1.6, given that y1.5 = 0.345, y2.0 = 0.423, y2.5 = 0.512 and
y3.0 = 0.756.

5.52 Apply Bessel’s interpolation formula to obtain y36, given that y21 = 19, y231 = 29, y41 = 43 and y51 = 54.
5.53 Apply Bessel’s interpolation formula to obtain y1.4, given that y1.25 = 1.0772, y1.5 = 1.1447, y1.75 = 1.2051

and y2.0 = 1.2599.
5.54 Apply Bessel’s interpolation formula to obtain y0.644, given that y0.64 = 1.89648, y0.65 = 1.91554,

y0.66 = 1.93479 and y0.67 = 1.95424.
5.55 Use Stirling’s interpolation formula to find y12.2 from the following table:

x 10 11 12 13 14 
y = f(x) 24765 27876 30879 36543 39879 

5.56 Use Stirling’s interpolation formula to find y1.22 from the following table:

x 0 0.5 1.0 1.5 2.0 
y = f(x) 0 0.1910 0.3410 0.4330 0.4770 

5.57 Use Stirling’s interpolation formula to find y22.6 from the following table:

x 20 21 22 23 24 
y = f(x) 1.2123 1.3546 1.4879 1.5765 1.6987 

5.58 Use Stirling’s interpolation formula to find y3.8 from the following table of data:

x 1 2 3 4 5 
y = f(x) 0.12340 0.34560 0.87650 1.12346 1.34657 

5.59 Use Stirling’s interpolation formula to find y3.25 from the following data:

x 2 2.5 3.0 3.5 4.0 
y = f(x) 49225 48316 47236 45926 44306 

5.60 Use Everett’s interpolation formula to find the value of y when x = 3.5 from the following table:

x 1 2 3 4 5 6 
y = f(x) 1.2567 1.4356 1.5678 1.6547 1.7658 1.8345 
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5.61 Use Everett’s interpolation formula to find the value of y when x = 6 from the following table.

x 1 3 5 7 9 11 
y = f(x) –0.375 –2.947 –6.063 –2.331 24.857 105.165 

5.62 Use Everett’s interpolation formula to find the value of y when x = 0.35 from the following table.

x 0.1 0.2 0.3 0.4 0.5 0.6 
y = f(x) 1.23900 1.12999 0.95294 0.70785 0.39469 0.01348 

5.63 Use Everett’s interpolation formula to find the value of y when x = 0.35 from the following table.

x 0.1 0.2 0.3 0.4 0.5 0.6 
y = f(x) 2.4780 2.25997 1.90589 1.41569 0.78938 0.02696 

5.64 Use Everett’s interpolation formula to find the value of y when x = 0.644 from the following table.

x 0.61 0.62 0.63 0.64 0.65 0.66 0.67 
y = f(x) 1.850431 1.858928 1.887610 1.906481 1.925541 1.944792 1.964237 

5.65 Use Everett’s interpolation formula to find the value of y when x = 1.71 from the following table.

x 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
y = f(x) 4.055200 4.481689 4.953032 5.473947 6.049647 6.685894 7.389056 

5.66 Fit a cubic spline curve that passes through the points as shown below:

x 0 1 2 3 
y 0 0.5 2 1.5 

The natural end boundary conditions are: y''(0) = y''(3) = 0.
5.67 Apply natural cubic spline interpolation method to find y at x = 1.5. The data points are given below:

x 1 2 3 4 5 
y 0 1 0 1 0 

5.68 Develop a natural cubic spline for the following data:

x 3 4 5 6 7 
y 3.7 3.9 3.9 4.2 5.7 

Find f ′(3.4), f ′(5.2) and f ′(5.6).
5.69 Find the zero of the function y(x) from the following data:

x   1.0   0.8 0.6 0.4 0.2 
y –1.049 –0.0266 0.377 0.855 1.15 

Use inverse interpolation with the natural cubic spline.
5.70 Fit a cubic spline curve for the following data with end conditions y' (0) = 0.2 and y' (3) = –1.

x 0 1 2 3 
y 0 0.5 3.5 5 
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5.71 Construct a clamped cubic spline for the following data given that the slope of 0.2 at x0 and a slope of
0.6 at xn.

n 0 1 2 3 4 
x 3 4 5 6 7 
y 3.7 3.9 3.9 4.2 5.7 

Find f '' (3.4), f ' (5.2) and f (5.6).
5.72 Fit the data in Table P5.72 with cubic spline and find the value at x = 5.

Table P5.72

i 1 2 3 4 
x 3 4.5 7 9 
y 2.5 1.0 2.5 0.5 

5.73 Determine the cubic spline interpolation at x = 2.6 based on the data points given below:

x 0 1 2 3 
y 1 1 0.5 0 

Given the end conditions as 1,2 (0) 0f =′ (zero slope).

P P P
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6.1 INTRODUCTION

In real life engineering practice, often a relationship is found to exist between two (or more) variables. For
example: the experimental data for force (N) and velocity (m/s) from a wind tunnel experiment. A mechanical
element/component is suspended in a wind tunnel and the force measured for various levels of wind velocity.
This relationship can be visualised by plotting force versus velocity. It is frequently desirable to express this
relationship in mathematical/analytical form by establishing an equation connecting the variables.

In order to determine an equation connecting the variables, it is often necessary to collect the data
depicting the values of the variables under consideration.

For example, if x and y denote respectively the velocity and force from the wind tunnel experiment, then
a sample of n individual would give the velocities x1, x2, …, xn and the corresponding forces y1, y2, …, yn.
When these points (x1, y1), (x2, y2), …, (xn, yn) are plotted on a rectangular coordinate system, the resulting
set of points on the plot is called the scatter diagram. From such a scatter diagram, one can visualise a
smooth curve approximating the given data points. Such a curve is known as an approximating curve.
Figure 6.1(a) shows that the data appears to be approximated by a straight line and it clearly exhibits a linear
relationship between the two variables. On the other hand Fig. 6.1(b) shows a relationship which is not
linear and in fact it is a non-linear relationship between the variables. Curve fitting is the general problem of
finding equations of approximating curves which best fit the given set of data.

y

x

y

x

(a) Linear Relationship                         (b) Non-linear Relationship

Fig. 6.1: Linear and non-linear relationship
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Approximating Curves
Table 6.1 lists a few common approximating curves used in practice and their equations. The variables x and
y are called the independent and dependent variables respectively. The scatter diagrams of the variables or
transformed variables will help determine the curve to be used.

Table 6.1

No. Equation Description of the curve 
1. y = a + bx Straight line 
2. y = a + bx + cx2 Parabola or quadratic curve 
3. y = a + bx + cx2 + dx3 Cubic curve 
4. y = a + bx + cx2 + dx3 + ex4 Quartic curve 
5. y = a0 + a1x + a2x2 + … + anxn nth degree curve 

6. 
1y

c mx
=

+
 or  1 c mx

y
= +  Hyperbola 

7. y = abx or log y = log a + x(log b) = a0 + b0x Exponential curve 
8. y = axb or log y = log a + b(log x) Geometric curve (power function) 
9. y = abx + c Modified exponential curve 
10 y = axb + c Modified geometric curve 
11. y = 

xbpq   or  log y = log p + bx log q = abx + q Gompertz curve 

12. y = 
xbpq + h Modified Gompertz curve 

13. x

1y
ab q

=
+

 or  1
y

= abx + q Logistic curve 

14. y = bemx  or  y = b 10mx Exponential function 

15. 
1y

mx b
=

+
 Reciprocal function 

16. 
xy

x
= α

β +
 Saturation-growth-rate equation 

In Table 6.1, a, b, c, d, e, a0, a1, a2, …, an, b0, p, q, h, m, α and β are all constant coefficients.

Linear Regression
Linear regression and correlation are two commonly used methods for examining the relationship between
quantitative variables and for making predictions. In this chapter, we review linear equations with one
independent variable, explain how to find the regression equation, the equation of the line that best fits a
set of data points. We also examine the coefficient of determination that is a descriptive measure of the
utility of the regression equation for making predictions. In addition, we discuss the linear correlation
coefficient, which provides a descriptive measure of the strength of the linear relationship between the two
quantitative variables.

6.2 LINEAR EQUATION

The general form of a linear equation with one independent variable can be written as
y = a + bx
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where a and b are constants (fixed numbers), x is the independent variable, and y is the dependent variable.
The graph of a linear equation with one independent variable is a straight line, or simply a line. Also, any
non vertical line can be represented by such an equation.

Linear equations with one independent variable occur frequently in applications of mathematics to many
different fields, including the social sciences, engineering, and management as well as physical and
mathematical sciences.

For a linear equation y = a + bx, the number a is the y-value of the point of intersection of the line and
the y-axis. The number b measures the steepness of the line. b indicates how much the y-value changes
when the x-value increases by 1 unit. Figure 6.2(a) illustrates these relationships.

a

0,a

b units up
1 unit

increase

y = a + bx

x

y

Fig. 6.2 (a): (Graph of y = a + bx)

The numbers a and b have special names that reflect these geometric interpretations. For a linear equation
y = a + bx, the number a is called the y-intercept and the number b is called the slope.

The graph of the linear equation y = a + bx slopes upward if b > 0, slopes downward if b < 0, and is
horizontal if b = 0, as shown in Fig. 6.2(b).

O

y

y = a + bx

b > 0

O

y

y = a + bx

b < 0

O

y

y = a + bx

b = 0

Fig. 6.2(b): Graphical interpretation of slope

6.3 CURVE FITTING WITH A LINEAR EQUATION

Curve fitting is a procedure in which a mathematical formula (equation) is used to best fit a given set of data
points. The objective is to find a function that fits the data overall. Curve fitting is used when the values of
the data points have some error, or scatter and require a curve fit to the points. Curve fitting can be
accomplished with many types of functions and with polynomials of various orders.
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Curve fitting using a linear equation (first degree polynomial) is the process by which an equation of the
form

y = a + bx (6.1)
is used to best fit the given data points. This can be accomplished by finding the constants a and b that
give the smallest error when the data points are substituted in Eq. (6.1). If the data points consists of only
two points, the constants can be obtained such that Eq. (6.1) gives the exact values at the points. Figure 6.3
shows the straight line corresponding to the Eq. (6.1) and passing through the two points. When the data
has more than two points, the constants a and b are determined such that the line has the best fit overall as
shown in Fig. 6.4.

O x

y

O x

y

Fig. 6.3: Straight line connecting Fig. 6.4: A straight line passing
two points through many data points

The procedure for obtaining the constants a and b that give the best fit requires a definition of best fit and
an analytical procedure for deriving the constants a and b. The fitting between the given data points and an
approximating linear function is obtained by first computing the error, also called the residual, which is the
difference between a data point and the value of the approximating function, at each point. Figure 6.5 shows
a linear function (straight line) that is used for curve fitting n points.

y = a + bx

(x3,y3 )

(x1,y1)

e2

e1

x

en

(xn,yn)

O

f(x3)

f(x1)

f(xn)

Fig. 6.5: Curve-fitting points with a linear equation y = a + bx

Thus, the residual, e is the discrepancy between the true value of y and the approximating value, a + bx,
predicted by the linear equation.
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6.4 CRITERIA FOR A “BEST” FIT

A criterion that measures how well the approximating function fits the given data can be determined by
computing a total error E in terms of the residuals as

 =1 1
 = [ ( )]

n n

i i i
i i

E e y a bx
=

= − +∑ ∑ (6.2)

where n = total number of points.
However, this is an inadequate criterion, as illustrated in Fig. 6.6, which shows that E is zero since
e1 = –e4 and e2 = – e3.

e3

y

O

e4

e2

e1

Fig. 6.6: Straight line fit with E = 0

One way to remove the effect of the signs might be to minimise the sum of the absolute values of the
discrepancies:

1 1
| | | |

n n

i i i
i i

E e y a bx
= =

= = − −∑ ∑ (6.3)

Figure 6.7 shows why this criterion is also inadequate. For four points show, for the same set of points there
can be several functions that give the same total error. E is the same for the two approximating lines in
Fig. 6.7.

e1

e2

e3

e4

y

O x

Fig. 6.7: Two straight line fits with the same total error as per Eq. (6.3)
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A third strategy for fitting a best line is the minmax criterion. In this technique, the straight line is chosen
that minimises the maximum distance that an individual point falls from the line. Again as shown in Fig.6.8,
this technique gives undue influence to an outlier (a single point with a large error).

y

O
x

outlier

Fig. 6.8: Minimisation of the maximum error of any individual point

A method that overcomes the shortcomings of the aforementioned approaches is to minimise the sum of the
squares of the residuals:

2 2

1 1
( )

n n

r i i i
i i

S e y a bx
= =

= = − −∑ ∑ (6.4)

Equation (6.4) always gives a positive number of Sr (total error) and positive and negative residuals do not
cancel each other. This criterion (Eq.6.4) is called the least squares and has many advantages, including that
it gives a unique line for a given set of data.

Equation (6.4) can be used to determine the coefficients a and b in the linear function y = a + bx that
yield the smallest total error. This is accomplished by using a procedure called linear least-squares regression,
which is presented in the next section.

6.5 LINEAR LEAST-SQUARES REGRESSION

Linear least-squares regression is a method in which the coefficients a and b of a linear function y = a + bx
are determined such that the function has the best fit to a given set of data points. The best fit is defined as
the smallest possible total error that is computed by adding the squares of the residuals according to
Eq. (6.4).

For a given set of n data points (xi, yi), the overall error calculated by Eq. (6.4) is

2

1
[ ( )]

n

r i i
i

S y a bx
=

= − +∑ (6.5)

Since the values of xi and yi are known, Sr in Eq. (6.5) is a non-linear function of two variables a and b. This
function Sr has a minimum at the values of a and b where the partial derivatives of Sr with respect to each
variable is equal to zero.

Taking the partial derivatives and setting then equal to zero gives

1
2 ( ) 0

n
r

i i
i

S
y a bx

a =

∂
= − − − =

∂ ∑ (6.6)
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1
2 [( ) ] 0

n
r

i i i
i

S
y a bx x

b =

∂
= − − − =

∂ ∑ (6.7)

Equations (6.6) and (6.7) are a system to two linear equations for the two unknowns a and b, and can be
rewritten in the form

  
1 1

n n

i i
i i

na x b y
= =

 
+ = 

 
∑ ∑ (6.8)

        
2

1 1 1

n n n

i i i i
i i i

x a x b x y
= = =

   
+ =   

   
∑ ∑ ∑ (6.9)

Equations (6.8) and (6.9) are called the normal equations and can be solved simultaneously for

    
1 1 1

2
2

1 1

n n n

i i i i
i i i

n n

i i
i i

n x y x y
b

n x x

= = =

= =

   
−    

   =
 

−  
 

∑ ∑ ∑

∑ ∑
(6.10)

or     

1 1

1
2

12

1

n n

i in
i i

i i
i

n

in
i

i
i

x y
x y

n
b

x
x

n

= =

=

=

=

   
   
   −

=
 
 
 −

∑ ∑
∑

∑
∑

(6.11)

and     

2

1 1 1 1
2

2

1 1

n n n n

i i i i i
i i i i

n n

i i
i i

x y x y x
a

n x x

= = = =

= =

       
−       

       =
 

−  
 

∑ ∑ ∑ ∑

∑ ∑
(6.12)

or     a y bx= −

Since Eqs. (6.10) to (6.12) contain summations that are the same for a set of n points, they can also be written
as,

2 2 2( ) ( ) /xx i i iSS x x x x n= Σ − = Σ − Σ

( )( ) ( )( ) /xy i i i i i iSS x x y y x y x y n= Σ − − = Σ − Σ Σ

2 2 2( ) ( ) /yy i i iSS y y y y n= Σ − = Σ − Σ
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The regression equation for a set of n data points is

ŷ a bx= +

where
xy

xx

SS
b

SS
=

and
1

( )i ia y b x y bx
n

= Σ − Σ = −

6.6 LINEAR REGRESSION ANALYSIS

A regression model is a mathematical equation that describes the relationship between two or more variables.
A single regression model includes only two variables: one independent and one dependent. The relationship
between two variables in a regression analysis is expressed by a mathematical equation called a regression
equation or model. A regression equation that gives a straight-line relationship between two variables is
called a linear regression model; otherwise, it is called a non-linear regression model. Figures 6.9(a) and (b)
show a linear and a non-linear relationship between independent variable and the dependent variable.
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Independent variable
(b)(a)

O

Fig. 6.9: (a) Linear relationship, (b) Non-linear relationship

The equation of a linear relationship between two variables x and y is written as
y = a + bx (6.13)

where a gives the y-intercept and b represents the slope of the line.
In regression model, x is the independent variable and y is the dependent variable. The simple linear

regression model for population is written as
y = A + Bx (6.14)

Equation (6.14) is called a deterministic model. It gives an exact relationship between x and y. However, in
many instances the relationship between the variables is not exact. Therefore, the complete regression model
is then written as

yA + Bx + ∈ (6.15)
where ∈ is called the random error term. This regression model (Eq. (6.5)) is called a probabilistic model
(or a statistical relationship). The random error term ∈ is included in the model to take into consideration
of the following two phenomena:
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(a) Missing or omitted variables: The random error term ∈ is included to capture the effect of all the
missing or omitted variables that were not included in the model.

(b) Random variation: The random error term ∈ is included to capture the random variation.
In Eq. (6.15), A and B are the population parameters. The regression line obtained from Eq. (6.15) by using
the population data is called the population regression line. The values of A and B is the population
regression line is called the true values of the y-intercept and slope.

However, most often the population data is difficult to obtain. As a consequence, we almost always use
the sample data and use the model given by Eq. (6.15). The values of the y-intercept and slope calculated
from sample data on x and y are called the estimated values of A and B and are denoted by a and b.

The estimated regression model is then written as
ŷ a bx= + (6.16)

where ŷ  is the estimated or predicted value of y for a given value of x. Equation (6.16) is called the estimated
regression model. It gives the regression of y on x. A plot of paired observation is called a scatter diagram
as shown in Fig. 6.10.

O x

y

Fig. 6.10: Scatter diagram

To find the line that best fits the scatter of points, we minimise the error sum of squares, denoted by SSE,
which is given by

2 2ˆSSE ( )e y y= Σ = Σ − (6.17)

where     e = y – ŷ
The least squares method gives the values of a and b such that the sum of squared errors (SSE) is minimum.

For the least squares regression line ŷ  = a + bx from Eqs. (6.10) to (6.17), we have

    
xy

xx

SS
b

SS
=  and a y bx= − (6.18)

where                ( )( )
xy

x ySS xy
n

Σ Σ
= Σ −

2
2 ( )

xx
xSS x
n

Σ
= Σ −

2 2( ) ( ) /yySS y y y y n= Σ − = Σ − Σ (6.19)

The least squares regression line ŷ = a + bx is also called the regression of  y on x.
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6.6.1  MATLAB Functions: polyfit and polyval
MATLAB has a built-in function polyfit that fits a least-square nth-order polynomial to data. It can be
applied as in

>> p = polyfit (x, y, n)
where x and y are the vectors of the independent and the dependent variables, respectively, and n = the
order of the polynomial. The function returns a vector p containing the polynomial’s coefficients.

It  should be noted here that it represents the polynomial using decreasing powers of x as in the following
representation:

f (x) = p1xn + p2x n–1 + p3x n–2 + … + pnx + pn +1

Since a straight line is a first-order polynomial, polyfit (x, y,1) will return the slope and the intercept of the
best-fit straight line.

Another function, polyval can be used to compute a value using the coefficients.
It has the general format:

>> y = polyval (p, x)

where p = the polynomial coefficients and y = the best-fit value at x.

Example E6.1
Table E6.1 gives experimental data for force (N) and velocity (m/s) for an object suspended in a wind tunnel.

Table E6.1

Velocity, v(m/s) 10 20 30 40 50 60 70 80 
Force F(N) 24 68 378 552 608 1218 831 1452 

(a) use the linear least-squares regression to determine the coefficients a and b in the function
ŷ  = a + bx that best fits the data

(b) estimate the force when the velocity is 55 m/s.

Solution:
Here n = 8.

n x y x2 xy 
1 
2 
3 
4 
5 
6 
7 
8 

10 
20 
30 
40 
50 
60 
70 
80 

24 
68 

378 
552 
608 

1218 
831 

1452 

100 
400 
900 

1600 
2500 
3600 
4900 
6400 

240 
1360 

11340 
22080 
30400 
73080 
58170 

116160 
Σ 360 5131 20400 312830 

360
45

8
xx

n
Σ

= = =

5131
641.375

8
yy

n
Σ

= = =
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From Eq. (6.16), we have

     
xy

xx

SS
b

SS
=

where
( )( ) (360)(5131)

312830 81935
8xy

x ySS xy
n

Σ Σ
= Σ − = − =

and
2 2

2 ( ) (360)20400 4200
8xx

xSS x
n

Σ
= Σ − = − =

     
81935 19.5083
4200

xy

xx

SS
b

SS
= = =

From Eq. (6.17), we have

     641.375 (19.5083)(45) 236.50a y bx= − = − = −

Hence ŷ = –236.50 + 19.5083x

(b) The estimated value of the force when the velocity is 55 m/s, is given by

     ŷ  = a + bx = –236.50 + 19.5083(55) = 836.4583(N).

MATLAB Solution:
(a) >> x = [10 20 30 40 50 60 70 80];

>> y = [24 68 378 552 608 1218 831 1452];

>> a =polyfit (x, y, 1)

a =
19.5083 –236.5000

Hence, the slope is 19.5083 and the intercept is –236.50.
(b) The MATLAB function, polyval can be used to compute a value using the coefficients. Therefore,

>>y = polyval (a, 55)
y =

836.4583

Hence, the estimated value of the force when the velocity is 55 m/s is 836.4583(N).

6.7 INTERPRETATION OF a AND b

When b is positive, an increment in x will lead to an increase in y and a decrease in x will lead to a decrease
in y. That is, when b is positive, the movements in x and y are in the same direction. Such a relationship
between x and y is called a positive linear relationship. The regression line slopes upward from left to
right.

Similarly, if the value of b is negative, an increase in x will cause a decrease in y and a decrease in x will
cause an increase in y. The changes in x and y are in opposite directions. Such a relationship between x and
y is called a negative linear relationship. The regression line slopes downward from left to right. Figure 6.11
shows these two relationships.
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O x

y

b > 0

O x

y

b < 0

                (a) Positive linear relationship (b > 0)    (b) Negative linear relationship (b < 0)

Fig. 6.11: Positive and negative relationship between x and y

Assumptions in the Regression Model
The linear regression analysis is based on the following assumptions:

1. The random error term ∈ has a mean equal to zero for each x.
2. The errors associated with different observations are independent.
3. For any given x, the distribution of errors is normal.
4. The distribution of population errors for each x has the same (constant) standard deviation, which

is denoted by σe as shown in Fig.6.12 (a) and (b).

E(ε) = 0

Normal distribution
with (constant)
standard deviation σe

Population
regression line

x

y
x

(a)

(b)

Fig. 6.12: (a) Assumptions in the regression model, (b) Distribution on the regression line
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6.8 STANDARD DEVIATION OF RANDOM ERRORS

The standard deviation σe measures the spread of the errors around the regression line as shown in
Fig. 6.12 (b). The standard deviation of errors is calculated using

SSE
2es

n
=

−

where SSE = 2ˆ( )y yΣ −

or         
2

yy xy
e

SS b SS
s

n
−

=
−

(6.20)

where            
2

2 2 ( )( )yy
ySS y y y
n

Σ
= Σ − = Σ −

( )( )
xy

x ySS xy
n

Σ Σ
= Σ − (6.21)

In Eq. (6.20), (n – 2) represents the degrees of freedom for the regression model. The reason for df = n – 2
is that we lose one degree of freedom to calculate x  and one for y .

6.9 COEFFICIENT OF DETERMINATION

The coefficient of determination, denoted by r2, represents the proportion of the total sum of squares that
is explained by the use of the regression model. The computational formula for r2 is given by

2 xy

yy

SS
r b

SS
=      0 ≤ r2 ≤ 1 (6.22)

The total sum of squares denoted by SST is the total variation in the observed values of the response
variable

             SST = 
2

2 2 ( )( )yy
ySS y y y
n

Σ
= Σ − = Σ − (6.23)

which is the same formula we use for SSyy.
The regression sum of squares, denoted by SSR, is the variation in the observed values of the response

variable explained by the regression:

SSE = 2ˆ( )y yΣ −
SSR = SST – SSE

or SST = SSR + SSE (6.24)
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The ratio of SSR to SST gives the coefficient of determination. That is,

     2 SSR SST SSE SSE
1

SST SST SST
r −

= = = − (6.25)

This formula shows that we can also interpret the coefficient of determination as the percentage reduction
obtained in the total squared error by using the regression equation instead of the mean, y , to predict the
observed values of the response variable.

The coefficient of determination, denoted by r2, represents the portion of SST that is explained by the
use of the regression model. Hence,

2 xy

yy

bSS
r

SS
= (6.26)

and   0 ≤ r2 ≤ 1
The value of r2 is the proportion of the variation in y that is explained by the linear relationship between x
and y. The coefficient of determination is the amount of the variation in y that is explained by the regression
line. It is computed as

2
2

2
ˆExplained variation ( )

Total variation ( )
y yr
y y

Σ −
= =

Σ −

The coefficient of determination, r2, always lies between 0 and 1. A value of r2 near 0 suggests that the
regression equation is not very useful for making predictions, whereas a value of r2 near 1 suggests that the
regression equation is quite useful for making predictions.

Example E6.2
For the data of Example E6.1, calculate the

(a) standard deviation of errors, se

(b) error sum of squares, SSE
(c) total sum of squares, SST
(d) regression sum of squares, SSR
(e) the coefficient of determination, r2.

Solution:
Referring to Table E6.2, we have

n = 8, Σx = 360, Σy = 5131, Σx2 = 20400, Σxy = 312830, Σy2 = 5104841

  
360

45
8

xx
n

Σ
= = =

  
5131

641.375
8

yy
n

Σ
= = =

            
( )( ) (360)(5131)

312830 81935
8xy

x ySS xy
n

Σ Σ
= Σ − = − =
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2 2
2 ( ) (360)20400 4200

8xx
xSS x
n

Σ
= Σ − = − =

2 2
2 ( ) (5131)5104841 1813945.875

8yy
ySS y
n

Σ
= Σ − = − =

 

81935 19.5083
4200
641.375 19.5083

xy

xx

SS
b

SS
a y bx x

= = =

= − = −

(a) The standard deviation of errors, se

1813945.875 19.5083(81935) 189.5304
2 8 2

yy xy
e

SS b SS
s

n
− −= = =
− −

(b) The error sum of squares, SSE

2ˆSSE ( ) 215530.5833y y= Σ − =

(c) Total sum of squares, SST

              SST = SSyy = 1813945.875

(d) The regression sum of squares, SSR

      SSR = SST – SSE = 1813946.875 – 215530.5833 = 1598415.2917

(e) The coefficient of determination, r2

               
2 (19.5083)(81935) 0.8812

1813945.875
xy

yy

b SS
r

SS
= = =

6.10  LINEAR CORRELATION

Linear correlation coefficient is a measure of the relationship between two variables. Linear correlation
coefficient measures how closely the points in a scatter diagram are spread around the regression line. The
correlation coefficient calculated for the population is denoted by ρ and the one calculated for sample data
is denoted by r. The linear correlation coefficient r measures the strength of the linear relationship between
the paired x-and y-quantitative values in a sample. The linear correlation coefficient is sometimes referred to
as the Pearson product moment correlation coefficient in honour of Karl Pearson (1857–1936), who originally
developed it.  Square of the correlation coefficient is equal to the coefficient of determination. The value of
the correlation coefficient always lies in the range –1 to 1. Hence –1 ≤ ρ ≤ 1 and –1 ≤ r ≤ 1.

If r = 1, it refers to a case of perfect positive linear correlation and all points in the scatter diagram lie
on a straight line that slopes upward from left to right, as shown in Fig. 6.13. If r = –1, the correlation is said
to be perfect negative linear correlation and all points in the scatter diagram fall on a straight line that
slopes downward from left to right, as shown in Fig. 6.13(b).
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When there is no linear correlation between the two variables and r is close to 0. Also, in this case,
all the points are scattered all over the diagram as shown in Fig. 6.13(c).

O
x

y

r = 1

O
x

y

O
x

y

(a) (b) (c)

r = –1 r = 0

Fig. 6.13: Linear correlation between two variables
(a) Perfect positive linear correlation, r = 1,
(b) Perfect negative linear correlation, r = –1
(c) No linear correlation, r = 0

Two variables are said to have a strong positive linear correlation when the correlation is positive and
close to 1. If the correlation between the two variables is positive but close to zero, then the variables have
a weak positive linear correlation. Similarly, when the correlation between two variables is negative and
close to –1, then the variables are said to have a strong negative linear correlation. A weak negative linear
correlation exists when the correlation between the variables is negative but close to zero. The above four
cases are shown in Figs. 6.14 (a) to (d). Figure 6.15 shows the various degrees of linear correlation.

x

y

x

y

(a) Strong positive correlation
(r close to 1)

(a) Weak positive linear correlation
(r is positive but close to zero)

x

y

x

y

(c) Strong negative linear correlation
(r close to –1)

(d) Weak negative linear correlation
(r is negative and close to zero)

Fig. 6.14: Linear correlation between variables
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x

y

(a) Perfect positive linear correlation
r = 1

x

y

(b) Strong positive linear correlation
r = 0.92

x

y

(c) Weak positive linear correlation
r = 0.42

x

y

(d) Perfect negative linear correlation
r = 1

x

y

(e) Strong negative linear correlation
r = 0.92

x

y

(f) Weak negative linear correlation
r = 0.42

x

y

(g) No linear correlation (linearly uncorrelated)
r = 0

Fig. 6.15: Various degrees of linear correlation

The simple linear correlation, denoted by r, measures the strength of the linear relationship between two
variables for a sample and is calculated as

xy

xx yy

SS
r

SS SS
= (6.27)

It should be noted here that r and b calculated for the same sample will always have the same sign.

Properties of the Linear Correlation Coefficient r
1. The value of r is always between –1 and +1 inclusive. That is, –1 ≤ r ≤ 1.
2. The values of r do not change if all values of either variable are converted to a different scale.
3. The value of r is not affected by the choice of x or y. Interchange all x- and y-values and the value of

r will not change.
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4. ‘r’ measures the strength of a linear relationship. The magnitude of r indicates the strength of the
linear relationship. A value of r close to –1 or to 1 indicates a strong linear relationship between the
variables and that the variable x is a good linear predictor of the variable y. That is, the regression
equation is extremely useful for making predictions. A value of r near 0 indicates at most a weak linear
relationship between the variables and that the variable x is a poor linear predictor of the variable y.
That is, the regression equation is either useless or not very useful for making predictions. It is not
designed to measure the strength of a relationship that is not linear.

5. The sign of r suggests the type of linear relationship. A positive value of r suggests that the variables
are positively correlated, meaning that y tends to increase linearly as x increases, with the tendency
being greater the closer that r is to 1. A negative value of r suggests that the variables are negatively
linearly correlated, meaning that y tends to decrease linearly as x increases, with the tendency being
greater the closer that r is to –1.

6. r reflects the slope of the scatter plot. The linear correlation coefficient is positive when the scatter
plot shows a positive slope and is negative when the scatter plot shows a negative slope.

7. The sign of r and the sign of the slope of the regression line are identical. If r is positive, so is the
slope of the regression line. That is, the regression line slopes upward. If r is negative, so are the
slope of the regression line and the regression line slopes downward.

Explained and Unexplained Variation
The total variation is defined as 2( )y yΣ −  i.e., the sum of the squares of the deviations of the values of y
from the mean y . This can be written as

2 2 2ˆ ˆ( ) ( ) ( )y y y y y yΣ − = Σ − + Σ − (6.28)

where ŷ  is the value of y for given values of x as estimated from ŷ = a + bx, a measure of the scatter about
the regression line of y on x.

The first term on the right side of Eq. (6.28) is called the unexplained variation while the second term
is called the explained variation. The deviations ŷ y−  have a definite pattern while the deviations y – ŷ
behave in a random or unpredictable manner. Similar results hold true for the variable x.

The ratio of the explained variation to the total variation is called the coefficient of determination. If
there is zero explained variation i.e., the total variation is all unexplained, then this ratio is zero. If there is
zero unexplained variation i.e., the total variation is all explained, the ratio is one. In all other cases, the ratio
lies between zero and one. The ratio is always non-negative.

The quantity, r, is called the coefficient of correlation, and it is given by

2

2

ˆExplained variation ( )
Total variation ( )

y yr
y y

Σ −= ± = ±
Σ − (6.29)

r varies between –1 and +1. The signs ± are used for positive linear correlation and negative error correlation
respectively. ‘r’ is a dimensionless quantity. The coefficient of determination equals the square of the linear
correlation coefficient.
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Example E6.3
Determine the correlation coefficient for the data given in Example E6.1.
Solution:
Refer to the solutions obtained earlier for Examples E6.1 and E6.2. We have

       SSxy = 81935,  SSxx = 4200  and  SSyy = 1813945.875

Hence,           
81935 0.9387

(4200)(1813945.875)
xy

xx yy

SS
r

SS SS
= = =

6.11 LINEARISATION OF NON-LINEAR RELATIONSHIPS

Linear regression provides a powerful technique for fitting a best line to data. There exists many situations
in science and engineering that show the relationship between the quantities that are being considered is
not linear. There are several examples of non-linear functions used for curve fitting. A few of them were
described in Table 6.1.

Non-linear regression techniques are available to fit these equations in Table 6.1 to data directly. A
simpler alternative is to use analytical manipulations to transform the equations into a linear form. Then
linear regression can be used to fit the equations to data.

For instance, y = bxm can be linearised by taking its natural logarithm to give

      n y n n= +� � �b m x (6.30)

A plot of n� y  versus n� x will give a straight line with a slope of m and an intercept of n� b as shown in
Fig. 6.16.

O

n y�

Intercept = nb�

Slope = m

n x�

Fig. 6.16: Linearised version of the exponential equation y = bxm

Many other non-linear equations can be transformed into linear form in a similar way. Table 6.2 lists several
such equations.
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Table 6.2

No. Non-linear 
equation Linear form 

Relationship to 
ˆ ˆy a bx= +  

Values for least 
squares regression 

1. y = cxm �n(y) = m�n(x) + �n(c) ŷ = �n(y), x̂ = �n(x) 

b = m, a = �n(c) 

�n(xi) and �n(yi) 

2. y = c emx �n(y) = mx + �n(c) ŷ = �n(y), x̂ = x 

b = m, a = �n(c) 

xi and �n(yi) 

3. y = c 10mx log(y) = mx + log c ŷ = log(y), x̂ = x 
b = m, a = log(c) 

xi and �n(yi) 

4. 1y
mx c

=
+

 1 mx c
y

= +  1ŷ
y

= , x̂ = x 

b = m, a = c 

xi and 
i

1
y

 

5. mxy
c x

=
+

 1 c 1
y mx m

= +  1ŷ
y

= , 1x̂
x

=  

cb
m

= , 1a
m

=  

i

1
x

 and 
i

1
y

 

6. xyc = d  
Gas equation 

1 1log y log d log x
c c

= −  
ŷ log y= , x̂ log x=  

1a logd
c

= , 1b
c

= −  

log xi and log yi 

7. y = cdx log y = log c + x log d ŷ log y− , x̂ x=  
a = log c, b = log d 

xi and log yi 

8. y c d x= +  ˆy c dx= +  

where x̂ x=  
ŷ y=  and x̂ x=  
a = c and b = d 

ix and yi 

The curves in Figure 6.17 may be used as guides to some of the simpler variable transformations.

y = cue box

y = cam

1y =
c + mx

y

c

a

x

y = c + d x

a

x

y
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y = a + bx2

y

a

x

y = a + b[log(x)]

y

a

x

y = a + box + cx2

log(y) = a + box +cx2

a

x

y

y = a + box + cx2+ dx3

log(y) = a + box + cx2+dx3

y

a

x

Fig. 6.17: Non-linear data curves

Example E6.4
Fit y = cxm (power function) to the data in Example E6.1 using a logarithmic transformation.

Solution:
The data can be set up in tabular form as shown in Table E6.4.

Table E6.4

i  xi yi log xi log yi (log xi)2 (log xi)(log yi) 
1 
2 
3 
4 
5 
6 
7 
8 

10 
20 
30 
40 
50 
60 
70 
80 

24 
68 

378 
552 
608 

1218 
831 

1452 

1.0000 
1.3010 
1.4771 
1.6021 
1.6990 
1.7782 
1.8451 
1.9031 

1.3802 
1.8325 
2.5775 
2.7419 
2.7839 
3.0856 
2.9196 
3.1620 

1.0000 
1.6927 
2.1819 
2.5666 
2.8865 
3.1618 
3.4044 
3.6218 

1.3802 
2.3841 
3.8073 
4.3928 
4.7298 
5.4867 
5.3870 
6.0175 

Σ 360 5131 12.606 20.483 20.516 33.585 

The means are computed as

log 12.606
1.5757

8
xx

n
Σ

= = =

log 20.483
2.5604

8
yy

n
Σ

= = =
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The slope and the intercept are then calculated using Eqs. (6.13), (6.14), (6.15) and (6.16).

2 2 2
(log )(log ) ( log )( log ) 8(33.585) (12.606)(20.483) 2.0055

log ( log ) 8(20.516) (12.606)
Σ − Σ Σ −

= = == =
Σ − Σ −

xy i i i i

xx i i

SS n x y x y
b

SS n x x

2.5604 2.0055(1.5757) 0.5997a y bx= − = − = −

The least-square fit is
log y = – 0.5997 + 2.0055 log x

The fit along with the data is shown in Fig. E6.8.
Transforming to the original coordinates, we have

c = 10–(0.5997) = 0.2514  and  m = 2.0055
Hence the least-squares fit is

y = 0.2514 x2.0055

6.12 POLYNOMIAL REGRESSION

The least-squares procedure described in earlier sections can be readily extended to fit the data to a higher
order polynomial. Consider a second-order polynomial or quadratic:

y = a + bx + cx2 + e (6.31)
The sum of the squares of the residuals is

2 2

1
( )

n

r i i i
i

S y a bx cx
=

= − − −∑ (6.32)

To generate the least-squares fit, we take the first derivative of Eq. (6.32) with respect to each of the unknown
coefficients of the polynomial.

2

1
2 ( )

n
r

i i i
i

S
y a bx cx

a =

∂
= − − − −

∂ ∑

2

1
2 ( )

n
r

i i i i
i

S
x y a bx cx

b =

∂
= − − − −

∂ ∑ (6.33)

2 2

1
2 ( )

n
r

i i i i
i

S
x y a bx cx

c =

∂
= − − − −

∂ ∑

Equations (6.33) are set equal to zero and rearranged to obtain the following set of normal equations:

2

1 1 1

n n n

i i i
i i i

na x b x c y
= = =

   
+ + =      

∑ ∑ ∑

         
2 3

1 1 1 1

n n n n

i i i i i
i i i i

x a x b x c x y
= = = =

     
+ + =          

∑ ∑ ∑ ∑ (6.34)
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2 3 4 2

1 1 1 1

n n n n

i i i i i
i i i i

x a x b x c x y
= = = =

     
+ + =          

∑ ∑ ∑ ∑
Equations (6.34) are all linear equations in three unknowns: a, b and c. These coefficients a, b and c can be
determined directly from the observed data. The above procedure can be easily extended to an mth order
polynomial as in

y = a + bx + cx2 + dx3 + … + zxm + e (6.35)
Hence, the determination of the coefficients of an mth order polynomial is equivalent to solving a system of
(m + 1) simultaneous linear equations.

The standard error in this case is given by

/ ( 1)
r

y x
S

S
n m

=
− + (6.36)

The coefficient of determination, r2, can be computed for a polynomial regression with Eq. (6.25).

Example E6.5
Fit a second-order polynomial to the data in Table E6.5 and determine the total standard deviation, the standard
error of the estimate and the correlation coefficient.

Table E6.5

xi 0 1 2 3 4 5 
yi 2 8 14 27 41 61 

Solution:
Table E6.5(a) and (b) shows the computations for an error analysis of the quadratic least-squares fit.

Table E6.5(a)

 xi yi xiyi 2
ix  2

i ix y  3
ix  4

ix  
 0 

1 
2 
3 
4 
5 

2 
8 

14 
27 
41 
61 

0 
8 

28 
81 

164 
305 

0 
1 
4 
9 

16 
25 

0 
8 

56 
243 
656 

1525 

0 
1 
8 

27 
64 

125 

0 
1 

16 
81 

256 
625 

Σ 15 153 586 55 2488 225 979 

Table E6.5(b)

 xi yi 2
i(y y)−  2 2

i i i(y a bx cx )− − −  
 0 

1 
2 
3 
4 
5 

2 
8 

14 
27 
41 
61 

 552.3 
 306.3 
 132.3 
 2.3 
 240.3 
 1260.3 

0.2500 
1.3391 
0.6862 
0.2951 
0.5300 
0.1282 

Σ 15 153  2493.50 3.2286 
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Hence, the simultaneous linear equations are

6 15 55 153
15 55 225 586
55 225 979 2488

a
b
c

     
     =    
         

Refer to Appendix-C (Cramer’s rule for solving a system of linear algebraic equations).

Here
6 15 55

15 55 225 3920
55 225 979

= =D

1

153 15 55
586 55 225 9800

2488 225 979
= =D

2

6 153 55
15 586 225 9884
55 2488 979

= =D

3

6 15 153
15 55 586 7140
55 225 2488

= =D

Therefore, 1 9800
2.5

3920
D

a
D

= = =

2 9884
2.5214

3920
D

b
D

= = =

 3 7140
1.8214

3920
D

c
D

= = =

These equations can also be solved to determine the coefficients using  MATLAB:
These equations can be solved to determine the coefficients. Here, we use MATLAB.

>>A = [6  15  55;  15  55  225;  55  225  979];
>>b = [153;  586;   2488];

x = A/b
x = 2.5   2.5214   1.8214

or a = 2.5, b = 2.5214, and c = 1.8214.

Hence, the least squares quadratic equation for this problem is
y = 2.5 + 2.5214x + 1.8214x2
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The standard error of the estimate is based on the regression polynomial given by Eq. (6.36), where
2ˆ( )rS y y= Σ − . Here, we have

/
3.229 1.0374

( 1) 6 (2 1)
r

y x
S

S
n m

= = =
− + − +

The coefficient of determination is given by Eq. (6.25)

   
2 2493.5 3.229

0.9987
2493.5

t r

t

S S
r

S
− −

= = =

where    2( )t iS y y= Σ −

and    2ˆ( )r iS y y= Σ −

Therefore, the correlation coefficient is 0.9987 0.99935r = = . These results show that 99.935% of the
original uncertainty has been explained by the model.

6.13  QUANTIFICATION OF ERROR OF LINEAR REGRESSION

Noting that the sum of the squares is defined as

  
2

1, 2,
1

( )
n

r i i i
i

S y a bx cx
=

= − − −∑ (6.37)

Equations (6.46) is similar to the equation

2

1
( )

n

t i
i

S y y
=

= −∑ (6.38)

In Eq. (6.38), the squares of the residual represented the squares of the discrepancy between the data and
a single estimate of the measure of central tendency (the mean). The squares of the residual represent the
squares of the vertical distance between the data and another measure of central tendency (the straight
line). If the spread of the points around the line is of similar magnitude along the entire range of data and the
distribution of these points about the line is normal, then the least-squares regression will provide the best
estimates of a and b. This is known as the maximum likelihood principle. Also, if these criteria are met, a
standard deviation for the regression line can be determined as

/ 2
r

y x
SS

n
=

−
(6.39)

where Sy/x is called the standard error of the estimate.
The difference between the St and Sr quantifies the improvement or error reduction due to describing

the data in terms of a straight line rather than as an average value. The difference is therefore normalised to
St to give
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2 t r

t

S S
r

S
−

= (6.40)

where r2 is called the coefficient of determination and r is the correlation coefficient. For a perfect fit,
Sr = 0, and r2 = 1, indicating that the line explains 100% of the variability of the data. For r2 = 0, Sr = St and
the fit represents no improvement. An alternative formulation for r is given by

             
1 1 1 1 1 1

2 2 2 2
2 2 2 2

1 1 1 1 1 1 1 1

( ) ( )
n n n n n n

i i i i i i i i
i i i i i i

n n n n n n n n

i i i i i i i i
i i i i i i i i

n x y x y x y x y
r

n x x n y y x x y y

= = = = = =

= = = = = = = =

       
− −              

= =
                  − − − −                         

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑


 
 



(6.41)

Example E6.6
Determine (a) the total standard deviation, (b) the standard error of the estimate and (c) the correlation
coefficient for the data in  Example E6.1.

Solution:
Table E6.6 shows the data and summation to compute the goodness-of-fit statistics. From Example E6.1, we
have a = –236.50, b = 19.5083, x = 45 and y = 641.375.

Table E6.6

i  xi yi a + bxi 2
i(y y)−  (yi – a – bxi)2 

1 
2 
3 
4 
5 
6 
7 
8 

10 
20 
30 
40 
50 
60 
70 
80 

24 
68 

378 
552 
608 

1218 
831 

1452 

–41.4167 
153.6667 
348.7500 
543.8333 
738.9167 
934.0000 

1129.0833 
1324.6667 

381151.8906 
328758.8906 
69366.3906 

7987.8906 
1113.8906 

332496.3906 
35957.6406 

657112.8906 

4279.3403 
7338.7778 
855.5625 

66.6944 
17139.1736 
80656.0000 
88853.6736 
16341.3611 

Σ 360 5131 5131 1813945.875 215530.583 

The standard deviation is given by

1
t

y
S

S
n

=
−

where St is the total sum of the squares of the residuals between the data points and the mean.

Hence
1813945.875 476.1746

8 1yS = =
−
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The standard error of the estimate is

/
215530.583 164.1320

2 8 2
r

y x
SS

n
= = =

− −

Since Sy/x < Sy, the linear regression model has merit.
The coefficient of determination r2 is given by Eq. (6.41)

2 1813945.875 215530.583
0.8812

1813945.875
t r

t

S S
r

S
− −

= = =

or 0.8812 0.9387r = =

These results indicate that 93.87% of the original uncertainty has been explained by the linear model.

6.14 MULTIPLE LINEAR REGRESSION

Consider a function y which is a linear function of x1 and x2 as in
     y = a + bx1 + cx2 + e (6.42)

Equation (6.42) is quite useful in fitting experimental data where variable being studied is often a function of
two other variables. For this two-dimensional case, the regression line becomes a plane. The best values of
the coefficients are obtained by formulating the sum of the squares of the residuals:

   
2

1, 2,
1

( )
n

r i i i
i

S y a bx cx
=

= − − −∑ (6.43)

Differentiating Eq. (6.43) with respect to each of the unknown coefficients, we get

 1, 2,
1

2 ( )
n

r
i i i

i

S
y a bx cx

a =

∂
= − − − −

∂ ∑

 1, 1, 2,
1

2 ( )
n

r
i i i i

i

S
x y a bx cx

b =

∂
= − − − −

∂ ∑

 2, 1, 2,
1

2 ( )
n

r
i i i i

i

S
x y a bx cx

c =

∂
= − − − −

∂ ∑
The coefficient giving the minimum sum of the squares of the residuals are obtained by setting the partial
derivatives equal to zero and expressing the result in matrix form as

1, 2,
1 1 1

2
1, 1, 1, 2, 1,

1 1 1 1

2
2, 1, 2, 2, 2,

1 1 1 1

n n n

i i i
i i i

n n n n

i i i i i i
i i i i
n n n n

i i i i i i
i i i i

n x x ya

x x x x b x y

cx x x x x y

= = =

= = = =

= = = =

   
    
    
         =                          

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

(6.44)
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Example E6.7
The following data was generated from the equation y = 7 + 3x1 + 4x2. Use multiple linear regressions to fit
this data.

x1 0 1 2 1 4 7 2 0 
x2 0 2 1 3 5 1 3 4 
y 7 18 17 22 39 32 25 23 

Solution:
Table E6.7(a)

 yi x1,i x2,i 2
1,ix  x1,i x2,i 2

2,ix  x2,i yi x1,i yi 

 7 
18 
17 
22 
39 
32 
25 
23 

0 
1 
2 
1 
4 
7 
2 
0 

0 
2 
1 
3 
5 
1 
3 
4 

0 
1 
4 
1 

16 
49 

4 
0 

0 
2 
2 
3 

20 
7 
6 
0 

0 
4 
1 
9 

25 
1 
9 

16 

0 
36 
17 
66 

195 
32 
75 
92 

0 
18 
34 
22 

156 
224 

50 
0 

Σ 183 17 19 75 40 65 513 504 

The summations required for Eq. (6.44) are computed in Table E6.7(a) as shown above. Substituting these
values in Eq. (6.44), we get

8 17 19 183
17 75 40 504
19 40 65 513

a
b
c

     
     =    
         

which can be solved  using MATLAB.
Refer to Appendix-C (Cramer’s rule for solving a system of linear algebraic equations).

8 17 19
17 75 40 6180
19 40 65

D = =

1

183 17 19
504 75 40 43260
513 40 65

D = =

2

8 183 19
17 504 40 18540
19 513 65

D = =

3

8 17 183
17 75 504 24720
19 40 513

D = =
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1

2

3

43260
7

6180
18540 3
6180

24720 4
6180

D
a

D
Db
D
D

c
D

= = =

= = =

= = =

MATLAB Program:
>>A = [8  17   19;  17   75   40;   19   40   65];
>>B = [183;   504;   513];
    x = A/B
    x = 7;b = 3   and  c = 4

or     a =7, b = 3, and c = 4.

which is consistent with the original equation from which the data was derived.

6.15 WEIGHTED LEAST SQUARES METHOD

Referring to the sections 6.3 and 6.4 and assigning weights wi to each error, ei (i = 1, 2, …, n) in Eq. (6.4)
such that Σwi = 1.

Equation (6.5) can be written as

  
2

1
[ ( )]

n

r i i i
i

S w y a bx
=

= − +∑ (6.45)

For Sr to be a minimum, we have

0rS
a

∂
=

∂
 and 0rS

b
∂

=
∂

(6.46)

We obtain the normal equations as

       i i i ia b w x w y+ Σ = Σ (6.47)

             2
i i i i i i ia w x b w x w x yΣ + Σ = Σ (6.48)

The solution of Eqs. (6.47) and (6.48) gives the values for a and b. These values give the minimum of Sr with
respect to the weight wi.

Similarly, for a parabolic equation, we need to minimise

  2 2[ ( )]r i i i iS w y a bx cx= Σ − + + (6.49)

where                 Σwi = 1.
For Sr to be minimum, we have

 0, 0 and 0r r rS S S
a b c

∂ ∂ ∂
= = =

∂ ∂ ∂
(6.50)
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On simplification, we obtain the following normal equations to determine a, b and c.

         2
i i i i i ia b w x c w x w y+ Σ + Σ = Σ (6.51)

2 3
i i i i i i i i ia w x b w x c w x w x yΣ + Σ + Σ = Σ (6.52)

2 3 4
i i i i i i i i ia w x b w x c w x w x yΣ + Σ + Σ = Σ (6.53)

6.16 ORTHOGONAL POLYNOMIALS AND LEAST SQUARES APPROXIMATION

The previous sections considered the problem of least squares approximation to fit a collections of data.
This method is also applicable for continuous data.

6.17 LEAST SQUARES METHOD FOR CONTINUOUS DATA

Let y = f (x) be a continuous function on [a, b] and it is to be approximated by the nth degree polynomial.

      y = a0 + a1x + a2x2 + … + anxn (6.54)

Here the sum of the squares of residuals S is given by

     2 2
0 2 ...( )[ ( )]

b n
na

S w x y a x a x a x dx= − + + +∫ (6.55)

where w(x) is a suitable weight function.
The necessary conditions for minimum S are given by

 
0 1

.... 0
n

S S S
a a a

∂ ∂ ∂
= = = =

∂ ∂ ∂ (6.56)

Equation (6.56) gives the normal equations as

   2
0 1 2 ...2 ( )[ ( )] 0

b n
na

w x y a a x a x a x dx− − + + + + =∫

 2
0 1 2 ...2 ( )[ ( )] 0

b n
na

w x y a a x a x a x x dx− − + + + + =∫

         
2 2

0 1 2 ...2 ( )[ ( )] 0
b n

na
w x y a a x a x a x x dx− − + + + + =∫

� �

         2
0 1 2 ...2 ( )[ ( )] 0

b n n
na

w x y a a x a x a x x dx− − + + + + =∫ (6.57)

After simplification these equations reduce to

0 1 ...( ) ( ) ( ) ( )
b b b bn

na a a a
a w x dx a xw x dx a x w x dx w x y dx+ + + =∫ ∫ ∫ ∫

         2 1
0 1 ...( ) ( ) ( ) ( )

b b b bn
na a a a

a xw x dx a x w x dx a x w x dx w x xy dx++ + + =∫ ∫ ∫ ∫
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2 3 2 2

0 1 ...( ) ( ) ( ) ( )
b b b bn

na a a a
a x w x dx a x w x dx a x w x dx w x x y dx++ + + =∫ ∫ ∫ ∫

� �

      1 2
0 1 ...( ) ( ) ( ) ( )

b b b bn n n n
na a a a

a x w x dx a x w x dx a x w x dx w x x y dx++ + + =∫ ∫ ∫ ∫ (6.58)

Since w(x) and y = f (x) are known, Eq. (6.58) forms a system of linear equations with (n + 1) unknowns a0,
a1, …., an. This system of equations possesses a unique solution. If

a0 = *
0a , a1 = *

1a , …, an = *
na

is the solution for a0, a1, …., an then the approximate polynomial is given by

* * * 2 *
0 1 2 ... n

ny a a x a x a x= + + + +

Example E6.8
Construct a least-squares quadrate approximation to the function f (x) = sin πx on [0, 1].
Solution:
The normal equations for P2(x) = a2x2 + a1x + a0 are

1 1 1 12
0 1 20 0 0 0

1 sina dx a x dx a x dx x dx+ + = π∫ ∫ ∫ ∫ (E.1)

             
1 1 1 12 3

0 1 20 0 0 0
sina x dx a x dx a x dx x x dx+ + = π∫ ∫ ∫ ∫ (E.2)

           
1 1 1 12 3 3 2

0 1 20 0 0 0
sina x dx a x dx a x dx x x dx+ + = π∫ ∫ ∫ ∫ (E.3)

Performing the integration gives

     0 1 2
1 1 2
2 3

a a a+ + =
π

(E.4)

   0 1 2
1 1 1 1
2 3 4

a a a+ + =
π

(E.5)

   
2

0 1 2 3
1 1 1 4
3 4 5

a a a π −+ + =
π

(E.6)

Equations (E.4), (E.5) and (E.6)in three unknowns can be solved to obtain
2

0 3
12 120 0.050465a π −= ≈ −

π

and
2

1 2 3
720 60 4.12251a a − π= − = ≈

π

Consequently, the least squares polynomial approximation of degree 2 for f(x) = sin πx on [0, 1] is
P2(x) = – 4.12251x2 + 4.12251x – 0.050465.
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6.18 APPROXIMATION USING ORTHOGONAL POLYNOMIALS

In section 6.19, a function is approximated as a polynomial containing the terms 1, x, x2, .…, xn. These terms
are called base functions, since, any function or even discrete data are approximated based on these functions.

Here, we assume that the base functions are some orthogonal polynomials f 0(x), f1(x), …., fn(x). Let the
given function be approximated as

  y = a0 f0(x) + a1 f1(x) + … + an fn(x) (6.59)

where f i(x) is a polynomial in x of degree i. Then the residue is given by

 2
0 0 1 1

...( )[ { ( ) ( ) ( )}]
b

n na
S w x y a f x a f x a f x dx= − + + +∫ (6.60)

For minimum S, the conditions are given by

0 1
0, 0,...., 0

n

S S S
a a a

∂ ∂ ∂
= = =

∂ ∂ ∂ (6.61)

Equations (6.61) yields the following normal equations:

0 0 1 1 0...2 ( )[ { ( ) ( ) ( )}] ( ) 0
b

n na
w x y a f x a f x a f x f x dx− − + + + =∫

0 0 1 1 1...2 ( )[ { ( ) ( ) ( )}] ( ) 0
b

n na
w x y a f x a f x a f x f x dx− − + + + =∫

� �

0 0 1 1 ...2 ( )[ { ( ) ( ) ( )}] ( ) 0
b

n n na
w x y a f x a f x a f x f x dx− − + + + =∫ (6.62)

After simplification, the ith equation can be written as

0 0 1 1 ...( ) ( ) ( ) ( ) ( ) ( )
b b

i ia a
a w x f x f x dx a w x f x f x dx+ +∫ ∫

2 ...( ) ( ) ( ) ( ) ( ) ( ) ( )
b b b

i i n n i ia a a
a w x f x dx a w x f x f x dx w x y f x dx+ + + =∫ ∫ ∫ (6.63)

i = 0, 1, 2, …., n.

A set of polynomial {f0(x), f1(x), …., fn(x)} is said to be orthogonal with respect to the weight function w(x)
if

2

0, if
( ) ( ) ( )

( ) ( ) , if
b

ai ja
ib

i j
f x f x w x dx

f x w x dx i j

≠= 
=

∫ ∫ (6.64)

Using Eq. (6.64), Eq. (6.63) can be written as

2( ) ( ) ( ) ( )
b b

i i ia a
a w x f x dx w x f x dx=∫ ∫ i = 0, 1, 2, …., n
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Hence,
2

( ) ( )
,

( ) ( )

b
ia

i b
ia

w x y f x dx
a

w x f x dx
=
∫
∫

         i = 0, 1, 2, …., n (6.65)

From Eq. (6.65), we can find the values of a0, a1, …., an and the least squares approximation is obtained by
substituting these values in Eq. (6.59). However, the functions f0(x), f1(x), …., fn(x) are unknown. Several
orthogonal functions are available in literature. A few of them are given in Table 6.3.

Any one of the orthogonal functions can be selected to fit a function dependent on the given problem.

Table 6.3: Some standard orthogonal polynomials

Name fi(x) Interval w(x) 
Legendre 
Leguerre 
Hermite 

Chebyshev 

Pn(x) 
Ln(x) 
Hn(x) 

Tn(x) 

[–1, 1] 
[0, ∞] 
(–∞, ∞) 
[–1, 1] 

1 
e–x 

2xe−  
(1 – x2)–1/2 

6.19 GRAM-SCHMIDT ORTHOGONALISATION PROCESS

Let fi(x) be a polynomial in x of degree i and {fi (x)} be a given sequence of polynomials. Then the sequence
of orthogonal polynomials *( )  if x over the interval [a, b] with respect to the weight function w(x) can be
generated by the following equation

1
* *

0
( ) ( )

i
i

i ir r
r

f x x a f x
−

=
= −∑                 i = 1, 2, …., n (6.66)

where the constants are air, and *
0 ( )f x = 1.

To obtain air, we multiply Eq. (6.75) with *( ) ( )nw x f x , 0 ≤ k ≤ i – 1 and integrating over [a, b], we obtain

1
* * * * *

0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ib b bi
i n n ir r na a a

r
f x f x w x dx x f x w x dx a f x f x w x dx

−

=
= − ∑∫ ∫ ∫ (6.67)

Using the property of orthogonal polynomial, Eq.(6.67) becomes

* *2( ) ( ) ( ) ( ) 0
b bi

n in na a
x f x w x dx a f x w x dx− =∫ ∫

or   
*

*2

( ) ( )
,

( ) ( )

b i
na

in b
na

x f x w x dx
a

f x w x dx
=
∫
∫

         0 ≤ n ≤ i – 1 (6.68)

Hence, the set of orthogonal polynomials *{ ( )}if x are given by

              *
0 ( ) 1f x =
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1
* *

0
( ) ( ),

i
i

i ir r
r

f x x a f x
−

=
= − ∑       i = 1, 2, …., n

where     
*

*2

( ) ( )

( ) ( )

b i
na

ir b
na

x f x w x dx
a

f x w x dx
=

∫
∫

(6.69)

For the discrete data, the integral is replaced by summation.

Example E6.9
Use Gram-Schmidt orthogonalisation process to find the first two orthogonal polynomials on [–1, 1] with
respect to the weight function w(x) = 1.
Solution:

Let *
0 ( ) 1f x =

Hence * *
1 10 0( ) ( )f x x a f x= −

where    

1

1
10 1

1

0
x dx

a
dx

−

−

= =
∫
∫

or *
1 ( ) .f x x=

The second orthogonal polynomial is given by

* 2 * *
2 20 0 21 1( ) ( ) ( )f x x a f x a f x= − −

where    

1 2
1

20 1

1

1 ,
3

x dx
a

dx
−

−

= =
∫
∫

    

1 2
1

21 1 2
1

.
0−

−

= =
∫
∫

x xdx
a

x dx

Hence, * 2 2
2

1 1
( ) (3 1)

3 3
f x x x= − = −

Thus, the first two orthogonal polynomials are

*
0 ( ) 1,f x =  *

1 ( )f x x=  and * 2
2

1
( ) (3 1)

3
f x x= −
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6.20 ADDITIONAL EXAMPLE PROBLEMS AND SOLUTIONS

Example E6.10
Determine the equation to the best fitting exponential curve of the form y = aebx for the data given in Table
E6.10.

Table E6.10

x 1 3 5 7 9 
y 115 105 95 85 80 

Solution:
Refer to Table E6.10(a).

Table E6.10(a)

i xi yi log yi 2
ix  xi log yi 

1 
2 
3 
4 
5 

1 
3 
5 
7 
9 

115 
105 
95 
85 
80 

2.0607 
2.0212 
1.9777 
1.9294 
1.9031 

1 
9 

25 
49 
81 

2.0607 
6.0636 
9.8886 

13.5059 
17.1278 

Σ 25 480 9.8921 165 48.6466 
Given y = aebx

The normal equations are
Σ log yi = 5A + B Σ xi (E.1)

Σ xi log yi = A Σ xi + B Σ 2
ix (E.2)

where A = log a and B = b log e.
Solving the two normal Eqs.(E.1) and (E.2), we get

A = 2.0802 and B = – 0.0203

Hence a = antilog of A = 102.0802 = 120.2818

and
0.0203/ log 0.0075
log

b B e
e

−
= = = −

Hence, the fitted equation is y = 120.2818 e–0.0075x.

Example E6.11
For the data given in Table E6.11, find the equation to b est fitting curve of the form y = abx.

Table E6.11

x 1 2 3 4 5 
y 130 150 175 190 240 
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Solution:
The calculations are shown in Table E6.11(a).

Table E6.11(a)

 x y log y x2 x log y ŷ (estimated) 
 1 

2 
3 
4 
5 

130 
150 
175 
190 
240 

 2.1139 
 2.1761 
 2.2430 
 2.2788 
 2.3802 

1 
4 
9 

16 
25 

2.1139 
4.3522 
6.7291 
9.1150 

11.9011 

129.2062 
149.5433 
173.0814 
200.3144 
231.8555 

Σ 15 885 11.192 55 34.2113 884.0108 

The normal equations are obtained as follows:
y = abx (E.1)

Taking logarithms (base 10) on both sides of the above Eq.(E.1), we get
log y = log a + x log b (E.2)

or Y = A + Bx (E.3)
where Y = log y, A = log a and B = log b.
Hence, the normal equations are

ΣY = nA + BΣx (E.4)
ΣxY = AΣx + BΣx2 (E.5)

Substituting the values from Table E6.9(a) into Eqs.(E.4) and (E.5), we have

11.1920 = 5A + 15B (E.6)
34.2113 = 15A + 55B (E.7)

Solving Eqs.(E.6) and (E.7), we obtain
A = 2.0478  and  B = 0.0635

Hence a = antilog of A = 102.0478 = 111.6349
b = antilog of B = 100.0635 = 1.1574

Hence the fitted equation is y = 111.6349(1.1574)x. The estimated values of y (denoted by ŷ ) are shown in
the last column of Table E6.9(a).

Example E6.12
For the data given in Table E6.12, find the equation to best fitting curve of the form xya = b.

Table E6.12

x 200 150 100 60 40 10 
y 1 1.5 1.8 2.4 4.1 6.5 
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Solution:
See Table E6.12(a).

Table E6.12(a)

 x y log x log y (log x)2 (log x)(log y) ŷ (estimated) 
 200 

150 
100 
60 
40 
10 

1 
1.5 
1.8 
2.4 
4.1 
6.5 

2.3010 
2.1761 
2.0000 
1.7782 
1.6021 
1.0000 

0 
0.1761 
0.2553 
0.3802 
0.6128 
0.8129 

5.2947 
4.7354 
4.0000 
3.1618 
2.5666 
1.0000 

      0 
0.3832 
0.5105 
0.6761 
0.9817 
0.8129 

1.1762 
1.4040 
1.8019 
2.4675 
3.1668 
7.4322 

Σ 560 17.3 10.8573 2.2373 20.7585 3.3644 17.4485 

Given xya = b (E.1)

Taking logarithms (to the base 10) on both sides of the above Eq.(E.1), we get

log x + a log y = log b (E.2)

           
1 log

log log
bx y

a a
+ − (E.3)

The normal equations are given by
ΣY = 6A + BΣX (E.4)

ΣXY = AΣX + BΣX2 (E.5)

where Y = log y, X = log x, A = 
1
a

log b and B = –1/a

Solving Eqs. (E.4) and (E.5), we obtain
A = 1.4865 and B = – 0.6154

Therefore a = –1/B = –1/–0.6154 = 1.6250
and b = antilog of (aA) = 10(1.6250)(1.4865) = 260.3529

Hence, the fitted equation is xy1.6250 = 260.3529.

Example E6.13
Fit the following data:

x   0   2   4   6 
y 11 16 19 26 

to a straight line by considering that the data (2, 16) and (4, 19) are more significant or reliable with weights
6 and 11 respectively.

Solution:
Weighted Least Squares Method.
Let the straight line be y = a + bx. The normal equations are
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aΣwi + bΣwixi = Σwiyi (E.1)
and aΣwixi + bΣwix2

i = Σwixiyi (E.2)

The values in Eqs. (E.1) and (E.2) are calculated as shown in Table E6.13.
Table E6.13

x y w wx wx2 Wy Wxy 
0 
2 
4 
6 

11 
16 
19 
26 

1 
6 

11 
1 

0 
12 
44 

6 

0 
24 

176 
36 

11 
96 

209 
26 

0 
192 
836 
156 

Total 19 62 236 342 1184 

The normal equations are
19a + 62b = 342 (E.3)

and 62a + 236b = 1184 (E.4)
The solution of Eqs. (E.3) and (E.4) gives

a = 11.4125 and b = 2.0188
Hence, y = 11.4125 + 2.0188x

Estimation of Error

x y w Predicted y Absolute error (Absolute error)2 
0 
2 
4 
6 

11 
16 
19 
26 

1 
6 

11 
1 

11.4125 
15.4500 
19.4875 
23.5250 

0.4125 
0.5500 
0.4875 
2.4750 

0.1702 
0.3025 
0.2377 
6.1256 

Sum of squares of errors 6.8329 

Example E6.14
Consider the Example E6.14 with the modified weights 300 and 50 instead of 6 and 11.

Solution:
The modified calculations are shown in Table E6.14

Table E6.14

x y w wx wx2 Wy Wxy 
0 
2 
4 
6 

11 
16 
19 
26 

1 
30 
50 
1 

0 
60 

200 
6 

0 
120 
800 

36 

11 
480 
950 

26 

0 
960 

3800 
156 

Total 82 266 956 1467 4916 
The normal equations are

82a + 266b = 1467 (E.1)
and 266a + 956b = 4916 (E.2)
The solution of Eqs. (E.1) and (E.2) gives

a = 12.4144 and b = 1.6881
Hence,     y = 12.4144 + 1.6881x
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Estimation of Error

x y w Predicted y Absolute error (Absolute error)2 
0 
2 
4 
6 

11 
16 
19 
26 

1 
30 
50 
1 

12.4144 
15.7905 
19.1666 
22.5427 

1.4144 
0.2096 
0.1666 
3.4573 

2.0004 
0.0439 
0.0277 
11.9530 

Sum of squares of errors 14.0250 

It is noted that when the weights on x = 2 and x = 4 are increased then the absolute error in y are reduced
at these points, but, the sum of squares of errors is increased due to the less importance of the data (0, 11)
and (6, 26).

6.21 SUMMARY

In this chapter, we have reviewed the relationship between two variables in two ways: (1) by using the
regression analysis and (2) by computing the correlation coefficient. It was shown that the regression model
can be used to evaluate the magnitude of change in one variable due to a certain change in another variable.
The regression model also helps to predict the value of one variable for a given value of another variable.
The correlation coefficient shows how strongly two variables are related. It does not, however, provide any
information about the size of change in one variable as a result of a certain change in the other variable.

Problems

6.1 Table P6.1 gives information on the monthly incomes (in hundreds of dollars) and monthly telephone
bills (in dollars) for a random sample of 10 households.

Table P6.1

Income 16 45 35 31 30 14 40 15 36 40 
Telephone bill 36 140 171 70 94 25 159 41 78 98 

Use least-squares regression to determine the coefficients a and b in the function y = a + bx that best
fits the data.

6.2 The following Table P6.2 lists the annual incomes (in thousands of dollars) and amounts of life insurance
(in thousands of dollars) of life insurance policies for six persons:

Table P6.2

Annual income 47 54 26 38 62 20 
Life insurance 250 300 100 150 500 75 

(a) find the regression line y = a + bx with annual income as an independent variable and amount of
life insurance policy as a dependent variable.

(b) determine the estimated value of life insurance of a person with an annual income of $50,000.

6.3 Find the least squares regression line for the data on annual incomes and food expenditures of seven
households given in Table P6.3. Use income as an independent variable and food expenditure as a
dependent variable. All data is given in thousands of dollars.
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Table P6.3

Income: x 35 50 22 40 16 30 25 
Expenditure: y 9 15 6 11 5 8 9 

6.4 Table P6.4 gives data on age and crown-rump length for the foetuses. Use least-squares regression to
determine the coefficients a and b in the function y = a + bx that best fits the data:

Table P6.4

x 10 10 13 13 18 19 19 23 25 28 
y 66 66 108 106 160 165 176 227 234 279 

6.5 The following data in Table P6.5 refers to the number of hours that 10 students studied for a math test
and their scores on the test:

Table P6.5

Hours studied 1 17 22 12 7 4 14 10 9 4 
Test score 21 83 90 60 45 38 74 66 59 32 

(a) find the equation of the least squares line that approximates the regression of the test scores on
the number of hours studied.

(b) determine the average test score of a person who studied 15 hours for the test.

6.6 The following Table P6.6 shows the first two grades, denoted by x and y respectively, of 10 students
on two mid-term examinations in applied statistics. Find the least squares regression line of y on x.

Table P6.6

Grade on first mid-term examination (x) 60 50 80 80 70 60 100 40 90 70 
Grade on second mid-term examination (y) 80 70 70 90 50 80 95 60 80 60 

6.7 The following Table P6.7 shows ages x and systolic blood pressure y of 12 men.
(a) determine the least squares regression equation of y on x
(b) estimate the blood pressure of a man whose age is 45 years.

Table P6.7

Age (x) 56 42 72 36 63 47 55 49 38 42 68 60 
Blood pressure (y) 147 125 160 118 149 128 150 145 115 140 152 155 

6.8 Table P6.8 shows the respective weight x and y of a sample of 12 fathers and their oldest sons. Find
the least squares regression line of y on x.

Table P6.8

Weight of father, x (kg) 65 63 67 64 68 62 70 66 68 67 69 71 
Weight of son, y (kg) 68 66 68 65 69 66 67 65 70 67 68 70 

6.9 Find the least squares regression line for the data on annual incomes and food-expenditures of seven
households given in Table P6.9. Use income as independent variable and food expenditure as a
dependent variable. The income and food-expenditures are in thousands of rupees.

Table P6.9

Income x 35 49 21 29 15 28 25 
Food expenditure y 9 15 7 10 5 8   8.5 
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6.10 A car manufacturing company wanted to investigate how the price of one of its car models depreciates
with age. The company took a sample of eight cars of this model and collected the following information
on the ages (in years) and prices (in hundreds of dollars) of these cars as shown in Table P6.10.

Table P6.10

Age 8 3 6 9 2 5 6 3 
Price 16 74 40 19 120 36 33 86 

(a) find the regression line ŷ a bx= + with price as a dependent variable and age as independent variable

(b) give a brief interpretation of the values of a and b calculated in part (a)
(c) predict the price of a 7-year old car of this model
(d) estimate the price of an 4-year old car of this model.

For problems P6.11 to P6.20 do the following:
Fit a least-squares regression line of the form ŷ a bx= + for the data given in Tables P6.1 to P6.10

respectively. Assume x as the independent variable and y as the dependent variable.

(a) give a brief interpretation of the values of a and b calculated in ŷ a bx= + .
(b) compute the standard deviation of the sample errors, se.
(c) compute the error sum of squares, SSE.
(d) compute the total sum of squares, SST.
(e) compute the regression sum of squares, SSR.
(f ) compute the coefficient of determination, r2.
(g) compute the correlation coefficient, r.

6.11 For the data given in Table P6.1.
6.12 For the data given in Table P6.2.
6.13 For the data given in Table P6.3.
6.14 For the data given in Table P6.4.
6.15 For the data given in Table P6.5.
6.16 For the data given in Table P6.6.
6.17 For the data given in Table P6.7.
6.18 For the data given in Table P6.8.
6.19 For the data given in Table P6.9.
6.20 For the data given in Table P6.10.
6.21 Fit y = bxm (power function) in Problem 6.1 using a logarithmic transformation.
6.22 Fit y = bxm (power function) to the data in Problem 6.2 using a logarithmic transformation.
6.23 Fit y = bxm (power function) to the data in Problem 6.3 using a logarithmic transformation.
6.24 Fit y = bxm (power function) to the data in Problem 6.4 using a logarithmic transformation.
6.25 Fit y = bxm (power function) to the data in Problem 6.5 using a logarithmic transformation.
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6.26 Determine the coefficient of the polynomial y = a + bx + cx2 that best fit the data given in the following
table.

x 1 3 5 7 10 
y 2.1 5.1 5.45 6.12   6.62 

Determine the standard error of the estimate and correlation coefficient.
6.27 The following data were collected in an experiment to study the relationship between shear strength

in kPa (y) and curing temperature in ºC (x).

x 1.38 1.40 1.46 1.48 1.52 1.53 
y 5.392 5.612 5.671 5.142 4.481 4.129 

(a) fit a least-squares quadratic model of the form y = a + bx + cx2 to the above data
(b) using the equation, compute the residuals.
(c) compute the error sum of squares and total sum of squares.
(d) compute the error variance estimate.
(e) compute the coefficient of determination.

6.28 The following data were collected in an experiment to study the relationship between the number of
kilograms of fertiliser (x) and the yield of tomatoes in bushels (y).

x 5 10 30 40 50 
y 32 42 54 50 42 

(a) fit a least-squares quadratic model of the form y = a + bx + cx2 to the above data.

(b) using this equation, compute the regression sum of squares 
2

1

ˆ( )
n

i
i

y y
=

−∑ .

(c) compute the error sum of squares 2

1

ˆ( )
n

i i
i

y y
=

−∑ and total sum of squares 2

1
( )

n

i
i

y y
=

−∑ .

(d) compute the error variance estimate (b) + (c).
(e) compute the coefficient of determination, r2.

6.29 Fit a least-square parabola y = a + bx + c2 to the following data:
x 0 1 2 3 4 5 6 
y 2.4 2.1 3.2 5.6 9.3 14.6 21.9 

Determine the coefficient of determination.
6.30 The following table gives the data collected in an experiment to study the relationship between the

stopping distance d(m)_ of an automobile travelling at speeds v(km/hr) at the instant the danger is
sighted.
(a) fit a least-squares parabola of the form d = a + bv + cv2 to the data
(b) determine the coefficient of determination.



// Curve Fitting, Regression and Correlation // 231

Sanjay IInd Proof—13/8/2009

Speed v(km/hr) 32 48 64 80 96 112 
Stopping distance d(m) 16.5 27.5 19.5 24.5 29.3   34.2 

6.31 Use multiple linear regression fit of the form y = a + bx1 + cx2 for the following data:

x1 0 1 1 2 2 3 3 4 4 
x2 0 1 2 1 2 1 2 1 2 
y 15 18 12.8 25.7 20.4 35 30 45.3 40.1 

Compute the coefficients, the standard error of the estimate, and the correlation coefficient.
6.32 Use multiple linear regression fit of the form y = a + bx1 + cx2 for the following data:

x1 0 0 1 2 1   1.5 3 3 –1 
x2 0 1 0 1 2   1 2 3 –1 
y 1 6 4 –4 –2 –1.5 –12 –15 17 

Compute the coefficients, the standard error of estimate and the correlation coefficient.
6.33 Use multiple linear regression fit of the form y = a + bx1 + cx2 for the following data:

x1 0 0 1 1 2   3 0 2 1 4 
x2 0 1 0 1 2   0.5 2 3 4 1 
y 3 8 7 12 21 15 13 26 27 24 

Compute the coefficients, the standard error of estimate and the correlation coefficient.
6.34 Use multiple linear regression fit of the form y = a + bx1 + cx2 for the following data:

x1 0 0 1 1 2 0 1 2 1 1 
x2 0 1 0 1 0 2 2 1 3 1 
y 23 15 19 10 15 5 0 5 –10 0 

Compute the coefficients, the standard error of estimate and the correlation coefficient.
6.35 Use multiple linear regression fit of the form y = a + bx1 + cx2 for the following data:

x1 0 0 1 1 2 0 1 2 1 3 
x2 0 1 0 1 0 2 2 1 3 1 
y 29 10 23 4 19 –10 –16 –2 –36 –8 

Compute the coefficients, the standard error of estimate and the correlation coefficient.
6.36 For the data given in Table P6.36, find the equation to the best fitting exponential curve of the form

y = aebx.
Table P6.36

x 1 2 3 4 5 
y 100 90 80 75 70 
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6.37 For the data given in Table P6.37, find the equation to the best fitting exponential curve of the form
y = aebx.

Table P6.37

x 2 3 4 5 6 
y 3.8 5.8 7.8 8.8 9.8 

6.38 For the data given in Table P6.38, find the equation to the best fitting exponential curve of the form
y = aebx.

Table P6.38

x      2.2 3 4 6 7 
y 31 38 45 68 84 

6.39 For the data given in Table P6.39, find the equation to the best fitting exponential curve of the form
y = abx.

Table P6.39

x 1 2 3 4 5 
y 22 8 3 1 0.35 

6.40 For the data given in Table P6.40, find the equation to the best fitting exponential curve of the form
y = abx.

Table P6.40

x 2 4 6 8 10 
y 3 13 32 57 91 

6.41 For the data given in Table P6.41, find the equation to the best fitting exponential curve of the form
y = abx.

Table P6.41

x 1 3 5 7 9 
y 3 2 1.3 0.72 0.43 

6.42 For the data given in Table P6.42, find the equation to the best fitting exponential curve of the form
y = xya = b.

Table P6.42

x  190 134 89 55 37 8.9 
y  0.97     1.14   1.32   1.63    1.92 3.5 

6.43 For the data given in Table P6.43, find the equation to the best fitting exponential curve of the form
y = xya = b.

Table P6.43

x 2 3 5 7 9 11 
y 1.25 1.21 1.16 1.14 1.11   1.10 
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6.44 For the data given in Table P6.44, find the equation to the best fitting exponential curve of the form
y = xya = b.

Table P6.44

x 232 178 99 66 51 
y 1.1 1.3 1.8 2.2 2.5 

6.45 Find a non-linear relationship of the form y = a + b log x for the data given in Table P6.45. Determine
the linear correlation coefficient.

Table P6.45

     

x 1.2 4.7 8.3 20.9 
y 0.6 5.1 6.9 10 

6.46 Fit the following data to a straight line y = a + bx by considering the weights as given in the table.
Compute the sum of squares of errors.

x 1 17 22 12 7 4 14 10 9 4 
y 21 83 90 60 45 38 74 66 59 32 
w 5 1 7 1 1 8 1 11 1 4 

6.47 Fit the following data to a straight line y = a + bx by considering the weights as given in the table.
Compute the sum of squares of errors.

x 16 45 35 31 30 14 40 15 36 40 
y 50 134 107 95 90 44 120 47 110 120 
w 1 6 1 3 1 7 1 11 1 16 

6.48 Fit the following data to a straight line y = a + bx by considering the weights as given in the table.
Compute the sum of squares of errors.

x 47 54 26 38 62 20 
y 250 300 100 150 500 75 
w 1 5 1 3 1 7 

6.49 Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x 35 50 22 40 16 30 25 
y 9 15 6 11 5 8 9 
w 1 2 1 2 1 3 4 

6.50 Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x 10 10 13 13 18 19 19 23 25 28 
y 66 66 108 106 160 165 176 227 234 279 
w 2 1 3 1 4 1 5 1 6 1 

6.51 Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x 1 17 22 12 7 4 14 10 9 4 
y 21 83 90 60 45 38 74 66 59 32 
w 1 2 1 3 1 2 1 4 1 5 
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6.52 Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x 1 17 22 12 7 4 
y 21 83 90 60 45 38 
w 5 1 7 1 1 8 

6.53 Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x 16 45 35 31 30 
y 50 134 107 95 90 
w 1 6 1 3 1 

6.54 Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x 47 54 26 38 62 20 
y 250 300 100 150 500 75 
w 1 4 1 2 1 7 

6.55 Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x 35 50 22 40 
y 9 15 6 11 
w 2 3 4 2 

6.56 Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x 10 10 13 13 18 
y 66 66 108 106 160 
w 5 2 3 7 4 

6.57 Fit the following data to a straight line y = a + bx by considering the weights given in the table.
Compute the sum of squares of errors.

x 1 17 22 12 7 
y 21 75 96 60 45 
w 1 2 1 3 1 

6.58 Construct a least-squares quadratic approximation to the function y = ex on [0, 1].
6.59 Construct a least-squares quadratic approximation to the function y = x ln x on [1, 3].
6.60 Construct a least-squares quadratic approximation to the function y = x3 on [0, 2].

6.61 Construct a least-squares quadratic approximation to the function y = 
1
x

 on [1, 3].
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6.62 Construct a least-squares quadratic approximation to the function y = x2 + 3x + 2 on [0, 1].
6.63 Use the Gram-Schmidt orthogonalisation process to construct φ0(x), φ1(x), φ2(x) and φ3(x) for the

interval [0, 1].
6.64 Use the Gram-Schmidt orthogonalisation process to construct φ0(x), φ1(x), φ2(x) and φ3(x) for the

interval [0, 2].
6.65 Use the Gram-Schmidt orthogonalisation process to construct φ0(x), φ1(x), φ2(x) and φ3(x) for the

interval [1, 3].
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7.1 INTRODUCTION

If F(x) is a differentiable function whose derivative is f (x), then we can evaluate the definite integral I as

( )
b

a
I f x= ∫ dx = F (b) – F (a), F'(x) = f (x) (7.1)

Equation (7.1) is known as the fundamental theorem of calculus. Most integrals can be evaluated by the
formula given by Eq. (7.1) and there exists many techniques for making such evaluations. However, in many
applications in science and engineering, most integrals cannot be evaluated because most integrals do not
have anti-derivatives F(x) expressible in terms of elementary functions.

In other circumferences, the integrands could be empirical functions given by certain measured values.
In all these instances, we need to resort to numerical methods of integration. It should be noted here that,
sometimes, it is difficult to evaluate the integral by analytical methods. Numerical integration (or numerical
quadrature, as it is sometimes called) is an alternative approach to solve such problems. As in other numerical
techniques, it often results in approximate solution. The integration can be performed on a continuous
function or a set of data.

The integration given by Eq. (7.1) is shown in Fig. 7.1. The integration shown in Fig. 7.1 is called
closed since the function values at the two points (a, b) where the limits of integration are located are used
to find the integral. In open integration, information on the function at one or both limits of integration is
not required.

f(x)

0 a b
x

Fig. 7.1
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The range of integration (b – a) is divided into a finite number of intervals in numerical integration. The
integration techniques consisting of equal intervals are based on formulas known as Newton-Cotes closed
quadrature formulas.
In this chapter, we present the following methods of integration with illustrative examples:

1. Trapezoidal rule.
2. Simpson’s 1/3 rule.
3. Simpson’s 3/8 rule.
4. Boole’s and Weddle’s rules.

7.1.1 Relative Error
Suppose we are required to evaluate the definite integral

( )
b

a
I f x dx= ∫

In numerical integration, we approximate f (x) by a polynomial f (x) of suitable degree. Then, we integrate f (x)
within the limits (a, b). That is,

   ( ) ( )
b b

a a
f x dx x dx≅ φ∫ ∫

Here the exact value if

( )
b

a
I f x dx= ∫

Approximate value = ( )
b

a
x dxφ∫

The difference ( ) ( )
b b

a a
f x dx x dx − φ  ∫ ∫

is called the error of approximation and

( ) ( )

( )

b b

a a
b

a

f x dx x dx

f x dx

 − φ  ∫ ∫
∫

is called the relative error of approximation.

Hence, relative error of approximation = 
exact values – approximate value

exact value

7.2 NEWTON-COTES CLOSED QUADRATURE FORMULA

The general form of the problem of numerical integration may be stated as follows:
Given a set of data points (xi, yi), i = 0, 1, 2, …., n of a function y = f (x), where f (x) is not explicitly

known. Here, we are required to evaluate the definite integral
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b

a
I y dx= ∫ (7.2)

Here, we replace y = f (x) by an interpolating polynomial φ(x) in order to obtain an approximate value of the
definite integral of Eq.(7.2).

In what follows, we derive a general formula for numerical integration by using Newton’s forward
difference formula. Here, we assume the interval (a, b) is divided into n-equal subintervals such that

b ah
n
−

=

a = x0 < x2 < x3 …. < xn = b (7.3)
with         xn = x0 + n h
where h = the internal size

n = the number of subintervals
a and b = the limits of integration with b > a.

Hence, the integral in Eq.(7.2) can be written as

0

nx

x
I y dx= ∫ (7.4)

Using Newton’s forward interpolation formula, we have

0

2 3
0 0 0 0

( 1) ( 1)( 2) ....
2! 3!
− − − = + ∆ + ∆ + ∆ +  

⌠

⌡

nx

x

p p p p pI dxy p y y y (7.5)

where x = x0 + ph

  
2 3 2

2 3
0 0 0 0
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3 2 ....
2 6

 − − += + ∆ + ∆ + ∆ + 
 

⌠

⌡

n
p p p p ph dpy p y y y (7.6)

Hence, after simplification, we get

              
0

2
2 3

0 0 0 0
(2 3) ( 2) ....

2 12 24
 − −= = + ∆ + ∆ + ∆ + 
 

⌠

⌡

nx

x

n n n n nI y dn nh y y y y (7.7)

The formula given by Eq.(7.7) is known as Newton-Cotes closed quadrature formula. From the general formula
(Eq.(7.7)), we can derive or deduce different integration formulae by substituting n = 1, 2, 3, …, etc.

7.3 TRAPEZOIDAL RULE

In this method, the known function values are joined by straight lines. The area enclosed by these lines
between the given end points is computed to approximate the integral as shown in Fig. 7.2.
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Fig. 7.2

Each subinterval with the line approximation for the function forms a trapezoid as shown in Fig. 7.2. The area
of each trapezoid is computed by multiplying the interval size h by the average value of the function value
in that subinterval. After the individual trapezoidal areas are obtained, they are all added to obtain the overall
approximation to the integral.

Substituting n = 1 in Eq.(7.7) and considering the curve y = f (x) through the points (x0, y0) and (x1, y1)
as a straight line (a polynomial of first degree so that the differences of order higher than first become zero),
we get

1

0

1 0 10 0 0 1 0
1 1 ( )( )

2 22 2

x

x

h hI y dx h y yy y y y y   = = = = ++ ∆ + −      
⌠

⌡ (7.8)

Similarly, we have
2

1

2 1 2( )
2

x

x

hI y dx y y= = +⌠
⌡

3

2

3 2 3( )
2

x

x

hI y dx y y= = +⌠
⌡

and so on. (see Fig.7.3)
In general, we have

1
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2

n

n
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hI y dx y y
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⌡ (7.9)
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Adding all the integrals (Eq.(7.8), Eq.(7.9)) and using the interval additive property of the definite integrals,
we obtain

0

0 1 2 3 1
1

....[ 2( ) ] [ 2 ]
2 2−

=
= = = + + + + + + = +⌠

⌡∑
nxn

i n n
xi

h hI I y dx y y y y y y X I (7.10)

where X = sum of the end points
I = sum of the intermediate ordinates.

Equation (7.10) is known as the trapezoidal rule.
Summarising, the trapezoidal rule signifies that the curve y = f (x) is replaced by n-straight lines joining the
points (xn, yn), i = 0, 1, 2, 3, …, n. The area bounded by the curve y = f (x), the ordinates x = x0, x = xn and
the x-axis is then approximately equivalent to the sum of the areas of the n-trapezoids so obtained.

7.3.1 Error Estimate in Trapezoidal Rule
Let y = f (x) be a continuous function with continuous derivatives in the interval [x0, xn]. Expanding y in a
Taylor’s series around x = x0, we get

1 1

0 0

2
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Likewise,     
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Hence, the error e1 in (x0, x1) is obtained from Eqs. (7.11) and (7.12) as
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In a similar way, we can write
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and so on.
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In general, we can write

       3
1

1 ....
12 +
− ′′= +n ne h y

Hence, the total error E in the interval (x0, xn) can be written as

       [ ]
3

0 1 2 1
1

....
12 −

=

− ′′ ′′ ′′ ′′= = + + + +∑
n

n n
n

hE e y y y y (7.14)

If ( )y x′′  is the largest value of the n quantities in the right hand side of Eq.(7.14), then we have

        3 21 ( )
( ) ( )

12 12
b aE h n y x h y x− −

= = −′′ ′′ (7.15)

Now, since b ah
n
−

= , the total error in the evaluation of the integral of Eq.(7.2) by the trapezoidal rule

is of the order of h2.
Example E7.1

Evaluate the integral 
1.2

0
xe dx∫ , taking six intervals by using trapezoidal rule up to three significant figures.

Solution:
a = 0, b = 1.2, n = 6

        
1.2 0 0.2

6
− −= = =b ah
n

x 0 0.2 0.4 0.6 0.8 1.0 1.2 

y = f(x) 
0 
y0 

1.221 
y1 

1.492 
y2 

1.822 
y3 

2.226 
y4 

2.718 
y5 

3.320 
y6 

The trapezoidal rule can be written as

         0 6 1 2 3 4 5[( ) 2( )]
2
hI y y y y y y y= + + + + + +

0.2
[(1 3.320) 2(1.221 1.492 1.822 2.226 2.718)]

2
I = + + + + + +

          I = 2.3278 ≈ 2.328

The exact value is = 
1.2

0
xe dx∫ = 2.320.

Example E7.2

Evaluate 
12

20 1
dx

x+∫ by using trapezoidal rule, taking n = 6, correct to give significant figures.
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Solution:

 2
1( )

1
f x

x
=

+

      a = 0, b = 12

     
12 0

2
6

b ah
n
− −

= = =

x 0 2 4 6 8 10 12 

y = f(x) 1 
1
5

 1
17

 1
37

 1
65

 1
101

 1
145

 

y 1.00000 
y0 

0.20000 
y1 

0.05882 
y2 

0.02703 
y3 

0.01538 
y4 

0.00990 
y5 

0.00690 
y6 

The trapezoidal rule can be written as

      0 6 1 2 3 4 5[( ) 2( )]
2
hI y y y y y y y= + + + + + +

2
[(1 0.00690) 2(0.2 0.05882 0.02703 0.01538 0.00990)]

2
I = + + + + + +

 I = 1.62916.
The exact value is

      
12

12 1
20

0

1 tan = 1.48766
1

−=
+∫ dx x

x

Example E7.3

Evaluate 
6

102
log x dx∫  by using trapezoidal rule, taking n = 8, correct to five decimal places.

Solution:
    f (x) = log10x

a = 2, b = 6, n = 8

                     
6 2 1

0.5
8 2

b ah
n
− −

= = = =

x 2 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 
f(x) 0.30103 

y0 
0.39794 

y1 
0.47712 

y2 
0.54407 

y3 
0.60206 

y4 
0.65321 

y5 
0.69897 

y6 
0.74036 

y7 
0.77815 

y8 

The trapzoidal rule is

      0 8 1 2 3 4 5 6 7[( ) 2( )]
2
hI y y y y y y y y y= + + + + + + + +
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0.5
2

I = [(0.30103 + 0.77815) + 2(0.39794 + 0.47712 + 0.54407 + 0.60206 + 0.65321

           + 0.69897 + 0.74036 + 0.77815)]
I = 2.32666

The exact value is given by

     
6 6

10 22
log [ log ] 6.06685x dx x x x= − =∫

7.4 SIMPSON’S 1/3 RULE

In Simpson’s rule, the function is approximated by a second degree polynomial between successive points.
Since a second degree polynomial contains three constants, it is necessary to know three consecutive function
values forming two intervals as shown in Fig. 7.4.

y

0 x0
xx1 x2 x4

y0

y1

y2

y3

y4

x3

Fig. 7.4

Consider three equally spaced points x0, x1 and x2. Since the data are equally spaced, let h = xn+1 – xn
(see Fig.7.5).

y2

y

0 x0
xx1 x2

y0

y1

Fig. 7.5

Substituting n = 2 in Eq. (7.7) and taking the curve through the points (x0, y0), (x1, y1) and (x2, y2) as a
polynomial of second degree (parabola) so that the differences of order higher than two vanish, we obtain

    1

0

2
1 0 1 20 0 0

12 [ 4 ]4
36

x

x

hI y dx h y y yy y y = = = + ++ + ∆  ∫ (7.16)

Similarly,              4

2
2 2 3 4[ 4 ]

3
x

x

hI y dx y y y= = + +∫
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6

4
3 4 5 6[ 4 ]

3
x

x

hI y dx y y y= = + +∫ (7.17)

and so on.
In general, we can write

    
2

2 2
2 2 2 1 2[ 4 ]

3
n

n

x
n n n nx

hI y dx y y y
−

− −= = + +∫ (7.18)

Summing up all the above integrals, we obtain

0
0 1 3 5 2 1 2 4 6 2 2 2

........[ 4( ) 2( ) ]
3 − −= = + + + + + + + + + + +∫ nx

n n nx

hI y dx y y y y y y y y y y

        [ 40 2 ]
3
h X E= + + (7.19)

where X = sum of end ordinates
O = sum of odd ordinates
E = sum of even ordinates

Equation (7.19) is known as Simpson’s 1/3 rule. Simpson’s 1/3 rule requires the whole range (the given interval)
must be divided into even number of equal subintervals.

7.4.1 Error Estimate in Simpson’s 1/3 Rule
Expanding y = f (x) around x = x0 by Taylor’s series, we obtain

          
2 0

0 0

22
0

0 0 0 0
( ) ....( )

2!

+  −= + − + + 
 ∫ ∫

x x h i ii
x x

x xy dx dxy x x y y

 
2 3 4 5

0 0 0 0 0
4 8 16 32 ....2
2! 3! 4! 5!

= + + + + +i ii iii ivh h h hh y y y y y

        
4

2 3
0 0 0 0 0

4 2 4 ....2 2
3 3 15

= + + + + +i ii iii ivhh y h y h y y y (7.20)

In addition, we have

       
2 32

0 1 2 0 0 0 0 00 0 0
4 8 ........[ 4 ] 4 (

3 3 2! 3!2!

  + + = + + + + + + + + + 
  

i ii iiii iih h h hhy y y y y hy y yy hy y

        
3 4 5

2
0 0 0 0 0

2 5 ....2 2 4
3 3 18

= + + + + +i ii iii ivh h hh y h y y y y (7.21)

Hence, from Eqs. (7.20) and (7.21), the error in the subinterval (x0, x2) is given by

    
2

0

5 5
5

1 0 1 2 0 0 0
4 5 .... ....( 4 )

3 90 9015 18
− − = − + + = + = + ≅−  ∫

x iv iv iv
x

h h he y dx y y y h y y y (7.22)
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Likewise, the errors in the subsequent intervals are given by

 
5

2 290
ivhe y−

=

 
5

3 490
ivhe y−

= (7.23)

and so on.
Hence, the total error E is given by

      
5 5

00 2 4 2 2
.... ( )

90 90−
− − = = ≅+ + + + ∑ iviv iv iv iv

n n
h nhE e h xy y y y

or  2( )
( )

180
ivb aE h y x− −

=

where ( )ivy x = largest value of the fourth-order derivatives (7.24)

h = (b – a)/n
The error in Simpson’s 1/3 rule can be written as

           
5 5

4

( )( ) ( )
180 2880
− − −= ξ = ξiv ivnh b ae f f

n

where a = x0 < ξ < xn = b (for n subintervals of length h).

Example E7.4

Evaluate the integral 
1.2

0
xe dx∫ , taking n = 6 using Simpson’s 1/3 rule.

Solution:
f (x) = ex

  a = 0, b = 1.2, n = 6

  
1.2 0

6
b ah

n
− −

= =  = 2

x 0 0.2 0.4 0.6 0.8 1.0 1.2 

y = f(x) 
1.0 
y0 

1.22140 
y1 

1.49182 
y2 

1.82212 
y3 

2.22554 
y4 

2.71828 
y5 

3.32012 
y6 

The Simpson’s rule is

  0 6 1 3 5 2 4[( ) 4( ) 2( )]
2
hI y y y y y y y= + + + + + +

  
0.2
3

I = [(1 + 3.32012) + 4(1.22140 + 1.82212 + 2.71828) + 2(1.49182 + 2.22554)]

  
0.2

[(4.32012) + 4(5.7618) + 2(3.71736)]
3

I =

   I = 2.320136 ≈ 2.32014
The exact value is = 2.3201
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Example E7.5

Evaluate 
12

20 1
dx

x+∫  by using Simpson’s 1/3 rule, taking n = 6.

Solution:

2
1( )

1
f x

x
=

+

a = 0, b = 12, n = 6

     
12 0

2
6

b ah
n
− −

= = =

x 0 2 4 6 8 10 12 

y = f(x) 
1 
y0 

0.2 
y1 

0.05882 
y2 

0.02703 
y3 

0.01538 
y4 

  0.0099 
y5 

  0.0069 
y6 

The Simpson’s 1/3 rule is

0 6 1 3 5 2 4[( ) 4( ) 2( )]
3
hI y y y y y y y= + + + + + +

2
3

I = [(1 + 0.0069) + 4(0.2 + 0.02703 +0.0099) + 2(0.05882 + 0.01538)]

I = 1.40201
Example E7.6

Evaluate 
6

102
log x dx∫  by using Simpson’s 1/3 rule, taking n = 6.

Solution:
           f (x) = log10x
      a = 2, b = 6, n = 6

     
6 2 2

6 3
b ah

n
− −

= = =

x 2 = 6/3 8/3 10/3 12/3 = 4 14/3 16/3 18/3 = 6 

y = f(x) 
0.30103 

y0 
0.42597 

y1 
0.52288 

y2 
0.60206 

y3 
0.66901 

y4 
0.72700 

y5 
0.77815 

y6 

The Simpson’s 1/3 rule is

     0 6 1 3 5 2 4[( ) 4( ) 2( )]
3
hI y y y y y y y= + + + + + +

     
2 / 3

3
I = [(0.30103 + 0.77815) + 4(0.42597 + 0.60206 + 0.72700) + 2(0.52288 + 0.66901)]

               I = 2.32957
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7.5 SIMPSON’S 3/8 RULE

Putting n = 3 in Eq. (7.7) and taking the curve through (xn, yn), n = 0, 1, 2, 3 as a polynomial of degree three
such that the differences higher than the third order vanish, we obtain

 
3

0

2 3
1 0 1 2 30 0 0 0

33 3 13 [ 3 3 ]
82 2 8

x

x
I y dx h h h y y yy y y y = = = + + ++ ∆ + ∆ + ∆  

⌠

⌡

(7.25)

Similarly, we get

 
6

3

2 3 4 5 6
3 [ 3 3 ]
8

x

x
I y dx h y y y y= = + + +⌠

⌡

 
9

6

3 6 7 8 9
3 [ 3 3 ]
8

x

x
I y dx h y y y y= = + + +⌠

⌡
(7.26)

and so on.
Finally, we have

 
3

3 3

3 3 3 2 3 1 3
3 [ 3 3 ]
8

n

n

x

n n n n n
x

I y dx h y y y y
−

− − −= = + + +⌠
⌡ (7.27)

Summing up all the expressions above, we obtain

           
3

0

0 1 2 4 5 7 8 3 2 3 1
....[ 3( )

8 − −= = + + + + + + + + +⌠
⌡

nx

n n
x

hI y dx y y y y y y y y y

3 6 9 3 3 3
....2( ) ]−+ + + + + +n ny y y y y (7.28)

Equation (7.28) is called the Simpson’s 3/8 rule. Here, the number of subintervals should be taken as multiples

of 3. Simpson’s 3/8 rule is not as accurate as Simpson’s 1/3 rule. The dominant term in the error of this

formula is 53
( )

80
ivy y x−

. Simpson’s 3/8 rule can be applied when the range (a, b) is divided into a number of

subintervals, which must be a multiple of 3. The error in Simpson’s 3/8 rule is 
5

( )
80

ivnhe f−
= ξ , where x0, ξ,

xn (for n subintervals of length h).

Example E7.7

Evaluate the integral 
1.2

0
,xe dx∫ by using Simpson’s 3/8 rule and taking seven ordinates.

Solution:
n + 1 = 7 ⇒ n = 6

The points of division are

           
1 2 3 4 5 1

0, , , , , ,1,
6 6 6 6 6 6

h =
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x 0 1/6 2/6 3/6 4/6 5/6 1 

y = f(x) 
1 
y0 

1.18136 
y1 

1.39561 
y2 

1.64872 
y3 

1.94773 
y4 

2.30098 
y5 

2.71828 
y6 

The Simpson's three-eighth’s rule is

         0 6 1 2 4 5 3
3

[( ) 3( ) 2( )]
8
hI y y y y y y y= + + + + + +

        
3(1/ 6)

8
I =  [(1 + 2.71828) + 3(1.18136 + 1.39561 + 1.94773 + 2.30098) + 2(1.64872)]

          I = 1.71830

Example E7.8

Evaluate 
12

20 1
dx

x+∫ by using Simpson’s 3/8 rule and taking seven ordinates.

Solution:
        n + 1 = 7 ⇒ n = 6, h = 2

The points of division are
        0, 2, 4, 6, 8, 10, 12

x 0 2 4 6 8 10 12 

y = f(x) 
1 
y0 

0.2 
y1 

0.05882 
y2 

0.02703 
y3 

0.01538 
y4 

  0.00990 
y5 

  0.00690 
y6 

The Simpson’s three-eighth’s rule is

         0 6 1 2 4 5 3
3

[( ) 3( ) 2( )]
8

I h y y y y y y y= + + + + + +

          
3

2
8

I = [(1 + 0.00690) + 3(0.2 + 0.05882 + 0.01538 + 0.00990) + 2(0.02703)]

          I = 1.43495

Example E7.9
Repeat Example E7.6 by using Simpson’s 3/8 rule, taking n = 6, correct to five decimal places.

Solution:
The points of division are

8 10 12 14 16 182, , , , , ,
3 3 3 3 3 3
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x 6/3 8/3 10/3 12/3 14/3 16/3 18/3 

y = f(x) 
0.30103 

y0 
0.42597 

y1 
0.52288 

y2 
0.60206 

y3 
0.66901 

y4 
0.727 

y5 
0.77815 

y6 

Here          2
3

h =

The Simpson’s three-eighth’s rule is

0 6 1 2 4 5 3
.3 [( ) 3( ) 2( )]
8

= + + + + + +hI y y y y y y y

3(2 / 3)
8

I = [(0.30103 + 0.77815) + 3(0.42597 + 0.52288 + 0.66901 + 0.72700) + 2(0.60206)]

I = 2.32947

7.6 BOOLE’S AND WEDDLE’S RULES

7.6.1 Boole’s Rule
Substituting n = 4 in Eq.(7.7) and taking the curve through (xn, yn), n = 0, 1, 2, 3, 4 as a polynomial of degree
4, so that the difference of order higher than four vanish (or neglected), we obtain

4

0

2 3 4
0 0 0 0 0

5 2 74 2
3 3 90

x

x
y dx h y y y y y = + ∆ + ∆ + ∆ + ∆  

⌠

⌡

            0 1 2 3 4
2

[7 32 12 32 7 ]
45
h y y y y y= + + + + (7.29)

Likewise
8

4

4 5 6 7 8
2 (7 32 12 32 7 )
45

x

x

hy dx y y y y y= + + + +⌠
⌡

and so on.
Adding all the above integrals from x0 to xn, where n is a multiple of 4, we obtain

    
0

0 1 3 5 7 2 6 10
2 .... ....[7 32( ) 12( )
45

= = + + + + + + + + +⌠
⌡

nx

x

hI y dx y y y y y y y y

         4 8 12
....14( ) 7 ]+ + + + + ny y y y (7.30)

Equation (7.30) is known as Boole’s rule. It should be noted here that the number of subintervals should be
taken as a multiple of 4.

The leading term in the error of formula can be shown as

            78
( )

945
vih y x−
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7.6.2 Weddle’s Rule
Substituting n = 6 in Eq.(7.7) and taking the curve y = f (x) through the point (xn, yn), n = 0, 1, 2, 3, 4, 5, 6 as
a polynomial of degree 6 so that the differences of order higher than 6 are neglected, we obtain

6

0

2 3 4 5 6
0 0 0 0 0 0 0

9 123 11 416 3 4
2 60 20 140

x

x
y dx h y y y y y y y = + ∆ + ∆ + ∆ + ∆ + ∆ + ∆  

⌠

⌡

            0 1 2 3 4 5 6
3

[ 5 6 5 ]
10

h y y y y y y y= + + + + + + (7.31)

Approximating 6
0

41
140

y∆  as 6
0

3
10

y∆ , we have, similarly, we can write

12

6

6 7 8 9 10 11 12
3 [ 5 6 5 ]
10

= + + + + + +⌠
⌡

x

x

hy dx y y y y y y y (7.32)

and so on.
Adding all the above integrals from x0 to xn, where x is a multiple of 6, we obtain

         
0

0 1 5 7 11 2 4 8 10
3 .... ....[ 5( ) ( )
10

= + + + + + + + + + +⌠
⌡

nx

x

hy dx y y y y y y y y y

              3 9 15 6 12 18
.... ....6( ) 2( ) ]+ + + + + + + + + ny y y y y y y (7.33)

Equation (7.33) is known as Weddle’s rule. Weddle’s rule was found to be more accurate than most of the

other rules. The error estimate is given by 
7

( )
140

vih y x−
. In Weddle’s rule, the number of subintervals should

be taken as multiple of 6.

A summary of the Newton-Cotes formulas and their errors is presented in Table 7.1.
Table 7.1: Summary of Newton-Cotes Formula

No. Integral Name Integration formula Error 

1. 
1

0

x

x
y dx∫  Trapezoidal Rule 0 1

h [y y ]
2

+  
3

iih y (x)
12
−  

2. 
2

0

x

x
ydx∫  Simpson’s 1/3 Rule 0 1 2

h [y 4y y ]
3

+ +  
5

ivh y (x)
90
−  

3. 
3

0

x

x
y dx∫  Simpson’s 3/8 Rule 0 1 2 3

3h [y 3y 3y y ]
8

+ + +  
5

iv3h y (x)
80

−  

4. 
4

0

x

x
y dx∫  Boole’s Rule 0 1 2 3 4

2h [7y 32y 12y 32y 7y ]
45

+ + + +  7 vi8 h y (x)
945
−  

5. 
6

0

x

x
y dx∫  Weddle’s Rule 0 1 2 3 4 5 6

3h [y 5y y 6y y 5y y ]
10

+ + + + + +  
7

vih y (x)
140
−  
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Example E7.10

Evaluate the integral 
1.2

0
xe dx∫ by using Boole’s rule using exactly five functional evaluations and correct to

five significant figures.

Solution:

Taking h = 
1.2
4

and applying Boole’s rule, we have

1.2
0 1 2 3 40

2( ) [7  + 32  + 12  + 32  + 7 ]  
45

=∫
hf x dx y y y y y

1.2

0

2 0.3
( ) [7 (0) + 32 (0.3) +  12 (0.6) +  32 (0.9) +  7 (1.2)]

45
f x dx f f f f f×

=∫

x 0 0.3 0.6 0.9 1.2 

y = f(x) 1 
y0 

1.34986 
y1 

1.82212 
y2 

2.45960 
y3 

3.32012 
y4 

1.2

0
( )f x dx∫ = 0.01333 [7×1 + 32 × 1.34986 + 12 × 1.82212 + 32 × 2.45960 + 7 × 3.32012]

1.2

0
( )f x dx∫ = 2.31954

Example E7.11

Evaluate the integral 
12

20 1
dx

x+∫ by using Boole’s rule using exactly five functional evaluations and correct

to five significant figures.
Solution:

x 0 3 6 9 12 
y = f(x) 1 0.1 0.02703 0.01220   0.00690 

The Boole’s rule is

12

0

2
( )

45
hf x dx =∫ [7f(0) + 32f(3) + 12f(6) + 32f(9) + 7f(12)]

2 3
45

I ×
= [7× (1) + 32× (0.1) + 12× (0.02703) + 32× (0.01220) + 7× (0.00690)]

I = 1.46174

Example E7.12

Evaluate the integral 
1.2

0
xe dx∫ by using Weddle’s rule and taking n = 6, correct to five significant figures.
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Solution:
f (x) = ex; a = x0 = 0; b = xn = 1.2; n = 6

     
1.2 0

6
h −
= = 0.2

The Weddle’s rule is

3
10

=
hI [y0 + 5y1 + y2 + 6y3 + y4 + 5y5 + y6]

x 0 0.2 0.4 0.6 0.8 1 1.2 
y = f(x) 1 

y0 
1.2214 

y1 
1.4918 

y2 
1.8221 

y3 
2.2255 

y4 
2.7183 

y5 
3.3201 

y6 

     
3(0.2)

10
=I [1 + 5(1.2214) + 1.4918 + 6(1.8221) + 2.2255) + 5(2.7183) + 3.3201]

    I = 2.32011 ≈ 2.3201.

Example E7.13

Evaluate the integral 
12

20 1
dx

x+∫ by using Weddle’s rule and taking n = 6, correct up to five significant figures.

Solution:
   a = 0; b = 12; n = 6

    
12 0

6
b ah

n
− −

= = = 2

x 0 2 4 6 8 10 12 
y = f(x) 1 

y0 
0.2 
y1 

0.05882 
y2 

0.02703 
y3 

0.01538 
y4 

  0.00990 
y5 

  0.00690 
y6 

The Weddle’s rule is 3
10

hI = [y0 + 5y1 + y2 + 6y3 + y4 + 5y5 + y6]

     
3 2
10

I ×
= [1 + 5 × 0.2 + 0.05882 + 6 × 0.02703+ 0.01538 + 5 × 0.00990 + 0.00690]

    I = 1.37567

Example E7.14
Repeat Example E7.6 by using Weddle’s rule, taking n = 6, correct to five decimal places.

Solution:
     a = 2; b = 6; n = 6
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6 2 2

6 3
b ah

n
− −

= = =

x 6/3 8/3 10/3 12/3 14/3 16/3 18/3 
y = f(x) 0.30103 

y0 
0.42597 

y1 
0.52288 

y2 
0.60206 

y3 
0.66901 

y4 
0.727 

y5 
0.77815 

y6 

The Weddle’s rule is

3
10

hI = [y0 + 5y1 + y2 + 6y3 + y4 + 5y5 + y6]

3(2 / 3)
10

I = [0.30103 + 5 × 0.42597 + 0.52288 + 6 × 0.60206 + 0.66901 + 5 × 0.727 + 0.77815]

  I = 2.32966
Example E7.15
Repeat Example E7.6 by Boole’s rule, using exactly five functional evaluations and correct to five significant
figures.

Solution:
We use five functional evaluations here.
Taking h = 1 and applying Boole’s rule, we have

      
2
45

I h= [7f (2) + 32f (3) + 12f (4) + 32f (5) + 7f (6)]

      
2
45

I = [7 × 0.30103 + 32 × 0.47712 + 12 × 0.60206 + 32 × 0.69897 + 7 × 0.77815]

x 2 3 4 5 6 
y = f(x) 0.30103 0.47712 0.60206 0.69897 0.77815 

        I = 2.32950

7.7 ROMBERG’S INTEGRATION

Romberg’s integration employs a successive error reduction technique. It applies the trapezoidal rule with
different interval sizes in order to obtain some preliminary approximations to the integral to start with. The
method starts with the preliminary approximations obtained by the trapezoidal rule and then applies the
Richardson extrapolation procedure which refines these values successfully to a single more accurate
approximation.

7.7.1 Richardson’s Extrapolation
Richardson extrapolation is a simple method for improving the accuracy of certain numerical procedures,
including the finite difference approximations and in numerical integration.
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Assume that we have an approximate means of computing some quantity G. In addition, assume that
the result depends on a parameter h. Let us denote the approximation by g(h), then we have
G = g(h) + E(h), where E(h) denotes the error.

Richardson extrapolation can remove the error, provided that it has the form E(h) = ch p, where c and p
are constants.

We begin by computing g(h) with some value of h, say h = h1. In this case, we have

         1 1( ) pG g h ch= + (7.34)

Repeating the calculations with h = h2, such that

2 2( ) pG g h ch= + (7.35)

Now, eliminating c and solving for G from Eqs.(7.34) and (7.35), we get

1
2 1

2

1

2

( ) ( )

1

p

p

h g h g h
h

G
h
h

 
−  

=
 

−  

(7.36)

Equation (7.36) is called the Richardson extrapolation formula.

It is general practice to use 1
2 2

h
h = and in this case Eq.(7.36) becomes

1
12 ( )

2
2 1

p

p

hg g h
G

  −  
=

−
(7.37)

7.7.2 Romberg Integration Formula
As mentioned earlier, Romberg’s integration provides a simple modification to the approximate quadrature
formula obtained with the aid of finite difference method in order to obtain their better approximations.

Consider as an example to improve the value of the integral

 ( )
b b

a a
I y dx f x dx= =∫ ∫ (7.38)

by the trapezoidal rule.
We can evaluate Eq.(7.38) by means of the trapezoidal rule, namely

 
0

0 1 2 3 1
1

....[ 2( ) ] [ 2 ]
2 2−

=
= = = + + + + + + = +∑ ∫ n

n x
i n nx

i

h hI I y dx y y y y y y X I (7.39)

where X = sum of end ordinates
and I = sum of intermediate ordinates.
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Equation (7.39) signifies that the curve y = f (x) is replaced by n straight lines joining the points (xi, yi),
i = 0, 1, 2, 3, …., n. The area bounded by the curve y = f (x) the ordinates x = x0, x = xn and the x-axis is then
approximated equivalent to the sum of the areas of the n-trapeziums so obtained.

Now, we evaluate Eq.(7.38) by means of two different widths h1 and h2 in order to obtain the approximate
values I1 and I2 respectively. The corresponding errors E1 and E2 are given by

        
2
1

1
( )

( )
12

b a h
E y x

−
= ′′

        2
( )

( )
12
b aE y x− −

= ′′ (7.40)

Noting that ( )y x′′ is also the largest value of y''(x), we can assume that the quantities ( )y x′′  and ( )y x′′ are
nearly equal.

Hence, we can write

       
2 22

1 1 2
2 2 2

2 2 12 2 1

E h hE
E E Eh h h

= = =
− − (7.41)

Noting, now that I = I1 – E1 = I2 – E2, we have

  E2 – E1 = I1 – I2 (7.42)

From Eqs.(7.41) and (7.42), we have

        
2 2
2 2

2 2 1 1 22 2 2 2
2 1 2 1

( ) ( )
h hE E E I I

h h h h
= − = −

− −

 
2 2

1 2 2 1
2 2 2 2

2 1

I h I hI I E
h h

−
= − =

− (7.43)

Equation (7.43) gives a better approximation for I.
In order to compute I, we let h1 = h and h2 = h/2 such that Eq.(7.43) gives

 

2
2

1 2
2 1 2 1

22
2

4 4
3 3

4

hI I h
I I I II I

h h

 
−   − −

= = = +
−

or  
4 ( )

2,
2 3

hI I h
hI h

  −    =  
(7.44)
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If we apply the trapezoidal rule several times successively halving h, every time the error is reduced by a
factor 1/4. The above computation is continued with two successive values are very close to each other.
This refinement of Richardson’s method is known as the Romberg integration. The values of the integral in
Romberg integration can be tabulated in the following scheme:

Romberg Integration Scheme

I(h)    
 hI h,

2
 
  

 
  

hI
2

 
  

 
 h hI h, ,

2 4
 
  

 
 

 h hI ,
2 4

 
  

 
 h h hI h, , ,

2 4 8
 
  

 

hI
4

 
  

 
 h h hI , ,

2 4 8
 
  

 
 

 h hI ,
4 8

 
  

 
  

hI
8

 
  

 
   

Where,
1, 4 ( )

2 3 2
h hI h I I h

    = −        

1, 4
2 4 3 4 2
h h h hI I I

      = −            
� �

      
1, , 4 , ,

2 4 3 2 4 2
h h h h hI h I I h

      = −            

     
1, , 4 , ,

2 4 8 3 4 8 2 4
h h h h h h hI I I

      = −            

 
1, , , 4 , , , ,

2 4 8 3 2 4 8 2 4
h h h h h h h hI h I I h

      = −            
(7.45)

The computations are continued until the successive values are close to each other. The general extrapolation
formula used in this scheme is

      
1

, 1 1, 1
, 1

4

4 1

j
i j i j

i j j

R R
R

−
− − −
−

−
=

−
    i > 1, j = 2, 3, …., I (7.46)
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A pictorial representation of Eq.(7.46) is shown below:

Ri–1,j–1

Ri,j –1 R i,j

α

β

where the multipliers α and β depend on j in the following manner:

j 2 3 4 5 6 
α –1/3 –1/15 –1/63 –1/255 –1/1023 
β  4/3 16/15 64/63 256/255 1024/1023 

Example E7.16

Apply Romberg’s integration to find 
0

( )f x dx
π
∫ , where f (x) = sin x.

Solution:
From the recursive trapezoidal rule in Eq. (7.9), we have

1,1 ( ) [ (0) ( )] 0
2

R I f fπ
= π = + π =

2,1
1 ( ) 1.5708

2 2 2 2
R I I fπ π π   = = π + =      

3,1
1 3 1.8961

4 2 2 4 4 4
R I I f f

 π π π π π       = = + + =                

4,1
1 3 5 7 1.9742

8 2 4 8 8 8 8 8
R I I f f f f

 π π π π π π π           = = + + + + =                        

Using the extrapolation formula in Eq.(7.46), we obtain the following table:

1,1

2,1 2,2

3,1 3,2 3,3

4,1 4,2 4,3 4,4

0
1.5708 2.0944
1.8961 2.0046 1.9986
1.9742 2.0003 2.0000 2.0000

R
R R
R R R
R R R R

   
   
   =   
   

     

The above table shows that the procedure has converged. Hence, 4 40
( ) , 2.0000f x dx R

π
= =∫ which is of

course, the exact result.
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Example E7.17

Apply Romberg’s integration method to find 
1.2

0

1
1

dx
x

 
  +∫  correct to five decimal places.

Solution:

1
( )

1
f x

x
=

+

Let h = 0.6, 0.3 and 0.15 or h = 0.6, h/2 = 0.3 and h/4 = 0.15.

x 0 0.15 0.30 0.40 0.60 0.75 0.90 1.05 1.20 
y = f(x) 1 0.86957 0.76923 0.71429 0.62500 0.57143 0.52632 0.48780 0.45455 

Applying trapezoidal rule for h = 0.6, we obtain

    I(h) = I(0.6) = I1 
0.6
2

(1 + 0.45455) + 2(0.6250)] = 0.81132

For h = 
0.6
2

= 0.3, we obtain

2
0.3(0.3) [(1 0.45455) 2(0.76923 0.6250 0.52632)] 0.79435

2 2
hI I I  = = = + + + + =  

For h = 
0.6
4

= 0.15, we have

3
0.15(0.15) [(1 0.45455) 2(0.86957 0.76923 0.71429)

4 2
hI I I  = = = + + + +  

                      
0.15

[2(0.6250 0.57143 0.52632 0.48780)] 0.78992
2

+ + + + =

Now             , (0.6,0.3)
2
hI h I  =  

Therefore,   1 1
(0.6,0.3) [4 (0.3) (0.6)] [4(0.79435) 0.81132] 0.78864

3 3
I I I= − = − =

In a similar manner, we obtain

     
1 1, (0.3,0.15) [4 (0.15) (0.3)] [4(0.78992 0.79435)] 0.78846

2 4 3 3
h hI I I I  = = − = − =  

Hence,        , , (0.6,0.3,0.15)
2 4
h hI h I  =  

or    
1 1

(0.6,0.3,0.15) [4 (0.15,0.3) (0.3,0.6)] [4(0.78846) 0.78864] 0.78832
3 3

I I I= − = − =
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The computations are summarised in the table below:

0.81132   
 0.7864  
0.79435  0.78832 
 0.78846  
0.78992   

Hence 
1.2

0

1
0.78832

1
dx

x
=

+∫ correct to five decimal places.

Example E7.18

Apply Romberg’s integration method to find  
1

20 1
dx

x+∫ correct to four decimal places. Take h = 0.5, 0.25 and

0.125.
Solution:
Applying the trapezoidal rule, for h = 0.25, we obtain

x 0 0.5 1 

y = f(x) = 2

1
(1 x )+

 1 0.8 0.5 

Hence
1

20

1 0.5 [1 2(0.8) 0.5] 0.775
21

I
x

= = + + =
+∫

For h = 0.25, we have
x 0 0.25 0.5 0.75 1 

y = f(x) = 2

1
(1 x )+

 1 0.9412 0.8 0.64 0.5 

Hence          
1

20

0.25 [1 2(0.9412 0.8 0.64) 0.5] 0.7848
21

dxI
x

= = + + + + =
+∫

Similarly, when h = 0.125, we find I = 0.7848.
Applying Eq.(7.46), we obtain the table as follows:

0.5 0.775   
0.25 0.7828 0.7854  
0.125 0.7848 0.7855 0.7855 

Hence, I = 
1

20 1
dx

x+∫ = 0.7855 correct to four decimal places.
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7.8 SUMMARY

In this chapter we have presented the various techniques on numerical integration. Integration methods
such as the trapezoidal rule, Simpson’s one-third rule, Simpson’s three-eight’s rule, and Boole’s and Weddle’s
rules and their composite versions, Romberg’s integration were presented with illustrative examples. These
methods use uniformly spaced based points.

Problems

7.1 Evaluate 
1 2
0

cos x dx∫ by taking eight subintervals using trapezoidal rule.

7.2 Use trapezoidal rule to evaluate 
1 3

0
x dx∫ , corresponding five subintervals.

7.3 Compute the following integral numerically using the trapezoidal rule:

1

0
xI e dx= ∫

Use (a) n = 1, (b) n = 2, (c) n = k and (d) n = 8. The exact value of I = 1.7183. Compare your computed
results in each case with the exact result.

7.4 Evaluate 
1

20 1+∫
dx

x
 using trapezoidal rule. Take h = 0.25.

7.5 Determine the area bounded by the curve f (x) = xe2x and the x-axis between x = 0 and x = 1 using the
trapezoidal rule with an interval size of (a) h = 0.5, (b) h = 0.1. Determine the relative error in each case
given that the exact value of the integral I = 2.09726.

7.6 Evaluate 
5

101
log x dx∫ , taking eight subintervals correct to four decimal places by trapezoidal rule.

7.7 Evaluate 
7 2

1
sin x dx∫ by taking seven ordinates using the trapezoidal rule.

7.8 Evaluate 
0

sint t dt
π
∫ using trapezoidal rule.

7.9 Repeat Problem P7.9 using Simpson’s 1/3 rule.
7.10 Repeat Problem P7.2 using Simpson’s 1/3 rule taking h = 0.25.

7.11 Compute the integral 
1

0
xI e dx= ∫ using Simpson’s rule with n = 8 intervals rounding off the results to

4 digits.

7.12 Evaluate 
0.6

0
xe dx∫ , taking n = 6, correct to five significant figures by Simpson’s 1/3 rule.

7.13 Evaluate 
/ 2

0
cos x dx

π
∫ by Simpson’s 1/3 rule taking n = 6.
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7.14 Evaluate 
5.2

4
log x dx∫  by taking seven grid points and using the Simpson’s 1/3 rule.

7.15 Repeat Problem P7.15 using Simpson’s 1/3 rule.

7.16 Evaluate 
1

2
0 1

dx
x+

⌠
⌡ by taking six equal parts using Simpson’s 1/3 rule.

7.17 Evaluate 
6

2
0 1

dx
x+

⌠
⌡ by using Simpson’s 3/8 rule.

7.18 Repeat Problem P7.24 using Simpson’s 3/8 rule taking h = 1/6.

7.19 Evaluate 
1

2
0

1
1 x+

⌠
⌡ dx, by taking seven ordinates, using the Simpson’s 3/8 rule.

7.20 Evaluate 
1

0
sin cosx x dx+∫ correct to two decimal places using Simpson’s 3/8 rule.

7.21 Evaluate 
6

2

1
log x dx

e
⌠

⌡

 by using Simpson’s 3/8 rule.

7.22 Evaluate 
5.2

4
log x dx∫  by taking seven grid points. Use Simpson’s 3/8 rule.

7.23 Evaluate 
/ 2 sin

0
xe dx

π
∫ correct to four decimal places using Simpson’s 3/8 rule.

7.24 Repeat Problem P7.24 using Simpson’s 3/8 rule.

7.25 Evaluate the integral 
1

0
1 sin 4xe x−+∫ dx using Boole’s rule with h = 1/4.

7.26 Repeat Problem P7.25 using Boole’s rule.
7.27 Repeat Problem P7.2 using Weddle’s rule taking h = 1/6.
7.28 Repeat Problem P7.25 using Weddle’s rule.

7.29 Evaluate 
5.2

4
loge x dx∫  using Weddle’s rule. Take n = 6.

7.30 Evaluate 
5.2

4
log x dx∫ by taking seven grid points. Use Boole’s and Weddle’s rule.

7.31 Evaluate 
1/ 2

2
0 1

dx

x−

⌠

⌡

 using Weddle’s rule.

7.32 Evaluate 
2

2
0

1
1

dx
x+

⌠
⌡

by using Weddle’s rule taking twelve intervals.
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7.33 Use Romberg’s integration method to evaluate 
5.2

4
log x dx∫ , given that

x 4 4.2 4.4 4.6 4.8 5.0 5.2 
2
elog  1.3863 1.4351 1.4816 1.5260 1.5686 1.6094 1.4684 

7.34 Use Romberg’s integration method to compute
1

0

1
1+∫ x

dx with h = 0.5, 0.25 and 0.125. Hence, finds

2loge  correct to four decimal places.

7.35 Approximate the integral 
1

0
( ) xf x x e dx−= ∫ using Romberg’s integration with accuracy of n = 8 intervals.

Round off results to 6 digits.

7.36 Use Romberg’s integration to evaluate 2 2
0

2 cosx x dx
π

∫ .

7.37 Evaluate 
2 5 3
0

( 3 2)x x dx+ −∫ by Romberg’s integration.

7.38 Estimate 
0

( )f x dx
π
∫ as accurately as possible, where f(x) is defined by the data:

x 0 π/4 π/2 3π/4 π 
f(x) 1 0.3431 0.25 0.3431 1 

7.39 Use Romberg’s integration method to compute R3,3 for the following integrals:

(a)
1 2
0

xx e dx−∫ (b)
1.5 2
1

ln∫ x x dx

(c)
/ 4 2

0
(cos )x dx

π
∫ (d)

/ 4 3
0

sin 2xe x dx
π
∫

7.40 Use Romberg’s integration method to find R3,3 for the integral 
/ 4 2

0
sinx x dx

π
∫ .

7.41 Apply Romberg integration method to find 
5

1
( )f x dx∫ for the following data:

x 1 2 3 4 5 
y = f(x) 2.4142 2.6734 2.8974 3.0976 3.2804 

7.42 Apply Romberg’s integration method to find 
1 1/3
0

x dx∫ .

P P P
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8.1 INTRODUCTION

Numerical methods are becoming more and more important in engineering applications, simply because of
the difficulties encountered in finding exact analytical solutions but also, because of the ease with which
numerical techniques can be used in conjunction with modern high-speed digital computers. Several numerical
procedures for solving initial value problems involving first-order ordinary differential equations are discussed
in this chapter.

In spite of the fact that the error analysis is an important part of any numerical procedure, the discussion
in this chapter is limited primarily to the use of the procedure itself. The theory of errors and error analysis
is sometimes fairly complex and goes beyond the intended scope of this chapter.

An ordinary differential equation is one in which an ordinary derivative of a dependent variable y with
respect to an independent variable x is related in a prescribed manner to x, y and lower derivatives. The most
general form of an ordinary differential equation of nth order is given by

2 1

2 1, , , ,....,
n n

n n

d y dy d y d yf x y
dx dx dx dx

−

−

 
=    (8.1)

The Eq.(8.1) is termed as ordinary because there is only one independent variable.
To solve an equation of the type (Eq.(8.1)), we also require a set of conditions. When all the conditions

are given at one value x and the solution proceeds from that value of x, we have an initial-value problem.
When the conditions are given at different values of x, we have a boundary-value problem.

A general solution of an ordinary differential equation (Eq.(8.1)) would be a relation between y, x and n
arbitrary constants which is of form

f (x, y, c1, c2, …, cn) = 0 (8.2)
If particular values are given to the constants cn in Eq.(8.2), then the resulting solution is called a

particular solution. There are many analytical methods available for finding the solution of the Eq.(8.1).
However, there exist a large number of ordinary differential equations in science and engineering, whose
solutions cannot easily be obtained by the well-known analytical methods. For such ordinary differential

8
Numerical Solution of Ordinary

Differential Equations
Numerical Solution of Ordinary

Differential Equations

8C
H

A
P

T
E

R
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equations, we can obtain an approximate solution of a given ordinary differential equations using numerical
methods under the given initial conditions.

Any ordinary differential equation can be replaced by a system of first-order differential equations (which
involve only first derivatives). The single first-order ordinary differential equation with an initial value is a
special case of Eq.(8.1). It is described by

( , )
dy f x y
dx

= y = y0 at x = x0 (8.3)

The description in Eq.(8.3) consists of the differential equation itself and a given solution y0 at initial location
x0. We then obtain the solution y as x ranges from its initial value to some other value.

The general solution of Eq.(8.3) can be obtained in two forms:
1. the values of y as a power series in independent variable x
2. as a set of tabulated values of x and y.
There are two categories of methods to solve ordinary differential equations:
1. One-step methods or single-step methods.
2. Step-by-step methods or marching methods.
In one-step methods or single-step methods, the information about the curve represented by an ordinary

differential equation at one point is utilised and the solution is not iterated. In step-by-step methods or the
marching methods, the next point on the curve is evaluated in short steps ahead, for equal intervals of width
h of the independent variable, by performing iterations till the desired level of accuracy is obtained.

In general, we divide the interval (a, b) on which the solution is derived into a finite number of subintervals
by the points a = x0 < x1 < x2, … < xn = b, called the mesh points. This is done by setting up xn = x0 + nh.

The existence of the uniqueness of the solution to an initial value problem in (x0, b) is based on Lipschitz
theorem. Lipschitz theorem states that:

(a) If f (x, y) is a real function defined and continuous in (x0, b), y∈(–∞, +∞), where x0 and b are finite.
(b) There exists a constant k > 0 called Lipschitz constant such that for any two values y = y1 and

y = y2
|f (x, y1) – ( f (x, y2)| < k |k1 – k2|

where x∈(x0, b), then for any y(x0) = y0, the initial value problem [Eq. (8.3)], has unique solution for
x∈(x0, b).

Also, there are two types of methods, explicit and implicit, can be used to compute the solution at
each step. Explicit methods are those methods that use an explicit formula for calculating the value of the
dependent variable at the next value of the independent variable. In an explicit method, the right-hand side
of the equation only has all known quantities. Therefore, the next unknown value of the dependent variable,
yn +1, is calculated by evaluating an expression of the form:

yn +1 = F(xn, xn +1, yn) (8.4)

where xn, yn and xn +1 are all known quantities.
In implicit methods, the equation used for computing yn +1 from the known xn, yn and yn +1 has the form:

yn +1 = F(xn, xn +1, yn +1) (8.5)
Here, the unknown yn +1 appears on both sides of the equation. Generally speaking, the right-hand side

of Eq.(8.3c) is non-linear. Therefore, the equation (8.5) must be solved for yn+1 using suitable numerical
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methods. In general, implicit methods give better accuracy over explicit methods at the expense of additional
effort.

In this chapter, we present among the one-step or single-step methods, Picard’s method of successive
approximations, Taylor series methods were presented. Euler’s method, modified Euler’s method, and Runge-
Kutta methods of order two and four, the Adam-Moulton predictor-corrector method and Milne’s predictor-
corrector methods were presented among the step-by-step methods or the marching methods. All these
methods will be illustrated with worked examples.

8.2 ONE-STEP METHODS OR SINGLE-STEP METHODS

In single-step explicit method, the approximate solution (xn +1, yn +1) is computed from the known solution
at point (xn, yn) using

xn +1 = xn + h (8.6)
yn+1 = yn + (slope) h (8.7)

This is illustrated in Fig.8.1. Here in Eq.(8.6), h is the step size and the slope is a constant that estimates the

value of 
dy
dx

in the interval from xn to xn+1. The numerical solution starts at the point where the initial value

is known corresponding to n = 1 and point (x1, y1). Then, n is increased to n = 2, and the solution at the next
point, (x2, y2) is computed using Eqs. (8.6) and (8.7). This procedure is repeated for n = 3 and so on until the
points cover the whole domain of the solution.

y(x)
y

x
xn xn+1

yn

yn+1

Exact solution

Slope

Numerical
solution

h

Fig. 8.1: Single-step explicit methods

8.2.1 Picard’s Method of Successive Approximation

Consider the differential equation given by Eq.(8.3), namely, 
dy
dx

= f (x, y) with the initial condition y(x0) = y0.
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Integrating this Eq. (8.3) between x0 and x, we obtain

 
0 0

( , )
x x

x x
dy f x y dx=∫ ∫

or
0

0 ( , )
x

x
y y f x y dx− = ∫

or  
0

0 ( , )
x

x
y y f x y dx= + ∫ (8.8)

Equation (8.8) is called the integral equation since the dependent variable y in the function f (x, y) on the
right-hand side occurs under the sign of integration.

Here, the problem of solving the differential equation (8.3) has been reduced to solving the integral
Eq.(8.8). The first approximation y1 of y can be obtained by replacing y by y0 in f (x0, y0) in Eq. (8.8).

Therefore 
0

1 0 0( , )
x

x
y y f x y dx= + ∫ (8.9)

Similarly, the second approximation is obtained as

0
2 0 1( , )

x

x
y y f x y dx= + ∫ (8.10)

Likewise
0

3 0 2( , )
x

x
y y f x y dx= + ∫

0
4 0 3( , )

x

x
y y f x y dx= + ∫ (8.11)

and so on.
Continuing this process, we obtain y5, y6, …., yn +1, or

   
0

1 0 1( , )
x

n nx
y y f x y dx+ −= + ∫ (8.12)

The sequence of {yn}, n = 1, 2, 3, … converges to the exact solution provided that the function f (x, y) is
bounded in some region in the neighbourhood of (x0, y0) and satisfies the Lipschitz condition. That is, there
exists a constant k such that | ( , ) ( , ) | | |f x y f x y k y y− ≤ − , for all x. The process of iteration is concluded
when the values of yn–1 and yn are approximately equal.

Example E8.1

Use Picard’s method of successive approximation to find the value of y when x = 0.1, given that y = 1 when

x = 0 and 
dy
dx

= 3x + y2.

Solution:

Here 
dy
dx

= f (x, y) = 3x + y2, x0 = 0, y0 = 1.
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From Eq. (8.9)

 
0

2 2
1 0 0 0 00 0

3( , ) (3 ) 1 (3 1) 1
2

x x x

x
y y f x y dx y x y dx x dx x x= + = + + = + + = + +∫ ∫ ∫ (E.1)

From Eq. (8.10)

 
0

2
2 0 1 0 10

( , ) (3 )
x x

x
y y f x y dx y x y dx= + = + +∫ ∫

     4 3 2 5 4 3 2
0

9 9 3 4 51 3 4 5 1 1
4 20 4 3 2

x
x x x x dx x x x x x = + + + + + = + + + + +  ∫ (E.2)

From Eq. (8.11)

          
0

10 9 8 7 6
3 0 2 0

81 27 141 17 1157( , ) 1
400 40 80 4 180

x x

x
y y f x y dx x x x x x= + = + + + + +∫ ∫

 
5 4 3 2136 125 23 6 5 1

15 12 3
x x x x x dx+ + + + + + 

              11 10 9 8 781 27 47 17 1157
4400 400 240 32 1260

x x x x x= + + + +

 6 5 4 3 268 25 23 5
2 1

45 12 12 2
x x x x x x+ + + + + + + (E.3)

When x = 0.1, Eqs. (E.1), (E.2) and (E.3) respectively give
y0 = 1
y1 = 1.1150
y3 = 1.1272

Example E.8.2
Use Picard’s method of successive approximation to find the value of y for the following:

(a)
dy
dt

= 2y, y (0) = 1

(b) = 2  – , (0) = 1.
dy x y y
dx

Solution:
(a) The stated initial value problem is equivalent to the integral equation

       
0

( ) 1 2 ( )
x

y x y dt= + +∫

Hence    1 0
( ) 1 2 ( )

x
j jy x y t dt+ = + ∫
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Using  y0(x) = 1, we find

1 0
( ) 1 2 1 2

x
y x dt x= + = +∫

2
2 0
( ) 1 2(1 2 ) 1 2 2

x
y x t dt x x= + + = + +∫

3
2 2

3 0

4( ) 1 2(1 2 2 ) 1 2 2
3

x xy x t t dt x x= + + + = + + +∫
In general, we have

         
3

2

0

4 (2 ) 2( )...( ) 1 2 2 !3 !

jj

j
x x xy x x x

j =
= + + + + + = ∑

�

�

�
�

These are the partial sums for the power series expansion of y = e2x. Hence, the solution of our initial value
problem is y = e2x.
(b) The equivalent integral equation is

           [ ]
0

( ) 1 2 ( )
x

y x t y t dt= + −∫

Hence,        1 0
( ) 1 2 ( )

x
j jy x t y t dt+  = + − ∫

Taking y0(x) = 1, we have

  

2
1 0

2 3
2

2 0

2 3 4
2 3

3 0

2 3 4 5
2 3 4

4

( ) 1 (2 1) 1

3( ) 1 2 1 ) 1
2 3

3( ) 1 2 1 3 /2 /3) 1 .2 2 4 3

3
( ) 1 2 1 3 /2 /2 /4.3) 1 . . .2 2 4 2 5 4 3

= + − = + −

  = + − + − = + − −   

  = + − + − − = + − − +   

  = + − + − − + = + − − + − 

∫

∫

∫

x

x

x

y x t dt x x

x xy x t t t dt x

x x xy x t t t t dt x

x x x xy x t t t t t dt x
0


 ∫

x

Therefore
2 3 4 1

13 3 4 3 2...( ) 1 ( 1) ( 1)
2! 2! 4! ! ( 1)!

j j
j j

j
x x x x xy x x

j j

+
+= + + − + − + − + −

+

   [ ] [ ]
1 1

1 1

0 0

2 ( ) 22 2 3 ( 1) ( 1) 2 2 3 ( 1)
! ( 1)! ! ( 1)!

j jj j
j j

t t

x x x xx x
j j

+ +
+ +

= =

   −
= − + − + − = − + + −   

+ +      
∑ ∑

� �
�

� �

The iterates yj(x) converge to the solution y(x) = [2x – 2] + 3e–x for the initial value problem.
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8.2.2 Taylor’s Series Method
Consider the differential equation

0 0( , ) with ( )
dy f x y y x y
dx

= = (8.13)

Let y = y(x) be a continuously differentiable function satisfying the Eq.(8.13). Expanding y in terms of Taylor’s
series around the point x = x0, we obtain

2 3
0 0 0

0 0 0 0
( ) ( ) ( ) ...

1! 2! 3!
x x x x x x

y y y y y
− − −

= + + + +′ ′′ ′′′ (8.14)

Now, substituting x = x1 = x0 = h, in Eq. (8.14), we get

             
2 3

1 1 0 0 0 0 ...( )
1! 2! 3!
h h hf x y y y y y= = + + + +′ ′′ ′′′ (8.15)

Finally, we obtain
2 3

1 ...
1! 2! 3!n n n n n
h h hy y y y y+ = + + + +′ ′′ ′′′ (8.16)

Equation (8.16) can be written as

     
2

3
1 ( )

1! 2!n n n n
h hy y y y O h+ = + + +′ ′′ (8.17)

where O(h3) represents all the terms containing the third and higher power of h. The local truncation error in
the solution is kh3 where k is a constant when the terms containing the third and higher powers of h are
ignored. It should be noted here that the Taylor’s series method is applicable only when the derivatives of
f (x, y) exist and the value of (x – x0) in the expansion of y = f (x) near x0 must be very small so that the series
converges. Taylor’s series method is a single-step method and works well as long as the successive derivatives
can be calculated easily.

The truncation error, due to the terms neglected in the series is given by

( 1) 11 ( )
( 1)!

n nE y h
n

+ += ξ
+    x < ξ < x + h (8.17a)

Using the finite difference approximation

 1
( ) ( )( )

n n

n
y x h y xy

h+
+ −

ξ = (8.17b)

or [ ( ) ( )]
( 1)!

n
n nhE y x h y x

n
= + −

+
(8.17c)

Equation (8.17c) is in more usable form and could be incorporated in the algorithm to monitor the error in
each integration step.
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If the series in Eq.(8.17) is truncated after the term hk, then the truncation error can be written as

1
( 1) ( )

( 1)!

k
k

e
hT f p
k

+
+=

+
    xk < p < xk + h (8.17d)

Example E8.3

Use the second-order Taylor series method on (2, 3) for the initial value problem 
dy
dx

= – xy2, y(2) = 1. Take

h = 0.1. Compare the results obtained with the exact solution of 2
2

2
y

x
=

−
.

Solution:
For f (x, y) = – xy2, the first partial derivatives are fx = – y2 and fy = –2xy.

Hence, the second-order Taylor’s series method [Eq.(8.17)] becomes

 
2 2 2 2 2

1 [ ( 2 )( ) [ 1 2
2 2n n n n n n n n n n n n n n
h hy y h x y y x y x y y hy x x y+

   = + − + − + − = + − + − +   
   

Taking h = 0.1 and starting with x0 = 2, y0 = 1, we get

n = 0: 2 2
1 1 0 0 0 0 0( ) (2.1) [ 1 2 ]

2
hy x y y y hx t x y = = = + − + − + 

 

 y(x1) = 1 + 0.1(1)2{–2 + 0.05[–1 + 2(2)21]} = 0.8350

n = 1:
2 2

2 2 1 1 1 1 1( ) (2.2) [ 1 2 ]
2
hy x y y y hx x x y = = = + − + − + 

 

 y(x2) = 0.8350 + 0.1(0.8350)2{–2.1 + 0.05[–1 + 2(2.1)2(0.8350)]} = 0.71077
The resulting approximations of y(2.0), y(2.1), …., y(3.0) are shown in Table E8.3 along with the exact values
and the relative error, En.

Table E8.3: Second-order Taylor’s series method for 
dy

dx
= –xy2, y(2) = 1

Using h = 0.1 xn 
Exact  
y(xn) yn[0.1] En[0.1] 

x0 = 2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 

xF = 3.0 

1 
0.8299 
0.7042 
0.6079 
0.5319 
0.4706 
0.4202 
0.3781 
0.3425 
0.3120 
0.2857 

1 
0.835 
0.7108 
0.6145 
0.5380 
0.4761 
0.4250 
0.3823 
0.3462 
0.3153 
0.2886 

  0 
–0.0051 
–0.0065 
–0.0066 
–0.0061 
–0.0055 
–0.0049 
–0.0043 
–0.0037 
–0.0033 
–0.0029 
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Example E8.4

Use Taylor’s series method to solve the equation 
dy
dx

= 3x + y2 to approximate y when x = 0.1, given that y

= 1 when x = 0.

Solution:

Here         (x0, y0) = (0, 1) and 1 23
dyy x h
dx

= = +

From Eq. (8.17)

 
2 3 4

1
...

1! 2! 3! 4!
i ii iii iv

n n n n n n
h h h hy y y y y y+ = + + + + +

 yi = 3x + y2 yi at (x0) = yi at (0) = 1
yii = 3 + 2yy i yii at x0  = 3 + 2(1)(1) = 5
yiii = 2(yi)2 + 2yyii yiii at x0 = 2(1)2 + 2(1)(5) = 12
yiv = 6yiyii + 2yyiii yiv at x0 = 6(1)(5) + 2(1)(12) = 54

Hence, the required Taylor series in Eq.(8.17) becomes

2 3 4 2 3 45 12 54 5 9... ...1 1 2
2! 3! 4! 2 4

y x x x x x x x x= + + + + + = + + + + +

When x = 0.1, we have

2 3 45 9 ...1 0.1 (0.1) 2(0.1) (0.1)
2 4

y = + + + + +

   = 1 + 0.1 + 0.025 + 0.002 + 0.00022 + … = 1.12722

Example E8.5
Use the fourth order Taylor series method with a single integration step to determine y(0.2). Given that

24
dy y x
dx

+ = ,   y (0) = 1

The analytical solution of the differential equation is

4 231 1 1 1
32 4 8 32

xy e x x−= + + − +

Compute also the estimated error and compare it with the actual error.

Solution:
The Taylor series solution up to and including the term with h4 is given by

     
2 3 4

1 1! 2! 3! 4!
i ii iii iv

n n n n n n
h h h hy y y y y y+ = + + + + (E.1)
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or
2 3 4

( ) (0) (0) (0) (0) (0)
2! 3! 4!

i ii iii ivh h hy h y hy y y y= + + + +

The given differential equation is

           24
dy y x
dx

+ =

or       yi = –4y + x2

Differentiating the above equation gives
yii = –4yi + 2x = 16y – 4x2 + 2x

yiii = 16yi – 8x + 2 = – 64y + 16x2 – 8x + 2
yiv = –64yi + 32x – 8 = 256y – 64x2 + 32x – 8

Hence, yi(0) = –4(1) = –4
yii(0) = 16(1) = 16
yiii(0) = –64(1) + 2 = –62
yiv(0) = 256(1) – 8 = 248

For h = 0.2, Eq. (E.1) becomes

      2 3 41 1 1
(0.2) 1 ( 4)(0.2) (16)(0.2) ( 62)(0.2) (248)(0.2) 0.4539

2! 3! 4!
iy = + − + + − + =

According to Eq.(8.17c), the approximate truncation error is given by

    [ ( ) ( )]
( 1)!

n

n n
hE y x h y x

n
= + −

+

or     
4

[ ( ) ( )]
( 1)!

n nhE y x h y x
n

= + −
+

     for n = 4

       
4

(4) (4)[ (0.2) (0)]
5!
h y y= −

where             y(4)(0) = 248
            y(4)(0.2) = 256(0.4539) – 64(0.2)2 + 32(0.2) – 8 = 112.04

Hence,              
4(0.2) [112.04 248] 0.0018

5!
E = − = −

The analytical solution gives

             4(0.2) 231 1 1 1
(0.2) (0.2) (0.2) 0.4515

32 4 8 32
y e−= + − + =

Hence, the actual error is 0.4515 – 0.4539 = – 0.0024.
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8.3 STEP-BY-STEP METHODS OR MARCHING METHODS

In explicit multi-step methods, the solution yn +1, at the next point is calculated from an explicit formula. For
instance, if three prior points are used, the next unknown value of the dependent variable, yn +1, is computed
by evaluating an expression of the form:

         yn +1 = F(xn –2, yn –2, xn –1, yn –1, xn, yn, xn +1) (8.18)

Equation (8.18) is of explicit form since the right-hand side of the equation has only all known quantities. In
implicit multi-step methods, the unknown yn +1 appears on both sides of the equation, which needs to be
solved using numerical methods.

8.3.1  Euler’s Method
Euler’s explicit method (also called the forward Euler method) is a single-step, explicit method for solving a
first-order ordinary differential equation. The method uses Eqs.(8.6) and (8.7), where the value of the slope
in Eq. (8.7) is the slope of y(x) at point (xn, yn). This slope is computed from the differential equation:

       slope ( , )
n

n n
x x

dy f x y
dx =

= = (8.19)

Euler’s explicit method is illustrated schematically in Fig. 8.2. Euler’s method assumes that for a short distance
h near (xn, yn), the function y(x) has a constant slope equal to the slope at (xn, yn). Based on this assumption,
the next point of the numerical solution (xn +1, yn +1) is obtained by:

xn +1 = xn + h (8.20)
yn +1 = yn + f (xn, yn)h (8.21)

The error in this method depends on the value of h and is smaller for smaller h.
Equation (8.21) can be derived in several ways.
Consider the differential equation

    ( , )
dy f x y
dx

= (8.22)

with the initial condition y(x0) = y0.
Integrating Eq.(8.22), we obtain

    
0

0 ( , )+= ∫
x

x
y y f x y dx (8.23)

Suppose we want to obtain an approximate value of y say yn when x = xn. We divide the interval [x0, xn] into
n subintervals of equal length, say, h, with the division point x0, x1, x2,…, xn, where x = xr = x0 = rh,
r = 1, 2, 3, ....
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x

y

xn xn+1

y(x)

Exact solution

Numerical solution

Slope: f(xn, yn)
yn

h

Fig. 8.2: Euler’s explicit method

Then, from Eq.(8.23), we have

 
1

0
1 0 ( , )

x

x
y y f x y dx= + ∫ (8.24)

Assuming that f (x, y) = f (x0, y0) in x0 ≤ x ≤ x1, the Eq.(8.24) leads to

  y1 = y0 + h f (x0, y0) (8.25)

Equation (8.25) is called the Euler’s formula.
Similarly, for the range x1 ≤ x ≤ x2, we have

2

1
2 1 1 1 1( , ) ( , )

x

x
y y f x y dx y h f x y= + = +∫

and for the range x2 ≤ x ≤ x3, we get
 y3 = y2 + h f (x2, y2)

and so on.
Finally, we obtain

yn+1 = yn + h f (xn, yn), n = 0, 1, 2, 3, …. (8.26)
Euler’s method accumulates large error as the process proceeds. The process is known to be very slow and
in order to obtain reasonable accuracy, the value of h needs to be smaller. It can be shown that the error in
Euler’s method is O(h) i.e., the error tends to zero as h → 0, for x = xn fixed. The local truncation error of
Euler’s explicit method is O(h2). The global truncation error O(h). The total numerical error is the sum of the
global truncation error and the round-off error. The truncation error can be reduced by using smaller
h (step size). However, if h becomes too small such that round-off errors become significant, the total error
might increase.

Example E8.6
Use Euler’s method to solve the following differential equation
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          2 , (2) = 1 and 2 <  < 3 with  = 0.1.
dy ty y x h
dx

= −

Compare the results with exact solution from 2
2

2
y

x
=

−
.

Solution:
Euler’s formula given by Eq.(8.26) is

yn +1 = yn + hf (xn, yn),    n = 0, 1, 2, 3, ….

or yn+1 = yn + h 2
n nt y −   ≈ y(xn+1), xn+1 = 2 + (n + 1)h

Starting with x0 = 2 and y0 = 1 and taking h = 0.1, we get

n = 0: y1 = y0 – h 2
0 0x y   = 1 – 0.1[2(1)2] = 0.8 ≈ y(2.1)

n = 1: y2 = y1 – h 2
1 1x y   = 0.8 – 0.1[2.1(0.8)2] = 0.6656 ≈ y(2.2)

n = 2: y3 = y2 – h 2
2 2x y   = 0.6656 – 0.1[2.2(0.6656)2] = 0.5681 ≈ y(2.3)

n = 3: y4 = y3 – h 2
3 3x y   = 0.5681 – 0.1[2.3(0.5681)2] = 0.4939 ≈ y(2.4)

The results are tabulated for xn = 2, 2.1, 2.2, …., 3 in the h = 0.1 in Table E8.6. The exact values of y(xn) were

obtained from the solution of y(n) were also shown in the table. That is, 2
2( )

2n
n

y x
x

=
−

Table E8.6: Euler’s method values for 
dy

dx
= –xy2, y(2) = 1

Using h = 0.1 xn 
Exact  
y(xn) yn[0.1] En[0.1] 

x0 = 2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 

xF = 3.0 

1 
0.8299 
0.7042 
0.6079 
0.5319 
0.4706 
0.4202 
0.3781 
0.3425 
0.3120 
0.2857 

1 
0.8000 
0.6656 
0.5681 
0.4939 
0.4354 
0.3880 
0.3488 
0.3160 
0.2880 
0.2640 

0 
0.0299 
0.0386 
0.0398 
0.0380 
0.0352 
0.0322 
0.0292 
0.0265 
0.0240 
0.0217 

In the above table the error, En = y(xn) – yn.
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Example E8.7

Apply Euler’s method to approximate the solution of the initial value problem 
dy
dt

= –2ty2 with y(0) = 1 in the

interval 0 ≤ t ≤ 0.5, using h = 0.1 and compute the error and the percentage error. The exact solution is

2
1

( 1)
y

t
=

+ .

Solution:
Here, Eq.(8.26) becomes

yn+1 = yn + h f (xn, yn)

Since h = 0.1 and f (xn, yn) = –2tn
2
ny , we have

yn +1 = yn – 2h tn 
2
ny ,    n = 0, 1, 2, ….

For h = 0.1, we set n = 0 and compute

n = 0: y1 = y0 – 2(0.1) t0
2
0y = 1 – 2(0.1)(0)(1)2 = 1

which will be our estimate to the value y(0.1). Continuing, we obtain

n = 1: y2 = y1 – 2(0.1) t1
2
1y = 1 – 2(0.1)(0.1)(1)2 = 0.98

n = 2: y3 = y2 – 2(0.1) t2
2
2y = 0.98 – 2(0.1)(0.2)(0.98)2 = 0.9416

and so on.

The exact value is given by 2
1

1
y

t
=

+
.

Table E8.7 gives a summary of the results computed for 0 ≤ t ≤ 0.5.

               Error = exact value – yn  (from Euler’s method)

Percentage error = 
| error |

100
exact value

×

From Table E8.7, we note that Euler’s method works quite well and the errors are acceptable in many practical
applications.

Table E8.7

n t yn 
Exact 
value Error Percentage 

error 
0 
1 
2 
3 
4 
5 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

1 
1 
0.98 
0.9416 
0.8884 
0.8253 

1 
0.9901 
0.9615 
0.9174 
0.8621 
0.8 

0 
0.0099 
0.0185 
0.0242 
0.0263 
0.0253 

0 
0.9998 
1.9241 
2.6379 
3.0507 
3.1625 
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Example E8.8

Apply the Euler’s method to the ordinary differential equation , (0) 1
dy x y y
dx

= + =  using increments of size

h = 0.2. The exact solution is y = –1 – x + 2ex. Determine the error and the percentage error at each step.

Solution:

dy x y
dx

= +

when x = 0 and y(0) = 1.

Hence
dy x y
dx

= + = 0 + 1 = 1  or  y0 = 1.

Now, h = 0.2 and y1 = y0 + hf (xn, yn)

or y1 = y0 + h f (x0, y0) = 1 + 0.2(1.0) = 1.2

The process is continued as shown in Table E8.8.

Exact value at xn = 0.2 is
y0.2 = –1 – 0.2 + 2e0.2 = 1.2428

Table E8.8 gives the summary of the computations.
Error = exact value – value from Euler’s method.

Percentage error = 
| error |

exact value
× 100

Table E8.8

n t yn 
Exact 
value Error Percentage 

error 
0 
1 
2 
3 
4 
5 

0 
0.2 
0.4 
0.6 
0.8 
1.0 

1 
1.2 
1.48 
1.856 
2.3472 
2.9766 

1 
1.2428 
1.5836 
2.0442 
2.6511 
3.4366 

0 
0.0428 
0.1036 
0.1882 
0.3039 
0.46 

 0 
 3.4438 
 6.5421 
 9.2065 
 11.4632 
 13.3853 

Example E8.9

Use Euler’s method to solve the initial value problem 
dy
dt

= 1 – t + 4y, y(0) = 1, in the interval 0 ≤ t ≤ 0.5

with  h = 0.1. The exact value is

49 1 19
16 4 16

ty t e−
= + +

Compute the error and the percentage error.
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Solution:
Here, f (tn, yn) = 1 – tn + 4yn and thus

    yn+1 = yn + (0.1)(1 – tn + 4yn)
For n = 0: y1 = y0 + (0.1)(1 – t0 + 4y0) = 1 + (0.1)(1 – 0 + 4) = 1.5

n = 1: y2 = y1 + 0.1(1 – t1 + 4y1) = 1.5 + (0.1)(1 – 0.1 + 6) = 2.19
The exact value are computed from

       49 1 19
16 4 16

ty t e−
= + +

Error = exact value – value from Euler’s method

Percentage error = 
| error |

exact value

Table E8.9 summarises the computed results.
Table E8.9

n t yn 
Exact 
value Error Percentage 

error 
0 
1 
2 
3 
4 
5 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

1 
1.5 
2.19 
3.146 
4.4744 
6.3242 

1 
1.6090 
2.5053 
3.8301 
5.7942 
8.7120 

0 
0.109 
0.3153 
0.6841 
1.3192 
2.3878 

  0 
  6.7768 
12.5864 
17.8620 
22.7783 
27.4082 

Example E8.10

Use Euler’s method to solve the following differential equation 
1

,
2

dy y
dx

= y(0) = 1 and 0 ≤ x ≤ 1. Use h = 0.1.

Solution:
Using Eq.(8.26)

      y1 = y0 + h f (x0, y0) = 1 + 0.1 f (0, 1)

f (0, 1) = f (x0, y0) = 0
1 1

(1) 1/ 2
2 2

y = =

Hence y1 = 1 + 0.1(1/2) = 1.05

For n = 1: y2 = y1 + h f (x1, y1) = 1.05 + 0.1 f (0.1, 1.05)

where f (0.1, 1.05) =
1

(1.05)
2

= 0.525

Therefore, at x2 = 2h = 2(0.1) = 0.2 y2 is
y2 = 1.05 + 0.1(0.525) = 1.1025
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The exact values of y = ex/2 (from direct integration).
This procedure is repeated for n = 2, …, 5 and a summary of the results obtained is given in Table E8.10.

Table E8.10: Euler’s method versus exact solution

n xn yn f(xn, yn) 
yn+1 

(Euler) 
yn+1 = ex/2 

(exact) 
0 
1 
2 
3 
4 
5 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

1 
1.05 
1.1025 
1.1576 
1.2155 
1.2763 

0.5 
0.525 
0.5513 
0.5788 
0.6077 
0.6381 

1.05 
1.1025 
1.1576 
1.2155 
1.2763 
1.3401 

1.0513 
1.1052 
1.1619 
1.2214 
1.2840 
1.3499 

8.3.2 Modified Euler’s Method
The modified Euler’s method (also called Heun’s method) is a single-step, explicit, numerical technique for
solving a first-order ordinary differential equation. The method is a modification of Euler’s explicit method. In
Section 8.3.1 on Euler’s method, we stated the assumption in that method is that in each subinterval or step,
the derivative or the slope between points (xn, yn) and (xn+1, yn+1) is constant and equal to the slope of y(x)
at point (xn, yn). This assumption causes error. In the modified Euler’s method, the slope used for computing
the value of yn+1 is modified to include the effect of that the slope changes within the subinterval. This slope
is the average of the slope at the beginning of the interval and an estimate of the slope at the end of the
interval.

Hence, the slope at the beginning of the interval is given by

nx x

dy
dx =

= slope at x = xn = f (xn, yn) (8.27)

The slope at the end of the interval is estimated by finding first an approximate value for yn +1, written as

1
m
ny +  using Euler’s explicit method.

That is       1
m
ny + = ym + f (xn, yn)h (8.28)

The estimation of the slope at the end of interval is obtained by substituting the point (xn+1, 1
m
ny + ) in the

equation for 
dy
dx

or
1

1

1 1( , )
m
n

n

m
n ny y

x x

dy f x y
dx +

+

+ +
=
+

= (8.29)

yn+1 is then estimated using the average of the two slopes.

That is      1 1
1

( , ) ( , )
2

m
n n n n

n n
f x y f x y

y y h+ +
+

+
= + (8.30)
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The modified Euler’s method is illustrated in Fig. 8.3. The slope at the beginning of the interval (given by Eq.

(8.27)) and the value of 1
m
ny + as per Eq. (8.28) are shown in Fig. 8.3(a). Figure 8.3(b) shows the estimated

slope at the end of the interval as per Eq. (8.29). The value of yn+1 obtained using Eq. (8.30) is shown in
Fig. 8.3(c).

m
n+1y

x

y

h
xn xn+1

y(x)

Exact
solution

Slope:
f(xn, yn)

yn

m
n+1y

x

y

xn xn+1

y(x)

Exact
solution

Slope:

f(x n+1,
m
n+1yyn

x

y

xn xn+1

y(x)

Exact
solution

Slope:
mf(x ,y ) f(x , y )n n + n–1 n+1

2
yn

yn+1

hh

     (a) Slope at the beginning of (b) Estimate of the slope          (c) Using the average of the
the interval at the end of the interval     two slopes

Fig. 8.3: The modified Euler’s method

In modified Euler’s method, instead of approximating (x, y) by f (x0, y0) in Eq.(8.22), the integral in Eq.(8.23)
is approximated using the trapezoidal rule.

Therefore (1) (0)
01 0 0 1 1( , ) ( , )

2
hy y f x y f x y = + +  (8.31)

where (0)
1y = y0 + h f (x0, y0) obtained using Euler’s formula.

Similarly, we obtain

(2) (1)
01 0 0 1 1( , ) ( , )

2
hy y f x y f x y = + + 

(3) (2)
01 0 0 1 1( , ) ( , )

2
hy y f x y f x y = + + 

(4) (3)
01 0 0 1 1( , ) ( , )

2
hy y f x y f x y = + +  (8.32)

and so on.
Therefore, we have

   ( 1) ( )
01 0 0 1 1( , ) ( , )

2
n nhy y f x y f x y+  = + +    ,  n = 0, 1, 2, 3, … (8.33)

where ( )
1

ny is the nth approximation to y1.

The iteration formula given by Eq.(8.33) can be started by selecting (0)
1y from the Euler’s formula. The formula

given by Eq.(8.33) is terminated at each step if the condition ( ) ( 1)n n
n ny y −− < ∈, where ∈is a very small
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arbitrary value selected depending on the level of accuracy to be accomplished is satisfied. If this happens

for sa, n = k, then we consider ( )k
n ny y= and continue to compute the value of y at the next point by repeating

the procedure described above. Equation (8.33) can also be written as

         3
1 1 2

1
( ) ( )

2n ny y K K O h+ = + + + (8.33a)

where K1 = h f (xn, yn) (8.33b)
K2 = h + (xn+1, yn + K1) (8.33c)

Example E8.11

Use the modified Euler’s method to solve the differential equation 
dy
dx

= x + y2 with y(0) = 1. Take the step
size h = 0.1.

Solution:
From Eq.(8.31), we have

(1) (0)
01 0 0 1 1( , ) ( , )

2
hy y f x y f x y = + + 

where (0)
1y = y0 + h f (x0, y0)

Therefore           (1) 2 2 2
1 1 (0 1 ) (0.1 (1 0.1(0 1 ) )2

hy  = + + + + + + 

 = 1 + 0.05[1 + (0.1 + 1.12)] = 1.1155
is the improved Euler’s estimate.

Similarly (2) (1)
01 0 0 1 1( , ) ( , )

2
hy y f x y f x y = + + 

where (1)
1y = 1.1155

(2) (1) (1) (1) (1)
1 1 1 2 11 1 1( , ) ( , ( , )

2
hy y f x y f x y h f x y = + + + 

2 20.1
1.1155 [(0.1 1.1155 ) (0.2 (1.1155 0.1(0.1 1.1155 )))] 1.2499

2
= + + + + + + =

is the Euler’s method estimate starting from (1)
1 1( , )x y . Now, starting from [x1, y0 + h f(x0, y0)], we have

         (2)
1y = 1.1155 + 0.05[(0.1 + 1.11552) + (0.2 + 1.24992)] = 1.2708

is the improved Euler’s estimate.
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Example E8.12

Use the modified Euler’s method to obtain an approximate solution of 
dy
dt

= –2ty2, y(0) = 1, in the interval

0 ≤ t ≤ 0.5 using h = 0.1. Compute the error and the percentage error. Given the exact solution is given by

2
1

(1 )
y

t
=

+
.

Solution:

For n = 0:  (1)
1y = y0 – 2h t0 2

0y = 1 – 2(0.1) (0) (1)2 = 1

Now (1) (1)22
01 0 0 1 12 2

2
hy y t y t y = + − −   = 1 – (0.1)[(0) (1)2 + (0.1) (1)2] = 0.99

Table E8.12 shows the remaining calculations. Table E8.12 also shows the values obtained from the Euler’s
method, the modified Euler’s method, the exact values, and the percentage error for the modified Euler’s
method.

Table E8.12

n tn Euler 
yn 

Modified 
Euler yn 

Exact  
value 

Error Percentage  
Error 

0 
1 
2 
3 
4 
5 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

1 
1 
0.9800 
0.9416 
0.8884 
0.8253 

  1 
0.9900 
0.9614 
0.9173 
0.8620 
0.8001 

1 
0.9901 
0.9615 
0.9174 
0.8621 
0.8000 

0 
0.0001 
0.0001 
0.0001 
0.0001 
0.0001 

   0 
0.0101 
0.0104 
0.0109 
0.0116 
0.0125 

In the Table E8.12,
Error = exact value – value from modified Euler’s method

Percentage error = 
| error |

exact value

Example E8.13

Use the modified Euler’s method to find the approximate value of y(1.5) for the solution of the initial value

problem 
dy
dx

= 2xy, y(1) = 1. Take h = 0.1. The exact solution is given by 
2 1xy e −= . Determine the relative error

and the percentage error.

Solution:

With x0 = 1, y0 = 1, f (xn, yn) = 2xnyn, n = 0 and h = 0.1, we first compute (0)
1y = y0 + h f (x0, y0) from Eq.(8.31).

         (0)
1y = y0 + (0.1) 2(x0, y0) = 1 + (0.1) 2(1)(1) = 1.2
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We use this value in Eq.(8.33) along with

x1 = 1 + h = 1 + 0.1 = 1.1

  
1
1 0 0 0 1 1

0.1 0.12 2 1 2(1)(1) 2(1.1)(1.2) 1.232
2 2

y y x y x y   = + + = + + =      

Table E8.13 gives the values computed for the modified Euler’s method, exact value, relative error and the

percentage error. Exact value is calculated from 
2 1xy e −= .

Error = exact value – value from the modified Euler’s method

Percentage relative error = 
| error |

exact value

Table E8.13

n xn yn Exact  
value 

Absolute 
error 

Percentage  
 Relative error 

0 
1 
2 
3 
4 
5 

1 
1.1 
1.2 
1.3 
1.4 
1.5 

1 
1.2320 
1.5479 
1.9832 
1.5908 
3.4509 

1 
1.2337 
1.5527 
1.9937 
2.6117 
3.4904 

  0 
0.0017 
0.0048 
0.0106 
0.0209 
0.0394 

        0 
0.14 
0.31 
0.53 
0.80 
1.13 

Example E8.14
Repeat Example E8.10 using the Modified Euler’s method.
Solution:
From Eqs.(8.33a) to (8.33c), we have

           1 0 0 0
1 1( , ) 0.1 0.05
2 2

K h f x y h y   = = = =      

and            0 1
2 1 0 1

1 0.05( , ) 0.1 0.0525
22

y KK h f x y K h + +   = + = = =     

The functional approximate at x1 = 0.1 (n = 1) is given by

   1 0 1 2
1 1

( ) 1 (0.05 0.0525) 1.05125 1.0513
2 2

y y K K= + + = + + = ≈

Hence, at x2 = 0.2, we have

  1
0.051250.1 0.0526

2
K  = =  

 2
1.0513 0.05260.1 0.0552

2
K + = =  
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   2
1

1.0513 (0.0526 0.0552) 1.1051
2

y = + + =

This procedure is repeated for n = 2, 3, 4 and 5 to give the functional approximations shown in Table E8.14.

Table E8.14

n xn yn K1 K2 yn+1 
(modified Euler) 

yn+1 
(exact) 

0 
1 
2 
3 
4 
5 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

1 
1.0513 
1.1051 
1.1618 
1.2213 
1.2839 

0.05 
0.0526 
0.0526 
0.0581 
0.0611 
0.0642 

0.0525 
0.0552 
0.0581 
0.0699 
0.0641 
0.0674 

1.0513 
1.1051 
1.1618 
1.2213 
1.2839 
1.3513 

1.0513 
1.1052 
1.1619 
1.2214 
1.2840 
1.3499 

Table E8.14 clearly shows that the modified Euler’s method gives better accuracy for the same h interval
when compared with the basic Euler’s method.

8.3.3  Runge-Kutta Methods
Runge-Kutta methods are a family of single-step, explicit, numerical techniques for solving a first-order
ordinary differential equation. Various types of Runge-Kutta methods are classified according to their order.
The order identifies the number of points within the subinterval that are utilised for finding the value of the
slope in Eq.(8.7). For instance, second-order Runge-Kutta methods use the slope at two points, third-order
methods use three-points, and so on. The classical Runge-Kutta method is of order four and uses four points.
Runge-Kutta methods give a more accurate solution compared to the simpler Euler’s explicit method. The
accuracy increases with increasing order of Runge-Kutta method.

8.3.3.1 Runge-Kutta Method of Order Two
In the Runge-Kutta method of order two, we consider up to the second derivative term in the Taylor series
expansion and then substitute the derivative terms with the appropriate function values in the interval.

Consider the Taylor series expansion of the function about yn.

         yn+1 = yn + hy'(xn, yn) + 
2

2
h

y''(xn, yn)

yn+1 = yn + hg(xn, yn) + 
2

2
h

g'(xn, yn)

yn+1 = yn + h ( , ) ( , )
2n n n n
hg x y g x y + ′   (8.34)

Now, substituting

( , ) ( , )n n n n
g gg x y g x y
x y
∂ ∂= +′
∂ ∂

where  
dy
dx

= g(xn, yn)
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From the differential equation, we obtain

  1 ( , ) ( , )
2 2n n n nn n
h g h gg x y g x yy y h

x y+
∂ ∂ + += +  ∂ ∂ 

(8.35)

It should be noted here that the factor inside the square brackets consisting of the derivatives may be
substituted with a function of the type ag(x + α, y + β) in a Taylor series expansion, such that from Eq.
(8.34), we have

   yn+1 = yn + h[ag(xn + α, yn + β)] (8.36)

Now, expanding the function g(xn + α, yn + β) in Eq.(8.36) in a Taylor series expansion with two variables
about (xn, yn) and considering only the first derivative terms, we obtain

  1 ( , )n nn n
g gg x yy y ha
x y+

∂ ∂ + α +β= +  ∂ ∂ 
(8.37)

Now, equating the coefficients of the respective terms on the right hand side of Eqs.(8.35) and (8.37), we
obtain

a = 1
α = h/2 (8.38)

and β = h/2 g(xn, yn)
Therefore, Eq.(8.36) becomes

  1 , ( , )
2 2n n n n n n
h hy y hg x y g x y+

 = + + +   (8.39)

Equation (8.39) can also be rewritten as
yn+1 = yn + hK2 (8.40)

where     1
2 ,

2 2n n
KhK hg x y = + +  

(8.41)

in which K1 = hg(xn, yn) (8.42)

Runge-Kutta method of order two is also known as the Midpoint method because the derivative is replaced
by functions evaluated at the midpoint xn + h/2.

The midpoint method is illustrated schematically in Fig. 8.4. The determination of the midpoint with
Euler’s explicit method using ym = yn + f (xn, yn)h/2 is shown in Fig. 8.4(a). Figure 8.4(b) shows the estimated
slope that is computed with the equation

             ( , )
m

m m
x x

dy f x y
dx =

=

Figure 8.4(c) shows the value of yn+1 obtained using

yn+1 = yn + f (xm, ym)h.
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y(x)

Exact
solution

yh/2

yn

xn xh/2 xn+1
x

y

Slope:
f(xh/2, yh/2)

y(x)

Exact
solution

yn

xn h xn+1

x

y

Slope: f(xh/2, yh/2)

y(x)

Exact
solution

yh/2

yn

xn xh/2h/2 xn+1

x

y

Slope:
f(xn, yn)

h

(a) Euler’s method to    (b) Calculation of the slope at (c) Calculation of the numerical

calculate yh/2  (xh/2, yh/2) solution yn+1

Fig. 8.4: The midpoint method

The local truncation error in the Runge-Kutta method of order two is O(h3), and the global truncation error
is O(h2). Note that this is smaller by a factor of h than the truncation errors in Euler’s explicit method. In
other words, for the same accuracy, a larger step size can be used. However, in each step, the function
f (x, y) in the Runge-Kutta method of order two is computed twice.

Example E8.15

Use the second-order Runge-Kutta method with h = 0.1, find y1 and y2 for 
dy
dx

= – xy2, y(2) = 1.

Solution:
For f (x, y) = – xy2, the modified Euler’s method, Eq.(8.40) is

                   yn+1 =  yn – 0.1(xn + 0.05)[yn + 0.05fn]2,

where        2
n n nf x y= − .

n = 0:
Here x0 = 2 and y0 = 1, hence f0 = –2(1)2 = –2

y1 = 1 – 0.1(2 + 0.05)[1 + 0.05(–2)]2 = 0.83395
n = 1 :

Now      x1 = 2.1 and y1 = 0.83395; hence     f1 = –x1
2
ny = –1.46049

Hence, y2 = 0.83395 – 0.1(2.1 + 0.05)[0.83395 + 0.05 (–1.46049)]2 = 0.70946
Relative error when n = 0 is

E1(0.1) = 0.8299 – 0.83395 – 0.00405
and E2(0.1) = 0.7042 – 0.70946 – 0.00526
Comparing these values (y1 and y2) with the exact values obtained in Table E8.1, we see that the second-
order Runge-Kutta method do indeed give accuracy comparable to the second-order Taylor’s series method
without requiring partial derivatives.
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Example E8.16

Use Runge-Kutta method of order two to integrate sin
dy y
dx

= with y(0) = 1 from x = 0 to 0.5 in steps of

h = 0.1. Keep four decimal places in the calculations.

Solution:
Here g(x, y) = sin y
Hence, the integration formulae in Eqs.(8.41) to (8.42) are

K1 = hg(x, y ) = 0.1 sin y

         1
2 1

1 0.1sin,
2 2 2

KhK hf x y K y  = =+ + +      

    y(x + h) =  y(x) + K2

Given that y(0) = 1, we can carry out the integration as follows:
K1 = 0.1 sin(1) = 0.0841

 2
0.08410.1sin 0.08631

2
K  = =+  

y(0.1) = 1 + 0.0863 = 1.0863
K1 = 0.1 sin(1.0863) = 0.0885

 2
0.08850.1sin 0.09051.0863

2
K  = =+  

y(0.2) = 1.0863 + 0.0905 = 1.1768
and so on.
The computations are summarised in Table E8.16 to four decimal places.

Table E8.16

x y K1 K2 
0 
0.1 
0.2 
0.3 
0.4 
0.5 

1 
1.0863 
1.1768 
1.2708 
1.3676 
1.4664 

0.0841 
0.0885 
0.0925 
0.0955 
0.0979 
 

0.0863 
0.0905 
0.0940 
0.0968 
0.0988 

8.3.3.2 Runge-Kutta Method of Order Four
In the classical Runge-Kutta method of order four, the derivatives are evaluated at four points, once at each
end and twice at the interval midpoint as given below:
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y(xn +1) = y(xn) + 
6
h

(K1 + 2K2 + 2K3 + K4) (8.43)

where K1 = g[xn, yn(xn)]

 2 1
1, ( )

2 2n n
hK g x y x K h = + +  

 3 2
1, ( )

2 2n n
hK g x y x K h = + +  

and K4 = g[xn + h,  y(xn) + K3h] (8.44)

The classical Runge-Kutta method of order four is illustrated schematically in Fig. 8.5, Figs. 8.5(a) to (c)
show the determination of the slopes in Eq. (8.4). Figure 8.5(a) shows the slope K1 and how it is used to
compute slope K2. Figure 8.5(b) shows how slope K2 is used to find the slope K3. Figure 8.5(c) shows how
slope K3 is used to find the slope K4. Figure 8.5(d) shows the application of Eq. (8.43) where the slope used
for evaluating yn +1 is a weighted average of the slopes K1, K2, K3 and K4.

n
1

x h
2

+

h

n 1
1

y K h
2

+

Exact
solution

Slope: K2

Slope: K1

xn+1xn

yn

y

x

y(x)

n
1x h
2

+

h

n 1
1

y K h
2

+

Slope: K3

Slope: K2

xn+1xn

yn

y

x

y(x)

Exact
solution

h

yn + K3h

Exact
solution

Slope: K4

Slope: K3

xn+hxn

yn

y

x

y(x)

Slope:
1
6

xn+1 = xn + hxn

yn

y

x

y(x)

Exact
solution

h

Numerical
solution

(K +2K +2K +K )1 2 3 4

(a) (b)

(c) (d)

Fig. 8.5: The classical fourth-order Runge-Kutta method

The local truncation error in the classical Runge-Kutta method of order four is O(h5), and the global truncation
error is O(h4). This method gives the most accurate solution compared to the other methods. Equation (8.44)
is the most accurate formula available without extending outside the interval [xn, xn +1].
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Equations (8.43) and (8.44) can also be written as

yn+1 = yn + 
1
6 [K1 + 2K2 + 2K3 + K4] (8.44a)

where K1 = hf (xn, yn0)

 2 ,
2 2n n
h hK hf x y = + +  

 2
3 ,

2 2n n
KhK hf x y = + +  

and K4 = hf (xn + h,  yn + K3) (8.44b)

Example E8.17
Use the Runge-Kutta method of order four with h = 0.1 to obtain an approximation to y(1.5) for the solution

of 
dy
dx

= 2xy, y (1) = 1. The exact solution is given by 
2 1xy e −= . Determine the relative error and the percentage

relative error.

Solution:
For n = 0, from Eq. (8.44), we have

K1 = g(x0, y0) = 2x0 y0 = 2

2 0 0 0 0
1 1 1 12 2.31(0.1), (0.1)(2) (0.1) (0.2)
2 2 2 2

K g x y x y     = = =+ + + +          

3 0 0 0 0
1 1 1 12 2.3426(0.1), (0.1)2.31 (0.1) (0.231)
2 2 2 2

K g x y x y     = = =+ + + +          

 K4 = g[x0 + 0.1, y0 + 0.1(2.3426) = 2(x0 + 0.1)(y0 + 0.2343) = 2.7154

Hence  1 0 1 2 3 4
0.1

[ 2 2 ] 1 [2 2(2.31) 2(2.3426) 2.7154]
6 6
hy y K K K K= + + + + = + + + +  = 1.2337

Table E8.17 summarises the computations. In Table E8.17, exact value is computed from 
2 1xy e −= .

The absolute error = exact value minus the value from the Runge-Kutta method. Percentage relative
error = |error|/exact value.

Table E8.17
n xn yn Exact 

value 
Absolute 

error 
Percentage 

relative error 
0 
1 
2 
3 
4 
5 

1 
1.1 
1.2 
1.3 
1.4 
1.5 

1 
1.2337 
1.5527 
1.9937 
2.6116 
3.4902 

1 
1.2337 
1.5527 
1.9937 
2.6117 
3.4904 

0 
0 
0 
0 
0.0001 
0.0001 

0 
0 
0 
0 
0 
0 
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Example E8.18

Use the Runge-Kutta method of order four with h = 0.1 on (2, 3) for the initial problem 
dy
dt

= – xy2,

y(2) = 1. Compute the results obtained with the exact solution 2
2( )

2
y x

x
=

−
.

Solution:
Starting with t0 = 2, y0 = 1, Eq. (8.44) gives

K1 = f (2.0, 1) = – (2) (1)2 = –2
K2 = f (2.05, 1 + 0.05 (–2)) = – (2.05)(0.9)2 = –1.6605
K3 = f (2.05, 1 + 0.05 (–1.6605)) = – (2.05)(0.916975)2 = –1.72373
K4 = f (2.1, 1 + 0.1 (–1.72373)) = – (2.1)(0.82763)2 = –1.43843

           1 0
0.1
6

y y= − {2 + 2(1.6605 + 1.72373) + 1.43843} = 0.829885

Table E8.18 shows both the Runge-Kutta method of order 4 values and the exact values of y(2.0), y(2.1), …,

y(3.0) rounded to six decimal places. The exact values in Table E8.18, yn were computed from 2
2( )

2
y x

x
=

−
.

Table E8.18

xn yn y(xn) 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 

1.000000 
0.829885 
0.704237 
0.607914 
0.531924 
0.470596 
0.420175 
0.378078 
0.342471 
0.312017 
0.285718 

1.000000 
0.829876 
0.704225 
0.607903 
0.531915 
0.470588 
0.420168 
0.378072 
0.342466 
0.312012 
0.285714 

The reasons for the popularity of Runge-Kutta method of order 4 are evident from Table E8.18. Clearly the
method is more accurate. However, four slope values must be computed at each step. This is a short coming
of the method.
Example E8.19

Using the Runge-Kutta method of order four and with h = 0.2 to obtain an approximate solution of
dy
dt

= –2 ty2, y(0) = 1, in the initial 0 ≤ t ≤ 1 with h = 0.2. The exact value of y is given by 2

1
1

y
t

=
+

. Compute

the relative error and the percentage relative error.
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Solution:

Here K1 = – 2tn 
2
ny

K2 = – 2(tn + 0.1), (yn + 0.1 K1)2

K3 = – 2(tn + 0.1), (yn + 0.1K2)2

K4 = – 2(tn+1)(yn + 0.2K3)2

For n = 0:
K1 = 0, K2 = – 0.2, K3 = – 0.192 and K4 = – 0.37.

Therefore, 1
0.2

1 [2(0.2) 2(0.192) 0.37] 0.9615
6

y = − + + = .

Table E 8.19 gives the summary of the calculations. In the Table E8.19, the exact values are calculated using

2
1

1
y

t
=

+
. The absolute error = exact value minus the value from the Runge-Kutta method. Percentage

relative error = |error|/exact value.
Table E8.19

n xn yn Exact 
value 

Absolute 
error 

Percentage 
relative error 

0 
1 
2 
3 
4 
5 

0 
0.2 
0.4 
0.6 
0.8 
1.0 

1.0 
0.9615 
0.8621 
0.7353 
0.6098 
0.5 

1.0 
0.9615 
0.8621 
0.7353 
0.6098 
0.5 

0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

Example E8.20

Find an approximate solution to the initial value problem 
dy
dt

= 1 – t + 4y, y(0) = 1, in the initial 0 ≤ t ≤ 1 using

Runge-Kutta method of order four with h = 0.1. Compute the exact value given by y = 
9

16
−

+ 
1
4

t + 419
16

te .

Compute the absolute error and the percentage relative error.

Solution:
For n = 0, from Eq.(8.44), we have

K1 = f (x0, y0) = 5
K2 = f (0 + 0.05, 1 + 0.25) = 5.95
K3 = f (0 + 0.05, 1 + 0.2975) = 6.14
K4 = f (0.1, 1 + 0.614) = 7.356

Hence             1
0.1

1
6

y = + [5 + 2(5.95) + 2(6.14) + 7.356] = 1.6089
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Table E8.20 gives a summary of all the calculations for yn, exact value, absolute error and the percentage
relative error.

Table E8.20

n tn Runge-Kutta 
yn 

Exact 
value 

Absolute 
error 

Percentage 
relative error 

0 
1 
2 
3 
4 
5 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

1 
1.6089 
2.5050 
3.8294 
5.7928 
8.7093 

1 
1.6090 
2.5053 
3.8301 
5.7942 
8.7120 

 
0.0001 
0.0002 
0.0007 
0.0014 
0.0027 

 
0.0062 
0.0119 

0.07 
0.14 
0.27 

The superiority of the Runge-Kutta method of order four is clearly demonstrated in this Table E8.20 in
comparison with the Euler’s method [Table E8.9].

Example E8.21

Use the Runge-Kutta method of order four and with h = 0.1 to find an approximate solution of 
dy
dx

= x2 + y

at x = 0.1, 0.2 and 0.4. Given that y = –1 when x = 0.

Solution:
Equation (8.44) can be written as

K1 = g(x0, y0)h = [02 – 1]0.1 = – 0.1

 2 0 0 1
1,

2 2
hK g hx y K = + +  

 = [(0.05)2 – 1.05]0.1 = – 0.1047

 3 0 0 2
1,

2 2
hK g hx y K = + +  

 = [(0.05)2 – 1.0524]0.1 = – 0.1050

   K4 = g[x0 + h, y0 + K3] h = [(0.1)2 – 1.105]0.1 = – 0.1095

Let        1 1 2 3 4
1 1

[ 2 2 ] [ 0.1 2( 0.1047) 2( 0.1050) ( 0.1095)] 0.1048
6 6

y K K K K∆ = + + + = − + − + − + − = −

Hence y1 = y0 + ∆y1 = –1.1048

For the second increment, we have
  K1 = – 0.1095, K2 = – 0.1137, K3 = – 0.1139 and K4 = – 0.1179
∆y2 = – 0.1138

Therefore   y2 = y1 + ∆y2 = – 1.2186

For the third increment, we have

K1 = –0.1179, K2 = – 0.1215, K3 = – 0.1217 and K4 = – 0.1250
and ∆y3 = –0.1215
Hence y3 = y2 + ∆y2 = –1.3401.
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Example E8.22
Repeat Example E8.10 using the Runge-Kutta method of order four. Use h = 1.
Solution:
Here f (x, y) = y/2
From Eq. (8.44b), we have

   K1 = hf (x0, y0) = 1 f (0, 1) = 
111
22

  =  

 1
2 0 0

5
51 5 41 ,,

2 82 42 2
KhK hf fx y   = = = =+ +      

 2
3 0 0

21
211 21 161 ,,

2 322 162 2
KhK hf fx y   = = = =+ +      

  K4 = hf (x0 + h,  y0 + K3) = 1 

53
5353 321,

2 6432
f   = =  

From Eq.(8.44a), we have

    y = y(1) = y0 + 
1
6

[K1 + 2K2 + 2K3 + K4]

1 535 211(1) 1 2 2
6 648 322

y     = + + + +           = 1.6484

The exact value
y(1) = ex/2 = e1/2 = 1.6487

8.3.4 Predictor-Corrector Methods
Predictor-corrector methods refer to a family of schemes for solving ordinary differential equations using
two formulae: predictor and corrector formulae. In predictor-corrector methods, four prior values are required
to find the value of y at xn. Predictor-corrector methods have the advantage of giving an estimate of error
from successive approximations to yn. The predictor is an explicit formula and is used first to determine an
estimate of the solution yn +1. The value yn +1 is calculated from the known solution at the previous point
(xn, yn) using single-step method or several previous points (multi-step methods). If xn and xn +1 are two
consecutive mesh points such that xn +1 = xn + h, then in Euler’s method we have

yn +1 = yn + h f (x0 + nh, yn),       n = 0, 1, 2, 3, … (8.45)

Once an estimate of yn+1 is found, the corrector is applied. The corrector uses the estimated value of yn+1 on
the right-hand side of an otherwise implicit formula for computing a new, more accurate value for yn+1 on the
left-hand side.

The modified Euler’s method gives as

1 1 1[ ( , ) ( , )
2n n n n n n
hy y f x y f x y+ + += + + (8.46)



296 // Numerical Methods //

The value of yn +1 is first estimated by Eq.(8.45) and then utilised in the right-hand side of Eq.(8.46) resulting
in a better approximation of yn+1. The value of yn +1 thus obtained is again substituted in Eq.(8.46) to find a
still better approximation of yn+1. This procedure is repeated until two consecutive iterated values of yn +1 are
very close. Here, the corrector equation (8.46) which is an implicit equation is being used in an explicit
manner since no solution of a non-linear equation is required.

In addition, the application of corrector can be repeated several times such that the new value of yn+1
is substituted back on the right-hand side of the corrector formula to obtain a more refined value for yn+1.
The technique of refining an initially crude estimate of yn+1 by means of a more accurate formula is known
as predictor-corrector method. Equation (8.45) is called the predictor and Eq. (8.46) is called the corrector
of yn +1. In what follows, we describe two such predictor-corrector methods:

1. Adams-Moulton method.
2. Milne’s predictor-corrector method.

8.3.4.1 Adams-Moulton Predictor-Corrector Method
The Adams-Moulton method is an implicit multi-step method for solving first-order ordinary differential
equations. There are several versions of Adams-Moulton formulas available for computing the value of yn +1
by using the previously obtained solution at two or more points. These formulas are classified based on
their order, that is, based on the number of points used in the formula and the order of the global truncation
error. For instance, in the second-order formula, two points (xn, yn) and (xn+1, yn+1) are used. In the third-
order formula, three points (xn, yn), (xn–1, yn–1) and (xn–2, yn–2) are used and so on.

Consider the differential equation

( , ),
dy f x y
dx

= y(x0) = y0 (8.47)

Integrating Eq. (8.47), we obtain

0
0 ( , )

x

x
y y f x y dx= + ∫ (8.48)

or
0

1 0 ( , )
x

x
y y f x y dx= + ∫ , 0 1x x x≤ ≤ (8.49)

Applying the Newton’s backward difference formula, we have

  2 3
0 0 0 0

( 1) ( 1)( 2) ...( , )
2 6

n n n n nf x y f n f f f+ + +
= + ∇ + ∇ + ∇ + (8.50)

where           0x x
n

h
−

=  and  f0 = f (x0, y0)

Now, substituting f (x, y) from Eq.(8.50) into the right-hand side of Eq.(8.49), we obtain

 1

0

x
2

1 0 1 0 0
x

n n  ( +1)y y dxf n f f ...
2

⌠


⌡

 = + ∇ + ∇ +  

         
1 2

1 0 0 0 00

( 1) ...
2

n ny y h f n f f dx+ = + + ∇ + ∇ +  ∫
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or  
2 3 4

0 0
1 5 3 251 ...1
2 12 8 720

y y h f = + + ∇ + ∇ + ∇ + ∇ +  
(8.51)

We note here that the right hand side of Eq.(8.51) depends on y0, y–1, y–2, … all of which are known.
Hence, we can write Eq.(8.51) as

              
2 3 4

0 01
1 5 3 251 ...1
2 12 8 720

py y h f = + + ∇ + ∇ + ∇ + ∇ +  
(8.52)

Equation (8.52) is called the Adams-Bashforth formula and is used as a predictor formula.
A corrector formula is derived by applying the Newton’s backward difference formula at f1. Therefore,

         2 3
1 1 1 1

( 1) ( 1)( 2) ...( , )
2 6

n n n n nf x y f n f f f+ + +
= + ∇ + ∇ + ∇ + (8.53)

Now, substituting f (x, y) from Eq.(8.53) into the right-hand side of Eq.(8.49), we obtain

 1

0

02 2
1 0 1 1 1 0 1 1 1–1

( 1) ( 1)... ...
2 2

x

x

n n n ny y f n f f dx y h f n f f dx+ +   = + + ∇ + ∇ + = + + ∇ + ∇ +      ∫ ∫

or     
2 3 4

0 1
1 1 1 19 ...1
2 12 24 720

y y h f = + − ∇ − ∇ − ∇ − ∇ +  
(8.54)

Equation (8.54) shows that the right-hand side depends on y1, y0, y–1, y–2, …, where 1
py is used for y1. Hence,

the new value of y1 is given by

2 3 4
1 0 1

1 5 3 2511
2 12 8 720

pCy y h f− = + − ∇ − ∇ − ∇  
(8.55)

1 11 1( , )p pf f x y=

the formula, Eq.(8.55) is called the Adams-Moulton corrector formula. Now expressing the remaining difference
operators in their functional values and neglecting the fourth and higher order differences, Eqs.(8.51) and
(8.55) become respectively,

0 0 1 2 31 [55 59 37 9 ]
24

p hy y f f f f− −= + − + − (8.56)

and 1 0 0 1 21[9 19 5 9 ]
24

pC hy y f f f f− −= + + − − (8.57)

Equation (8.57), known as the corrector formula is repeatedly applied by computing an improved value of f 1
at each stage, to obtain a better value of y1 unless it becomes stable and remains unchanged and then we
proceed to calculate y2.

The approximate errors in Eqs.(8.56) and (8.57) are (4)5
0

251
720

h f and (4)5
0

19
720

h f−  respectively.
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It should be noted here that in order to apply Adams-Moulton method, we require four starting values
of y, which can be obtained by using Picard’s method of successive approximation or Taylor series method
or Euler’s method or Runge-Kutta methods.

Summarising, the Adams-Bashforth and Adam-Moulton formulae are given by

1 2 31 [55 59 37 9 ]
24

p
n n n n nn

hy y f f f f− − −+ = + − + − (8.58)

and 1 1 1 2[9 19 5 ]
24

C
n n n n n n

hy y f f f f+ + − −= + + − + (8.59)

respectively. The local error estimates for Eqs.(8.58) and (8.59) are

5 5
1 2

251 19
( ) and ( )

720 720
v vh y h y−
ξ ξ (8.60)

Let 0
1ny + represent the value of yn+1 found using Eq.(8.58) and 1

1ny + the solution obtained with one application
of Eqs.(8.58) and (8.59). If y(xn+1) represents the exact value of y at xn+1 and the values of f are assumed to
be exact at all points including xn, then from Eq.(8.60), we obtain the order estimates

0 5
1 1 1

251
( ) ( )

720
v

n ny x y h y+ +− = ξ (8.61)

1 5
1 1 2

19
( ) ( )

720
v

n ny x y h y+ +
−

− = ξ (8.62)

which leads to the estimate of yv, based on the assumption that the over the interval of interest yv(x) is
approximately constant, as

            5 1 0
1 1

720
.

270
v

n nh y y y+ + = − 

Hence, from Eq. (8.62), we obtain

         1 1 0 1 0
1 1 1 1 1 1 1

19 1
( )

720 14n n n n n n ny x y y y y y D+ + + + + + +
− −   − = − ≈ − =    (8.63)

Hence, the error of the corrected value is approximately –1/14 of the difference between the corrected and
the predicted values.

Example E8.23

Use the Adams-Moulton method on (2, 3) with h = 0.1 for the initial value problem 
dy
dx

= –xy2, y (2) = 1.

Exact solution is 2
2( ) .

2
y x

x
=

−

Solution:
We will try to obtain about four significant digits. To start the method, we use the following exact values to
seven significant digits.



// Numerical Solution of Ordinary Differential Equations // 299

x0 = 2.0: y0 = y(2.0) = 1.0;             f0 = –x0
2
0y = –2.0

x1 = 2.1: y1 = y(2.1) = 1.8298755; f1 = –x1
2
1y = –1.446256

x2 = 2.2: y2 = y(2.2) = 0.7042254; f2 = –x2
2
2y = –1.091053

x3 = 2.3: y3 = y(2.3) = 0.6079027; f3 = x3
2
3y = –0.8499552

        ( )
3 3 2 1 04

2
4 3 4 3 2 14

 = 3 55 59 37 9 0.5333741
24

9 19 5 0.5317149
24

p

pC

hn y y f f f f

hy y x y f f f

= + − + − =  

  = + − + − + =    

The local truncation error estimate is from Eq. (8.62),

 [ ]1
1 1 4 4

19 19
( ) 0.5317149 0.5333741 0.0001144

720 720
pC

n ny x y y y+ +
− − − = − = − = 

Since the local truncation error estimate indicates possible inaccuracy in the 4th decimal place (4th significant

digit) of 4
Cy , we take 4

Cy as an improved 4
py  to get an improved as follows:

2
4 3 4 3 2 19[ (0.5117149) ] 19 5 0.5318739

24
C hy y x f f f = + − + − + = 

The local truncation error estimate of this 4
Cy  is

19
720
−

[0.5318739 – 0.5317149] = –0.0000112

indicating that 4
Cy  should be accurate to about 5 significant digits.

n = 4:    f4 = f (x4, y4) = – (2.4)(0.5318739)2 = – 0.6789358

4 4 4 3 2 1[55 59 37 9 ] 0.4712642
24

C hy y f f f f= + − + − =

2
5 4 5 4 3 25[ 9( ) 19 5 ] 0.4704654

24
pC hy y x y f f f= + − − + − + =

The local truncation error estimate is 5 5
19

720
pCy y−  −  = 0.0000562. As before, this estimate indicates possible

inaccuracy in the 4th significant digit of 5
Cy . Hence, we get an improved y5 as

          2
5 4 5 4 3 2[ 9( (0.4704654) ] 19 5 ] 0.4705358

24
C hy y x f f f= + − − + − + =

The local truncation error estimate for this 5
Cy is

19
[0.4705358 0.4704654] 0.0000050

270
−

− = −
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indicating this 5
Cy should be accurate to about 5 significant digits.

Table E8.23 summarises the computations and comparison with the exact solution y(xn) and the relative error
En(h).

Table E8.23: Adams-Moulton method value for 
dy

dx
= – xy2, y(2) = 1 with h = 0.1

Using Adams-Moulton method xn Exact y(xn) yn En(h) 
x0 =  2.0 
 2.1 
 2.2 
 2.3 
 2.4 
 2.5 
 2.6 
 2.7 
 2.8 
 2.9 
xF =  3.0 

1.000000 
0.829876 
0.704225 
0.607903 
0.531915 
0.470588 
0.420168 
0.378072 
0.342466 
0.312012 
0.285714 

Exact 
Exact 
Exact 
Exact 
0.531874 
0.470536 
0.420114 
0.378020 
0.342419 
0.311971 
0.285674 

— 
— 
— 
— 

0.000041 
0.000052 
0.000054 
0.000052 
0.000047 
0.000041 
0.000040 

Example E8.24

Approximate the y value at x = 0.4 of the following differential equation 
dy
dx = 0.5y, y(0) = 1.0 using the

Adams-Moulton method.

Solution:
The predicted value at x = 0.4 is given by Eq. (8.58)

1 2 31 [55 59 37 9 ]
24

p
n n n n nn

hy y f f f f− − −+ = + − + −

or 3 0 2 1 04
0.1

[55 59 37 9 ]
24

py y f f f f= + − + − (E.1)

where f0, f1 and f2 values are obtained from the Table E8.10. Substituting the values of f0, f1 and f2 from Table
E8.10, Eq.(E.1) becomes

         4
0.1

1.1576 [55(0.5) 59(0.5513) 37(0.525) 9(0.5)] 1.1988
24

py = + − + − =

The corrected value is obtained by first evaluating f (x4, y4), then substituting into Eq.(8.59). That is,

4 4 4
1

( , , ) (1.2213) 0.6106
2

f f x y p= = =
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and from Eq.(8.59)

             1 1 1 2[9 19 5 ]
24

C
n n n n n n

hy y f f f f+ + − −= + + − +

4 3 4 3 2 1
0.1

[9 19 5 ]
24

Cy y f f f f= + + − +

     
0.1

1.1576 [9(0.6129) 19(0.5788) 5(0.5513) 0.5250] 1.2171
24

= + + − + =

The corrected value (1.2171) is clearly more accurate than the predicted value (1.1988) when compared with
the exact value of y4 = 1.2214.

8.3.4.2 Milne’s Predictor-Corrector Method
Consider the differential equation

( , )
dy f x y
dx

= y(0) = 0 (8.64)

Integrating Eq.(8.64), we obtain

  
0

0 ( )
x

x
y y f x dx= + ∫

or           4

0
0 ( , )

x

x
y y f x y dx= + ∫  in the range 0 4x x x≤ ≤ (8.65)

Applying Newton’s forward difference formula, we get

          f (x, y) = f0 + n∆ f0 + 
( 1)

2
n n +

∆2f0 + 
( 1)( 2)

6
f n n+ +

∆3f0 + … (8.66)

Substituting Eq.(8.66) into the right-hand side of Eq.(8.65), we get

4

0

2
4 0 0 0

( 1) ...
2

x

n
x

n ny y dxf n f f− = + + ∆ + ∆ +  
⌠

⌡

    
4

0

2
0 0 0

( 1) ...
2

x

n
x

n ny h dnf n f f− = + + ∆ + ∆ +  
⌠

⌡ (8.67)

or   2 3
1 0 0 0 0

20 8 ...4 8
3 3

y y h f f f f = + + ∆ + ∆ + ∆ +  

Neglecting the fourth and higher order differences and expressing the differences ∆f0, ∆2f0 and ∆3f 0 in terms
of the functional values, we get

  0 1 2 3
4

[2 2 ]
3

y y h f f f= + − + (8.68)
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Equation (8.68) can be used to predict the value of y4 when those of y0, y1, y2 and y3 are known. Once we
obtain y4, we can then find a first approximation to

  f4 = f (x0 + 4h, y4)

A better values of y4 can then be obtained by applying Simpson’s rule as

4 2 2 3 4[ 4 ]
2
hy y f f f= + + + (8.69)

Equation (8.64) called a corrector. An improved value of f4 is calculated and again the corrector is applied
to obtain a still better value of y4. The procedure is repeated until y4 remains unchanged. After obtaining y4
and f4 to a desired degree of accuracy, then y5 = (x0 + 5h) is obtained from the predicted as

5 1 2 3 4
4

[2 2 ]
3

y y h f f f= + − +

and   f5 = f [x0 + 5h, y5]

is computed.
A better approximation to the value of y5 is then obtained from the corrector as

5 3 3 4 5[ 4 ]
3
hy y f f f= + + +

This step is repeated until y5 becomes stable and then we proceed to compute y6 as before. This procedure
is known as Milne’s predictor-corrector method. The accuracy of the method is improved if we must improve
the starting values and then sub-divide the intervals.

Summarising, the predictor and corrector formulae are given by

             3 1 21
4

[2 2 ]
3

p
n n n nn

hy y f f f− − −+ = + − + (8.70)

and 1 1 11[ 4 ]
3

pC
n n n nn

hy y f f f+ − −+= + + + (8.71)

The corresponding error estimates for Eqs.(8.70) and (8.71) are given by

5
1

28
( )

29
p ve h y= ξ (8.72)

5
2

1
( )

90
p v
me h y= − ξ (8.73)

The local error estimate can be shown to be

   1 0
1 1 1

1
29n n nD y y+ + +
−  = −  (8.74)

It should be noted here that Eq.(8.71) can be subjected to numerical instability in some cases.
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Example E8.25

Approximate the y value at x = 0.4 of the differential equation 1
2

dy y= , y(0) = 1.0 using the Milne predictor-

corrector method.

Solution:
The predicted y value at x = 4 and n = 3 is given by Eq. (8.70). Hence

    [ ]1 231
4 2 2
3

p
n n nnn

h f f fy y − −−+ − += +

or 0 1 1 2 2 3 34
4(0.1)

[2 ( , ) ( , ) 2 ( , )]
3

py y f x y f x y f x y= + − +

Here, we use the past values given in Example E8.10.

4
0.4

1 [2(0.5250) 0.5513 2(0.5788)] 1.2259
3

py = + − + =

The derivative at x = 0.4 can be approximated by using the predicted value to obtain

  ( )
4

4 4 4
1( , ) 0.6129
2

p

x

dy f x y y
dx

= = =

Hence, the corrected y4 is obtained using Eq.(8.71)

    1 1 11[ 4 ]
3

pC
n n n nn

hy y f f f+ − −+= + + +

or               4 2 2 2 3 3 4 4
0.1

[ ( , ) 4 ( , ) ( , )
3

Cy y f x y f x y f x y= + + + ]

    
0.1

1.1025 [0.5513 4(0.5788) 0.6129] 1.2185
3

= + + + =

The predicted value 1.2259 is noted to be closer to the exact value of 1.2214 than the corrected value.

8.4 SUMMARY

Differential equations arise in scientific and engineering applications when a dependent variable y varies
with the independent variable either time t or position x. In this chapter, the numerical techniques commonly
used for solving ordinary differential equations are presented. There are two categories of methods to solve
ordinary differential equations: one-step methods and multi-step methods. In one-step methods, the value of
the increment function is based on information at a single point ‘i’. The class of methods called multi-step
methods use information from several previous points as the basis for extrapolating to a new value.

Among the one-step methods or single-step methods, Picard’s method of successive approximation
method and Taylor’s series method were presented. Among the step-by-step methods or the marching
methods, Euler’s method, modified Euler’s method, Runge-Kutta methods of order two and four, Adam-
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Moulton predictor-corrector method and Milne’s predictor-corrector method are presented. These methods
have been illustrated with example problems and solution.

Problems

8.1 Use Picard’s method of successive approximation to solve the equation 
dy
dx

= 1 + xy, y(0) = 1 at

x = 0.1.

8.2 Solve 
dy
dx

= x + y with the initial condition x0 = 0, y0 = 1 using the Picard’s method of successive

approximation.
8.3 Use Picard’s method of successive approximation to find y(0.2) correct to five decimal place by solving

dy
dx

= x – y, with y(0) = 1.

8.4 Use Picard’s method of successive approximation to tabulate the values of y(0.1), y(0.2), …., y(1.0)

and form the solution of 
dy
dx

= x(1 + x3y), y(0) = 3.

8.5 Use Picard’s method of successive approximation to find y(0.1) from the equation 
dy y x
dx y x

−
=

+
,

y(0) = 1.

8.6 Use Picard’s method of successive approximation to find y(0.2) by solving the equation 
dy
dx

= x + y2

with y(0) = 0.

8.7 Using Taylor’s series method for y(x), find y(0.1) correct to four decimal places from the initial value
problem y′ = xy + 1, y(0) = 1.

8.8 Find the values of y(1.1) and y (1.2) correct to three decimal places given that 
dy
dx

= xy1/3, y(1) = x(1)

= 1 using the first three terms of the Taylor’s series expansions.

8.9 Find the value of y at x = 0.1 and x = 0.2 using the Taylor’s series method from 
dy
dx

= x2y – 1, y(0) =1

accurate to five decimal places.
8.10 Given that y1 + 4y = x2, y (0) = 1. Determine y(0.2) with the fourth-order Taylor’s series method using

a single integration step.
8.11 Using Taylor’s series method for y(x) given that y1 = y2 – x, y(0) = 1, find y(0.1) and y(0.3) correct to

four decimal places.

8.12 Use Taylor’s series method to solve the differential equation 2
1dy

dx x y
=

+
, y(4) = 4 to find y(4) and

y(4.2).
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8.13 Use Euler’s method to find y(1) from the differential equation 
dy
dx

= x + y, y (0) = 1.

8.14 Use Euler’s method to solve 
dy
dx

= –1.2y + 7e–0.3x from x = 0 to x = 2 with the initial condition y = 3

at x = 0. Take h = 0.5.

8.15 Solve using Euler’s method to solve 
dy
dx

= x + y2, y(1) = 0 at x = 1.3 with h = 0.5 and at x = 1.175 with

h = 0.025.

8.16 Solve the following differential equation using Euler’s method for x = 0 to 0.4. 
dy
dx

= 3yt2 + 2yt = 1

with y(0) = 1. Take step size h = 0.1.

8.17 Use Euler’s method to approximate the solution of the following initial value problem.

dy
dt

= te3 t – 2y, 0 ≤ t ≤ 1, y(0) = 0, with h = 0.5.

8.18 Solve 
dy
dx

= x2(1 + y) with y(1) = 1 to find y(1.1) by using Euler’s method and taking h = 0.025.

8.19 Use modified Euler’s method to find an approximate value of y when x = 0.3. Given that

dy
dx = x + y, y(0) = 1.

8.20 Repeat Problem P8.14 using the modified Euler’s method.
8.21 Use modified Euler’s method to find the value of y at x = 0.1, given that y(0) = 1 and y1 = x2 + y.

8.22 Using modified Euler’s method to find the value of y(2) in steps of 0.1, given that 2
dy xy
dx

= + ,

y(1) =1.

8.23 Solve ( 1)
dy xy
dx

= + with y(0) = 1 for finding y(0.075) by using modified Euler’s method taking

h = 0.025.
8.24 Use the modified Euler’s method to approximate the solution to the following initial value problem.

dy
dx

= 1 + (t – y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.5.

8.25 Find y(0.1), y(0.2), y(0.3) and y(0.4) correct to four decimal places given that 
dy
dx

= y – x, y(0) = 2. Take

h = 0.1 and use second-order Runge-Kutta method.

8.26 Use second-order Runge-Kutta method to solve the equation 
dy
dx

= sin y, y(0) = 1 from x = 0 to 0.5

in steps of h = 0.1. Keep four decimal places in the computations.
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8.27 Use the second-order Runge-Kutta method to solve the equation 
dy
dt

= t2 – y + 1;  0 ≤ t ≤ 0.5. With

y(0) = 1 and h = 0.1. Keep five decimal places in the computations.
8.28 Using Runge-Kutta method of order 2, find y for x = 0.1, given that y = 1 when x = 0 and

dy
dx

= x + y. Use h = 0.1 and keep five decimal places in the computations.

8.29 Use the second-order Runge-Kutta method to solve the equation 
dy
dx

= y – x,  y(0) = 2 and find y(0.1)

correct to four decimal places with h = 0.1 and keep four decimal places.

8.30 Solve (1 )
( )

dy xy
dx x y

+
=

+
, y(1) = 1.2 by Runge-Kutta method of order 2. Take h = 0.1 for y(1.2).

8.31 Use the classical Runge-Kutta method of fourth-order to find the numerical solution at x = 0.8 for

dy x y
dx

= + , y = (0.4) = 0.41. Assume a step length of h = 0.2.

8.32 Use the Runge-Kutta fourth-order method to find the value of y when x = 1 given that
dy y x
dx y x

−
=

+
, y(0) = 1.

8.33 Use the Runge-Kutta fourth-order method to solve the equation 
2 2

2 2
dy y x
dx y x

−
=

+
with y(0) = 1 at

x = 0.2, 0.4. Take h = 0.2.

8.34 Use the classical fourth-order Runge-Kutta method to solve 
dy
dx = –1.2y + 7e–0.3x from x = 0 to x = 1.5

with the initial condition y = 3 at x = 0. Take h = 0.5.
8.35 Use the classical fourth-order Runge-Kutta method to integrate f (x, y) = –2x3 + 12x2 – 20x + 8.5 using

a step size of h = 0.5 and an initial condition of y = 1 at x = 0. Compute y(0.5).

8.36 Use the Runge-Kutta fourth-order method to find y(0.2), y (0.4) and y (0.6) given that 
dy
dx

= 1 + y2,
y(0) = 0 and take h = 0.2.

8.37 Use the Adams-Moulton method to solve the differential equation 
dy
dx

= x2 – y + 1, 0 ≤ x ≤ 1 with

y(0) = 1. Use h = 0.1 and find the solution of y(0.2) accurate to 6 digits.

8.38 Use the Adams-Moulton method to solve the differential equation 
dy
dx

= x – y2, y(0) = 1 to find y(0.4).
Given that y(0.1) = 0.9117, y (0.2) = 0.8494 and y(0.3) = 0.8061.

8.39 Use Adams-Moulton method to find y(0.8) given that 
dy
dx

= 1 + y2, y(0) = 0.
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8.40 Use Adams-Moulton method to solve the differential equation 
dy
dx

= x2 – y + 1, 0 ≤ x ≤ 1 with
y(0) = 1. Find y(0.4) given that y(0.1) = 1.0003, y(0.2) = 1.00243 and y(0.3) = 1.00825.

8.41 Use Adams-Moulton method to find y(1.4) given that 
dy
dx

= x2(1 + y) and that y(1) = 1, y(1.1) = 1.233,
y(1.2) = 1.543 and y(1.3) = 1.979.

8.42 Use the Adams-Moulton method to approximate the solution to the following initial value problem.
Use the exact starting values.

dy
dx

= 1 + (t – y)2, 2 ≤ t ≤ 3, y(2) = 1, with h = 0.2.

Actual solution is y(t) =
1

1
t

t
+

−
 .

8.43 Use Milne’s predictor-corrector method to find y(0.8) taking h = 0.2. Given that 
dy
dx

= y + x2 with
y(0) = 1.

8.44 Use Milne’s predictor-corrector method to solve 
dy
dx

= x + y, with the initial condition y(0) = 1, from
x = 0.2 to x = 0.3.

8.45 Use Milne’s method to compute the solution at x = 0.4 given that 
dy
dx

= xy + y2, y(0) = 1. Take h = 0.1
and obtain the starting values for Milne’s method using Runge-Kutta method of order 4.

8.46 Use Milne’s method to solve the differential equation for x = 0.4 and x = 0.5 given that 
dy
dx

= x2 – y + 1,
0 ≤ x ≤ 1 and y(0) = 1. Given y(0.1) = 1, y(0.2) = 1.0024 and y(0.3) = 1.0083.

8.47 Use Milne’s method to find y(0.8) and y(1.0) given that 
dy
dx

= 1 + y2, y(0) = 0 and y(0.2) = 0.2027,
y(0.4) = 0.4228 and y(0.6) = 0.6841. Take h = 0.2.

8.48 Solve 
dy
dx

= –y with y(0) = 1 by using Milne’s predictor-corrector method for x = 0.5 to 0.7 with

h = 0.1.
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Appendix-A

Partial Fraction Expansions

In obtaining the solution of many engineering problems, we encounter rational algebraic fractions that are
ratio of two polynomials in s, such as

( ) ( )
( )

1
0 1

1
0 1

...

...

m m
m

n n
n

P s b s b s b
F s

Q s a s a s a

−

−
+ + +

= =
+ + + (A.1)

In practical systems, the order of polynomial in numerator is equal to or less than that of denominator. In
terms of the orders m and n, rational algebraic fractions are subdivided as follows:

(i) Improper fraction if  m ≥  n
(ii) Proper fraction if  m < n

An improper fraction can be separated into a sum of a polynomial in s and a proper fraction, i.e.,

( )
( )

( )
( )( ) = ( ) + 

P s P s
F s d s

Q s Q s
= (A.2)

           Improper     Proper

This can be achieved by performing a long division. To obtain the partial fraction expansion of a proper
fraction, first of all we factorise the polynomial Q(s) into n first-order factors. The roots may be real, complex,
distinct or repeated. Several cases are discussed below:
Case-I: Partial Fraction Expansion when Q(s) has Distinct Roots
In this case, Eq. (A.1) may be written as
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which when expanded, gives
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where Ak (k = 1, 2, …, n) are constants.
To evaluate the coefficients Ak, multiply F(s) in Equation (A.3) by (s + pk) and let s = – pk. This gives

( ) ( )
( )
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k

k k
s p

s p

P s P s
A s p dQ s Q s

ds
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 (A.5)

    
( )

( )( ) ( ) ( )1 2 1
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Example EA.1
Find the partial fraction expansion of the function

         F(s) = 
3

( 1)( 2)s s+ +

Solution:
The roots of the denominator are distinct.
Hence

        
3( )

( 1)( 2) ( 1) ( 2)
A BF s

s s s s
= = +

+ + + +

or           
3 ( 1)

( 2) ( 2)
B sA

s s
+

= +
+ +

Let             s = –1, then A = 3
Let             s = –2, then

           
3 ( 2)

( 1) ( 1)
A s B

s s
+

= +
+ +

or         )12(
3
+−  = B

or            B = –3

Hence        3 3
( )

1 2
F s

s s
= −

+ +

Example EA.2
Find the partial fraction expansion of the function

          F(s) = 2
5

( 1)( 2)s s+ +
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Solution:
The roots of (s + 2)2 in the denominator are repeated. We can write

2 2
5

( )
( 1) ( 2)( 1)( 2) ( 2)

A B CF s
s ss s s

= = + +
+ ++ + +                        (A.7)

Multiplying Eq. (A.7) by (s + 1) on both sides and letting  s = –1

 2 2
5 ( 1) ( 1)

( 2)( 2) ( 2)
B s C sA

ss s
+ +

= + +
++ +

     5 = A

Multiplying Eq. (A.7) by (s + 2)2 and letting s = –2

             
25 ( 2) +  + (  + 2)

( 1) ( 1)
A s B C s

s s
+=

+ +  (A.8)

or            B = –5

To find C, we differentiate Eq.(A.8) with respect to s and letting s = –2

           2 2
5 ( 2)

 + 
( 1) ( 1)

s s A C
s s

− +
=

+ +

or      C = –5

Hence
2 2

5 5 5 5( )
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+ ++ + +

Example EA.3
Find the partial fraction expansion of the function

( ) ( )
( )( )

24 5 2
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+ +

Solution:
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( )( )

24 5 2

1 3 1 2

s s A B C
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+ + + +

   ( ) ( )( ) ( ) ( )24 5 2 1 2 2 1s s A s s Bs s Cs s+ + ≡ + + + + + +

Substituting  s = 0, –1 and –2 in the above equation we get the values of A, B and C as 4, 8  and –8 respectively.
Hence,
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Case-II: Partial Fraction Expansion when Q(s) has Complex Conjugate Roots
Suppose that there is a pair of complex conjugate roots in Q(s), given by

               s = –a – jω and s = –a + jω
Then F(s) may be written as

 
3 4
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( ) ...( ) ( )( )( )( ) ( )n
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which when expanded gives

 ( ) ( ) ( )
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where A1 and A2 are the coefficients at s = – (a + jω) and s = – (a – jω) respectively.
As per Eq. (A.5), the coefficient A1 is given by
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( )
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=− + ω

= + + ω                              (A.11)

Case-III: Partial Fraction Expansion when Q(s) has Repeated Roots
Assume that root  p1 of Q(s) is of multiplicity r and other roots are distinct. The function F(s) may be written
as
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which when expanded, gives
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The coefficients of repeated roots may be obtained using the following relation:

              ( ) ( ) ( )
( )

1

11
1 ; 0,1, 2, , 1
!

i
r

r i i
s p

P sdA s p i r
i Q sds−

=−

   = + = −  
    

�                              (A.14)

Example EA.4
Find the partial fraction expansion of the function
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Solution:
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     2 ≡ As(s + 4)2 + B(s + 4)2 + Cs2(s + 4) + Ds2

Substituting s = 0 and –4 in the above equation, we get the values of B and D as

B = 0.125  and  D = 0.125
Comparing the coefficients of s3 and s2 terms on both sides, we get the values of A and C as

A = – 0.0625
and C =  0.0625

Hence  2 2 2 2
2 0.0625 0.125 0.0625 0.125

4( 4) ( 4)s ss s s s
−

= + + +
++ +

Problems

A.1 Find the partial fraction expansion of the following functions.
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Appendix-B

Basic Engineering Mathematics

B.1 ALGEBRA

B.1.1 Basic Laws
Cumulative law:

a + b = b + a ; ab = ba
Associative law:

a + (b + c) = (a + b) + c;   a(bc) = (abc)
Distributive law:

a(b + c) = ab + ac

B.1.2  Sums of Numbers
The sum of the first n numbers:

1

( 1)( )
2

n n nn +
=∑

The sum of the squares of the first n numbers

             
2

1

( 1)(2 1)( )
6

n n n nn + +
=∑

The sum of the cubes of the first n numbers

2 2
3

1

( 1)( )
4

n n nn +
=∑

B.1.3 Progressions
Arithmetic Progression

a, a + d, a + 2d, a + 3d, ….
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where
a = first term
d = common difference
n = number of terms
S = sum of n terms
� = last term

� = a + (n – 1)d
S = (n/2)(a + �)
(a + b)/2 = arithmetic mean of a and b.

Geometric Progression
a, ar, ar2, ar3, ….

where
a = first term
r = common ratio
n = number of terms
S = sum of n terms
� = last term

� = arn–1
1 1

1 1

nr r aS a
r r

− −
= =

− −
�

1
aS

r
=

−
 for r2 < 1 and n = x

  ab = geometric mean of a and b.

B.1.4 Powers and Roots

axay = ax+y

                        
x

x y
x

a a
y

−=

(ab)x = axbx

(ax)y = axy

a0 = 1 if a ≠ 0
a–x = 1/ax

ax/y = y xa

a1/y = y a
x x xab a b=

/ /x x xa b a b=
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B.1.5 Binomial Theorem

(a ± b)n = an ± nan–1b + 2 2 3 3( 1) ( 1)( 2) ...
2! 3!

n nn n n n na b a b− −− − −+ +

...( 1) ( 1) ...( 1)
!

m n m mn n n m a b
m

−− − +
+ ± +

where
m! = 1 . 2 . 3. … (m – 1)m

The series is finite if n is a positive integer. If n is negative or fractional, the series is infinite and will converge
for |b | < |a | only.

B.1.6 Absolute Values
The numerical or absolute value of a number n is denoted by |n | and represents the magnitude of the number
without regard to algebraic sign. For example,

             | – 5 | = | +5| = 5

B.1.7 Logarithms

Laws of Logarithms
logbMN = logbM + logbN

logb1 = 0

logb
M
N

= logbM – logbN

logbb = 1
logbNm = m logbN

logb0 = + ∞, 0 < b < 1

log r m
b N = m/r logbN

logb0 = –∞, 1 < b < ∞
Important Constants

log10e = 0.4342944819
log10x = 0.4343 loge x = 0.4343 ln x

ln 10 = loge10 = 2.3025850930
ln x = logex = 2.3026 log10x

B.2 TRIGONOMETRY

sin θ = 0 ⇒ θ = nπ, n is an integer
cos θ = 0 ⇒ θ = (2n + 1)π/2, n is an integer

sin θ = sin α ⇒ θ = nπ + (–1) n;  α, n is an integer
cos θ = cos α ⇒ θ = 2nπ ±α, n is an integer

tan θ = 0 ⇒ θ = nπ, n is an integer
tan θ = tan α ⇒ θ = nπ +α, n is an integer
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cosh
2

x xe ex
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 sinh
2

x xe ex
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sinhtanh
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= =
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= = =
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1 2
sech

cosh x xx
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+

1 2
cosec

sinh x xx
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−

B.2.1 Trigonometric Identities

   sin2 α + cos2 α = 1

           2
2

11 tan
cos

+ α =
α

         tan α cot α = 1

           2
2

11 cot
sin

+ α =
α

                 sin (α ±β) = sin α cos β ± cos α sin β
    cos (α ±β) = cos α cos β ∓ sin α sin β

                  
tan tantan( )

1 tan tan
α ± βα ± β =

α β∓

           
cot cot 1cot( )
1 cot cot

α β
α ± β =

± α β
∓

sin sin 2sin cos
2 2

α + β α − β
α + β =

        sin sin 2cos sin
2 2

α + β α − β
α − β =

       cos cos 2cos cos
2 2

α + β α − β
α + β =

       cos cos 2sin sin
2 2

α + β α − β
α − β = −
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sin( )tan tan
cos cos

α ± β
α ± β =

α β

sin( )cot cot
sin sin

β ± αα ± β =
α β

   
1 1

sin cos sin( ) sin( )
2 2

α β = α + β + α − β

  
1 1

cos cos cos( ) cos( )
2 2

α β = α + β + α − β

   
1 1

sin sin cos( ) cos( )
2 2

α β = α − β − α + β

   
tan tan tan tantan tan
cot cot cot cot

α + β α − β
α β = = −

α + β α − β

   
cot cot cot cotcot cot
tan tan tan tan

α + β α − β
α β = = −

α + β α − β

   
cot tan cot tancot tan
tan cot tan cot

α + β α − β
α β = = −

α + β α − β

B.3   DIFFERENTIAL CALCULUS

B.3.1 List of Derivatives
(Note: u, v and w are functions of x)

d
dx

(a) = 0; a = constant

d
dx

(x) = 1

    
dy dy dv
dx dv dx

= ; y = y (v)

( )
d duav a
dx dx

=

1 if 0
/

dy dx
dx dx dy dy

= ≠

         ... ...(±  ±  ± ) = 
d du dvu v
dx dx dx

± ± +

      1( ) = n nd duu nu
dx dx

−
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         ( ) = +
d dv duuv u v
dx dx dx

2
/ /d u v du dx u dv dx

dx v v
−=

      1( ) lnv v vd du dvu vu u u
dx dx dx

−= +

      ( ) lnu ud dua a a
dx dx

=

       ( )u ud due e
dx dx

=

     
1

(ln )
d duu
dx u dx

=

  
log

(log ) a
a

d duu
dx u dx

=

    (sin ) cos
d duu u
dx dx

=

   (cos ) sin
d duu u
dx dx

= −

   2(tan ) sec
d duu u
dx dx

=

(cosec ) cosec cot
d duu u u
dx dx

= −

    (sec ) sec tan
d duu u u
dx dx

=

   2(cot ) cosec
d duu u
dx dx

= −

   ( ) sin
d duversu u
dx dx

=

   1
2

1sin
1

d duu
dx dxu

− =
−

; 1sin
2 2

u−−π π
≤ ≤

   1
2

1cos
1

d duu
dx dxu

− =
−

; 10 cos u−≤ ≤ π



326 // Numerical Methods //

   1
2

1tan
1

d duu
dx dxu

− =
+

 
1

2

1sinh
1

d duu
dx dxu

− =
+

 1
2

1cosh
1

d duu
dx dxu

− =
−

;      u > 1

 1
2

1tanh
1

d duu
dx dxu

− =
−

 
1

2

1cosec
1

d duu
dx dxu u

− −
=

+

 1
2

1sech
1

d duu
dx dxu

− = −
−

;   u > 0

 1
2

1coth
1

d duu
dx dxu

− =
−

 
1 1 1

2

1
cosec ; cosec , 0 cosec

2 21

d duu u u
dx dxu u

− − −π π
= − −π < ≤ − < ≤

−

   
1 1 1

2

1sec ; sec 0 sec
2 21

d duu u u
dx dxu u

− − −π π
= − π ≤ < − ≤ <

−

   1
2

1cot
1

d duu
dx dxu

− −=
+

  1
2

1

2

d duvers u
dx dxu u

− =
−

             10 vers u−≤ ≤ π

    sinh cosh
d duu u
dx dx

=

    cosh sinh
d duu u
dx dx

=

    2tanh sech
d duu u
dx dx

=

 cosech cosech coth
d duu u u
dx dx

= −
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   sech sech tanh
d duu u u
dx dx

= −

    2coth cosec
d duu u
dx dx

= −

B.3.2 Expansion in Series
Exponential and Logarithmic Series

    
2 3 4

...1
1! 2! 3! 4!

x x x x xe = + + + + + [– ∞ < x < + ∞]

     
2 3

2 3 ...1
1! 2! 3!

x mx m m ma e x x x= = + + + + [a > 0, – ∞ < x < + ∞]

where       m = ln a = (2.3026 × log10 a)

      
2 3 4 5

...ln(1 )
2 3 4 5
x x x xx x+ = − + − + + [–1 < x < + 1]

      
2 3 4 5

...ln(1 )
2 3 4 5
x x x xx x− = − − − − − − [–1 < x < + 1]

    
3 5 71 ...ln 2

1 3 5 7
x x x xx
x

 +  = + + + +    −   [–1 < x < + 1]

    3 5 7
1 1 1 1 1 ...ln 2
1 3 5 7

x
x x x x x

+   = + + + +      − [x < –1 or + 1 < x]

       2 3( 1) ( 1)( 2) ...(1 ) 1 , | | 1
2! 3!

n n n n n nx nx x x x− − −
+ = + + + + <

     2 3( 1) ( 1)( 3) ...(1 ) 1 , | | 1
2! 3!

n n n n n nx nx x x x− + + +
+ = − + − + <

     2 3( 1) ( 1)( 3) ...(1 ) 1 , | | 1
2! 3!

n n n n n nx nx x x x− + + +
− = × + + + <

(1 + x)–1 = 1 – x + x2 – x3 + …, |x| < 1
(1 + x)–2 = 1 – 2x + 3x2 – 4x3 + …, |x| < 1
(1 – x)–1 = 1 + x + x2 + x3 + …, |x| < 1
(1 – x)–2 = 1 + 2x + 3x3 + 4x2 + …, |x| < 1

(1 – x)–1/2 = 1 + 2 3
. ..1 1 3 1 3 5 ..., | | < 1. . .2 2 4 2 4 6

x x x x+ + +
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2

2 2 2
1 1 1 ...

61 2 3
π+ + + =

2

2 2 2
1 1 1 ...

81 3 5
π+ + + =

4

4 4 4
1 1 1 ...

901 2 3
π+ + + =

4

4 4 4
1 1 1 ...

961 3 5
π+ + + =

                       
3 51 1 1 1 1 ...ln 2

1 3 1 5 1
x x xx
x x x

 − − −   = + + +       + + +  
         [0 < x < ∞]

3 51 1 ...ln( ) ln 2
2 3 2 5 2

x x xa x a
a x a x a x

    + = + + + +       + + +  
           [0 < a < + ∞, – a < x < + ∞]

Series for the Trigonometric Functions
3 5 7

...sin
3! 5! 7!
x x xx x= − + − + [– ∞ < x < + ∞]

2 4 6 8
...cos 1  

2! 4! 6! 8!
x x x xx = − + − + − [– ∞ < x < + ∞]

3 3 7 92 17 62 ...tan  
3 15 315 2835
x x x xx x= + + + + + [– π/2 < x < + π/2]

3 5 71 2 ...cot  
3 45 945 4725
x x x xx

x
= − − − − − [– π < x < + π]

3 5 7
1 3 5 ...sin

6 40 112
y y yy y− = + + + + [– 1 ≤ y ≤ + 1]

3 5 7
1 ...tan

3 5 7
y y yy y− = − + − + [–1 ≤ y ≤ + 1]

           1 11
cos sin

2
y y− −= π −

           1 11
cot tan

2
y y− −= π −

In these formulae, all angles are expressed in radians.
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Series for the Hyperbolic Functions

3 5 7
...sinh

3! 5! 7!
x x xx x= + + + + [–∞ < x < + ∞]

2 4 6
...cosh 1

2! 4! 6!
x x xx = + + + + [–∞ < x < + ∞]

3 5 7
1 3 5 ...sinh

6 40 112
y y yy y− = − + − + [–1 < y < +1]

3 5 7
1 ...tanh

3 5 7
y y yy y− = + + + +          [–1 < y < +1]

General Formulas of Maclaurin and Taylor
If f (x) and all its derivatives are continuous in the neighbourhood of the point x = 0 (or x = a), then, for any
value of x in this neighbourhood, the function f (x) may be expressed as a power series arranged according
to ascending powers of x (or x – a), as follows:

 
( 1)

2 3 1(0) (0) (0) (0)...( ) (0) ( )
1! 2! 3! ( 1)!

n
n n

n
f f f ff x f x x x x P x

n

−
−′ ′′ ′′′= + + + + + +

− (Maclaurin)

2 3( ) ( ) ( ) ...( ) ( ) ( ) ( ) ( )
1! 2! 3!

f a f a f af x f a x a x a x a′ ′′ ′′′
= + − + − + − +

           
( 1)

1( ) ( ) ( )( )
( 1)!

n
n n

n
f a x a Q x a

n

−
−+ − + −

−  (Taylor)

Here (Pn) xn, or (Qn) (x – a)n is called the remainder term; the values of the coefficients Pn and Qn may be
expressed as follows:

( ) 1 ( )[ ( )] (1 ) ( )
! ( 1)!

n n n

n
f sx t f txP

n n

−−= =
−

( ) 1 ( )[ ( )] (1 ) [ ( )]
! ( 1)!

n n n

n
f a s x a t f a t x aQ

n n

−+ − − + −= =
−

where s and t are certain unknown numbers between 0 and 1.

B.4 INTEGRAL CALCULUS

B.4.1 List of Most Common Integrals

a du a du au C= = +∫ ∫
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( )u v dx u dx v dx+ = +∫ ∫ ∫
u dv uv u du= −∫ ∫ (integration by parts)

( , ) ( , )dy f x y dx dx f x y dy=∫ ∫ ∫ ∫
1

1

n
n xx dx C

n

−
= +

+∫   when n ≠ –1

ln ln
dx x C Cx
x

= + =∫
x xe dx e C= +∫

sin cosx dx x C= − +∫
cos sinx dx x C= +∫

2 cot
sin

dx x C
x

= − +∫

2 tan
cos

dx x C
x

= +∫

1 1
2

sin cos
1

dx x C x C
x

− −= + = − +
−

∫

1 1
2 tan cot

1
dx x C x C

x
− −= + = − +

+∫
1( )( )

( 1)

n
n a bxa bx dx C

n b

+++ = +
+∫

1 1
ln ( ) ln ( )

dx a bx C C a bx
a bx b b

= + + = +
+∫

2
1

( )( )
ax C

b a bxa bx
= +

++∫

1
2

1 1ln tanh
2 11

dx x C x C
xx

−+= + = +
−−∫ ,    when x < 1.

1
2

1 1ln coth
2 11

dx x C x C
xx

−−= + = − +
+−∫ ,    when x < 1.

1
2 2 2

1 tan
2

dx b cx C
a bx cx ac b ac b

− +
= +

+ + − −
∫  ,    [ac – b2 > 0]
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2

2 2

1 ln
2

b ac b cx C
b ac b ac b cx

− − −
= +

− − + +

    
1

2 2

1 tanh b cx C
b ac b ac

− += − +
− − ,           [b2 – ac > 0]

( )32
3

a bx dx a bx C
b

+ = + +∫
2dx a bx C
ba bx

= + +
+∫

2
( ) 2 (3 2 )

3
m nx dx mb an nbx a bx C

a bx b
+

= − + + +
+∫

                      
2

2 2
2

2 2
2 2 2

b cx ac b dxa bx cx dx a bx cx C
c c a bx cx

+ −
+ + = + + + +

+ +
∫ ∫

ln

x
x aa dx C

a
= +∫

2 2
( 1) !...1

n ax
n ax

n n
x e n n n nx e dx C

a ax a x a x
− = − + − ± +  ∫

ln lnx dx x x x C= − +∫

2
ln ln 1x xdx C

x xx
= − − +∫

1(ln ) 1 (ln )
1

n
nx dx x C

x n
+= +

+∫

2 1 1 1 1
sin sin 2 sin cos

4 2 2 2
x dx x x C x x x C= − + + = − + +∫

2 1 1 1 1
cos sin 2 sin cos

4 2 2 2
x dx x x C x x x C= + + = + +∫

cos
sin

mxmx dx C
m

= − +∫

sin
cos

mxmx dx C
m

= +∫
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cos( ) cos( )sin cos
2( ) 2( )

m n x m n xmx nx dx C
m n m n

+ −
= − +

+ −∫

sin( ) sin( )sin sin
2( ) 2( )

m n x m n xmx nx dx C
m n m n

− +
= − +

− +∫

sin( ) sin( )cos cos
2( ) 2( )

m n x m n xmx nx dx C
m n m n

− +
= + +

− +∫

tan ln cosx dx x C= − +∫
cot ln sinx dx x C= +∫

ln tan
sin 2
dx x C

x
= +∫

ln tan
cos 4 2

dx C
x

π π = + +  ∫

tan
1 cos 2

dx x C
x

= +
+∫

cot
1 cos 2

dx x C
x

= − +
−∫

21
sin cos sin

2
x x dx x C= +∫

ln tan
sin cos

dx x C
x x

= +∫
cos

cos cos
x dx x a dx C

a b x b b a b x
= − +

+ +∫ ∫
sin 1

ln( cos )
cos
x dx a b x C

a b x b
= − + +

+∫
cos sin cos( cos sin )
cos sin cos cos

A B x C x dy y dydx A B u C u
a b x c x a p y a p y

+ + = + +
+ + + +∫ ∫ ∫

    
sin( sin cos )

cos
y dyB u C u

a p y
− −

+∫ , where b – p cos u, c = p sin u and x – u = y.

2 2
sin cossinax axa bx b bxe bx dx e C

a b
−= +
+∫
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2 2
cos sincosax axa bx b bxe bx dx e C

a b
+= +
+∫

sinh coshx dx x C= +∫

tanh ln coshx dx x C= +∫
cosh sinhx dx x C= +∫
coth ln sinhx dx x C= +∫

P P P



Appendix-C

Cramer’s Rule

Cramer’s Rule: Cramer’s rule can be used to solve a system of simultaneous linear algebraic equations.
Consider a general system of n linear equations in n unknowns:

a11x1 + a12x2 + … + a1nxn = b1

a21x1 + a22x2 + … + a2nxn = b2

       �             �   �
an1x1 + an2x2 + … + annxn = bn (C.1)

and define the determinant of such a system. We begin by defining the determinant of a 3 × 3 system:

11 12 13
22 23 21 23 21 22

21 22 23 11 12 13
32 33 31 33 31 32

31 32 33

a a a
a a a a a a

a a aC a a a
a a a a a a

a a a
= = − + (C.2)

The general definition of the determinant of the n × n system of Eq. (C.1) is simply an extension of the
procedure (C.2).

11 12 1

21 22 2

1 2

n

n

n n nn

a a a
a a a

C

a a a

=

�
�

� � � �
�

= a11A11 – a12 A12 + ... + (–1) n+1a1nA1n (C.3)

where A1j is the (n – 1) × (n – 1) determinant obtained by crossing out the first row and jth column of the
original n × n determinant. Hence an n × 1 determinant can be obtained by calculating n (n – 1) (n – 1)
determinants.
We shall conclude this Appendix by introducing a method for obtaining solutions of the system (C.1). We
define the determinants

1 12 1

2 22 2
1

2

n

n

n n nn

b a a
b a a

C

b a a

=

�
�

� � � �
�

,
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11 1 13 1

21 2 23 2
2

1 3

n

n

n n n nn

a b a a
a b a a

C

a b a a

=

�
�

� � � � �
�

, …,

11 12 1, 1 1 1, 1 1

21 22 2, 1 2 2, 1 2

1 2 , 1 , 1

k k n

k k n
k

n n n k k n k nn

a a a b a a
a a a b a a

C

a a a b a a

− +

− +

− +

=

� �
� �

� � � � � � � �
� �

, …,

11 12 1, 1 1

21 22 2, 1 2

1 2 , 1

n

n
n

n n n n n

a a a b
a a a b

C

a a a b

−

−

−

=

�
�

� � � � �
�

, (C.4)

obtained by replacing the kth column of C by the column

        

1

2

n

b
b

b

 
 
 
 
 
  

�

Then we have the following theorem, known as Cramer’s rule.
Cramer’s Rule: Let C and Ck, k = 1, 2, …., n, be given as in (C.3). If C ≠ 0, then the unique solution to the
system (C.1) is given by the values

1 2
1 2, , ...., n

n
CC C

x x x
C C C

= = = (C.5)

Example EC.1
Obtain the solution of the following simultaneous linear equations by Cramer’s rule.

(a) 1

2

1 3 5
4 1 12

x
x

    
=    −    

(b)
1

2

3

1 3 2 8
3 4 1 5
4 2 9 2

x
x
x

−     
    =    
    − −    

Solution:

(a)
| |
| |

i
i

C
x

C
=
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1

5 3
12 1 5 36 3.15
1 3 13
4 1

x
− − −= = =

−
−

2

1 5
4 12 12 20 0.62
1 3 13
4 1

x −= = =
−

−

(b)
| |
| |

i
i

C
x

C
=

1

8 3 2
5 4 1
2 2 9 441 7
1 3 2 63
3 4 1
4 2 9

x

−

− −
= = =

− −

− −

2

1 8 2
3 5 1
4 2 9 189 3

1 3 2 63
3 4 1
4 2 9

x
− −

= = = −
− −

− −

3

1 3 8
3 4 5
4 2 2 252 4

1 3 2 63
3 4 1
4 2 9

x

−

−
= = = −

− −

− −

Example EC.2
Consider the system

2x1 + 4x2 – x3 = –5
–4x1 + 3x2 + 5x3 = 14

6x1 – 3x2 – 2x3 = 5
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We have

2 4 1
4 3 5 112

6 3 2
C

−
= − =

− −
                  1

5 4 1
14 3 5 224
5 3 2

C
− −

= =
− −

2

2 5 1
4 14 5 112

6 5 2
C

− −
= − = −

−
              3

2 4 5
4 3 14 560

6 3 5
C

−
= − =

−

Therefore 31 2
1 2 32 1 5

CC C
x x x

C C C
= = = = − = =

Problems
Solve the following system of linear equations using Cramer’s rule:
C.1 (a) x + 2y + z = 0

3x + y – z = 0
x – y + 4z = 3

(b) 2x + y – 3z = 11
4x – 2y + 3z = 8
–2x + 2y – z = –6

(c) x + 3y – z = –10
–x + 4y + 2z = –4
2x – 2y + 5z = 35

(d) y – 3z = –5
2x + 3y – z = 7

4x + 5y – 2z = 10

(e)   1

2

3

4

1 1 1 1 2
1 1 1 2 0
4 4 1 1 11
2 1 2 2 2

x
x
x
x

−     
    − −      =             −     

( f )    1

2

3

4

10 7 8 7 32
7 5 6 5 23
8 6 10 9 33
7 5 9 10 31

x
x
x
x

    
         =                  

P P P
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Chapter 1: Numerical Computations
1.1 (a) 1.0215

(b) 1.405
1.2 x = 2.11
1.3 f (1.2) = 1.44
1.4 (a) (101  000  111)2

(b) (0.0101)2

1.5 50824.6135
1.6 (a) x = (149)16

(b) x = (1100  1011)2

1.7 (75)10 = (1001  1011)2

1.8 (a) (7)8

(b) (113)8

(c) (11)10

1.9 (1235)10

1.10 (113)8

1.11 Erxy = Erx + Ery

1.12 Erxy = Erx – Ery

1.13 (a) Absolute error, ξa = 0.666… ×10–6; relative error, ξr = 1 × 10–6

(b) Absolute error, ξa = 0.33 × 10–7; relative error, ξr = 5 × 10–7

1.14 Operation Absolute error Relative error 
x + y 
y – x 

xy 
y/x 

0.19 × 10–4 

0.238 × 10–5 

0.524 × 10–5 

0.571 × 10–4 

0.182 × 10–4 

0.625 × 10–5 

0.220 × 10–4 

0.267 × 10–4 

Answers to Selected Problems
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1.15 (a) Absolute error, EA = 0.004, relative error ER = 1.1312 × 10–3

(b) Absolute error, EA = 0.006, relative error ER = 1.6968 × 10–3

1.16 Absolute error = 0.00235; Relative error = 4.089634 × 10–5, Percentage relative error = 4.08964 ×10–3

1.17 Absolute error = 0.002857; Relative error = 0.0009, Percentage relative error = 9%
1.18 (a) Absolute error = 1 cm; True percentage relative error = 0.01%

(b) Absolute error = 1 cm; True percentage relative error = 10%
1.19 Percentage relative error = 9.02%; Approximate estimate of error = 33.3%

With 6 terms included approximate error falls below Es = 0.05%
1.20 Relative maximum error = 0.006

1.21 (a) 
3 5 7

...( )
3! 5! 7!
x x xf x x= − + − +

(b) Relative error, r6 = 0.005129%
(c) Upper bound on the truncation error = 0.02305%

1.22 Upper bound on the magnitude of the absolute error due to truncation is |Es(1)| ≤ 0.0083 and
|r5(1)| ≤ 2.26%

1.23 Upper bound on the error |R3(x)| ≤ 0.0625 for all x∈ [0,1)
1.24 n = 12 (number of terms)

1.25 Order, n F(n)( x) F(π/3) εt 
0 
1 
2 
3 
4 
5 
6 

cos x 
–sin x 
–cos x 

sin x 
cos x 

–sin x 
–cos x 

0.707106781 
0.521986659 
0.497754491 
0.499869147 
0.500007551 
0.500000304 
0.499999988 

–41.4 
–4.4 
0.449 
2.62 × 10–2 
–1.51 × 10–3 
–6.08 × 10–5 
2.4 × 10–6 

1.26 (a) Condition number = –11.2
(b) Condition number = –101

1.27 (a) Condition number = –1
(b) Condition number = –0.994975
(c) Condition number = –0.00314161

1.28 (a) Not linearly convergent from x = –0.75
(b) Not linearly convergent from x = 0.9
(c) Not linearly convergent from x = –0.5
(d) Not linearly convergent from x = 0.5
(e) Not linearly convergent from x = –1.25
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1.29 (a) to (d) will not converge quadratically

1.30 n pn *
np  

1 
2 
3 
4 
5 
6 
7 

0.693147 
0.810931 
0.863046 
0.892574 
0.911608 
0.924904 
0.934720 

0.904408 
0.931174 
0.946129 
0.955719 
0.962401 

— 
— 

*
np  converges more rapidly than pn to the exact solution of p = 1.

Chapter 2: Linear System of Equations

2.1 (a) 1
0.7 0.2 0.3
1.3 0.2 0.7

0.8 0.2 0.2
A−

− 
 = − − 
 − 

(b) 1
0.1765 0.3529 0.2353
0.4118 0.1765 0.1176
0.0588 0.1176 0.4118

A−
− 

 = − 
 − 

(c) 1
0.0136 0.0496 0.0583
0.1886 0.2233 0.0124
0.0298 0.0174 0.0546

A−
 
 = − − 
 − 

(d) 1
0 0 0.1429
2 1 0.2857

1.6667 0.6667 0.1429
A−

 
 = − − 
 − 

(e) 1
2 1 0

0.3333 0.6667 0.3333
0.6667 0.3333 0.3333

A−
− 

 = − − 
 − 

( f ) 1
0 3 3

1 3 2 7
9

3 1 1
A−

 
 = − 
 − − 

2.2 (a) x = 2, y = –3, z = 5
(b) x = 0.5515, y = 0.4146, z = –0.1759
(c) x = –1, y = 2, z = 3
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(d) x = 1.5205, y = –1.0658, z = –0.0356
(e) x1 = –0.6364, x2 = –1.7273, x3 = 0.2727, x4 = 0.9091
( f ) x1 = 25.3587, x2 = –19.6143, x3 = –28.9058, x4 = –7.8027

2.3 (a) x = 3, y = –1, z = –2
(b) x = 1, y = 2, z = 3
(c) x = 1, y = 1, z = 1
(d) x1 = 2.7869, x2 = 4.4918, x3 = 2.1311, x4 = –2.5410
(e) x1 = 25.3587, x2 = –19.6143, x3 = –28.9058, x4 = –7.8027
( f ) x1 = –1, x2 = 1, x3 = 2, x4 = 1

2.4 (a) x = 4, y = –1, z = 3
(b) x = 1, y = 2, z = –1
(c) x = 2, y = 2, z = 3
(d) x = 2, y = 0, z = –3
(e) x = 0, y = 1.5, z = 1.5
( f ) x1 = 2, x2 = 4, x3 = –3, x4 = 0.5

2.5 (a) x = 2, y = 1, z = 3
(b) x = 3, y = 2, z = 2
(c) x = 1, y = 0, z = 3
(d) x = 35/18, y = 29/18, z = 5/18
(e) x = 1, y = 1, z = 2
( f ) x1 = 2.7778, x2 = 4.2222, x3 = –0.5556, x4 = 6.8889

2.6 (a) x = 3, y = 1
(b) x = 7/8, y = 9/8, z = –1/8
(c) x = 1, y = 2, z = 3
(d) x = –2, y = 2, z = 1
(e) x = 1, y = 2, z = 2
( f ) x1 = 1, x2 = 1, x3 = 1, x4 = 1

2.7 (a) x1 = 1, x2 = 2, x3 = 3
(b) x1 = 1, x2 = 1, x3 = 1, x4 = 2
(c) x1 = 1, x2 = 1, x3 = 1, x4 = 2
(d) x1 = 1, x2 = 1, x3 = 1, x4 = 2
(e) x1 = 1, x2 = –1, x3 = 1, x4 = –1
( f ) x1 = –1, x2 = 1, x3 = 1, x4 = –1
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2.8 (a) x = 1, y = 2, z = 3
(b) x = 1, y = –1, z = 1
(c) x = 1.084, y = 1.95, z = 3.164
(d) x = 1, y = 2, z = –1
(e) x = 1, y = 1, z = 1
( f ) x1 = 1.0001, x2 = 1.9998, x3 = –0.9998, x4 = 0.9998

2.9 (a) x = 4, y = –1, z = 3
(b) x = 1, y = 2, z = 3
(c) x = 5, y = 4, z = 1
(d) x1 = 0.999, x2 = 1.9999, x3 = 2.9999, x4 = –0.0001
(e) x1 = 1.155, x2 = –0.311, x3 = 0.088, x4 = –0.044
( f ) x1 = 1, x2 = 0, x3 = –1, x4 = 4

3.1 4.4932
3.2 2.43066
3.3 1.51092
3.4 1.30
3.5 2.7119
3.6 2.739
3.7 0.3807
3.8 0.7346
3.9 7.7253
3.10 0.424031
3.11 0.73909
3.12 0.96433
3.13 2.7392
3.14 0.3807
3.15 2.798
3.16 1.763
3.17 0.5177
3.18 1.8438
3.19 1.488
3.20 2.7065

3.21 0.7346
3.22 1.48796
3.23 2.1163
3.24 With x0 = 0, the root is 0.73909
3.25 With x0 = 0, the root is 0.96434
3.26 2.36337
3.27 4.4934
3.28 1.895
3.29 0.56714
3.30 0.10260
3.31 0.6071
3.32 0.0913
3.33 3.7892
3.34 0.5314
3.35 1.172
3.36 0.671
3.37 –0.70346
3.38 1.94332; accurate to within 0.01
3.39 2.0
3.40 1.4880

Chapter 3: Solution of Algebraic and Transcendental Equations
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3.41 3.051
3.42 2.2790
3.43 –1.3247
3.44 1.1347241
3.45 4.217163
3.46 7.068583
3.47 4.730041
3.48 2.8523419
3.49 1.13472
3.50 4.21716
3.51 7.06858

3.52 4.73004
3.53 2.85234
3.54 0.5023
3.55 2.95
3.56 1.4973
3.57 2.1080
3.58 0.6710
3.59 0.68
3.60 0.1509
3.61 0.7710
3.62 2.0000

Chapter 4: Numerical Differentiation
4.1 (a) y′(1.0) = 3.0; y′′(1.0) = 6.0

(b) y′(1.0) = 1.0; y′′(1.0) = 4
(c) y′(1.0) = 5.0004; y′′(1.0) = 16
(d) y′(1.0) = –8.2002; y′′(1.0) = –23.6
(e) y′(1.0) = –7.6009; y′′(1.0) = –22.4
( f ) y′(1.0) = 1.6002; y′′(1.0) = 5.2
(g) y′(1.0) = 7.7021; y′′(1.0) = 19.4040

4.2 (a) y′(3.5) = 36.75; y′′(3.5) = 21
(b) y′(3.5) = 29.75; y′′(3.5) = 19
(c) y′(3.5) = –3.9445; y′′(3.5) = –3.3810
(d) y′(3.5) = 1.6674; y′′(3.5) = 1.0397

4.3 (a) y′(6.0) = –1.68; y′′(6.0) = –0.3520
(b) y′(6.0) = –2.0537; y′′(6.0) = –0.7126

4.4 y′(11) = 11.1784; y′′(11) = 2.0865

4.5 y′(4) = 12.75; y′′(4) = 9.75

4.6 y′(2) = 3.9007; y′′(2) = 5.234

4.7 (a) y′(3) = 1.7263; y′′(3) = 4.6309
(b) y′(3) = 0.0958; y′′(3) = 0.0367

4.8 (a) y′(2) = 2.4667; y′′(2) = 6.9667
(b) y′(2) = 3.123; y′′(2) = 4.2149

4.9 (a) y′(1.2) = 0.7917; y′′(1.2) = 6.9667
(b) y′(1.2) = 0.1193; y′′(1.2) = –0.7767
(c) y′(1.2) = 2.8964; y′′(1.2) = –18.3050

4.10 (a) x = 0; y = –5
(b) x = 0.6667; y = 4.8519
(c) x = 0.5556; y = 4.8971

4.11 f ′(3.4) = 0.12864; f ′(5.2)
          = –0.00836; f ′(5.6) = 3.930432

4.12 f ′(3.4) = –0.02856; f ′(5.2)
          = –0.0927; f ′(5.6) = 3.9065

4.13 f ′(2) = 14; f(2.5) = 20.75
4.14 y′(3) = 1.7263; y′′(2) = 4.6309
4.15 y′(2) = 2.4667; y′′(2) = 6.9667
4.16 y′(1.2) = 0.7917; y′′(1.2) = 5
4.17 y′(1.2) = 0.1193; y′′(1.2) = –0.7767
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Chapter 5: Finite Differences and Interpolation
5.2 (a) (eh – 1)2ex

(b) 2cos sin
2 2
h hx +  

(c) 1
2tan

1
h

hx x
−  
 + + 

(d) 2 3
( 2)( 3) ( 3)( 4)x x x x

− −
+ + + +

(e) ( 1)
( 1)( 2)....( )

n

x x x x n
−

+ + +

( f ) 6x

(g) 2 2
(1 2 )

(1 )[1 ( 1) ]
x

x x
− +

+ + +

(h) 2sin cos
2 2

  + +    
ah ha x b

(i) 3(eh–1)2ex

5.3 (a) x y ∆y ∆2y ∆3y 
45 20    
  40   

55 60  20  
  60  –20 

65 120  0  
  60   

75 180    

(b) x y ∆y ∆2y ∆3y ∆4y 
40 204     

  20    
50 224  2   

  22  0  
60 246  2  0 

  24  0  
70 270  2  0 

  26  0  
80 296  2   

  28    
90 324     

5.4 x y ∆y ∆2y ∆3y 
1 6    
  9   

2 15  12  
  21  6 

3 36  18  
  39  6 

4 75  24  
  63   

5 138    

5.5 –49
5.6 813
5.7 (a) 35

(b) 77
(c) 6

5.9 (a) f (x) = 3x(3) + 10x(2) + 5x(1) + 1
(b) f (x) = x(4) + x(3) – 8x(2) – x(1) + 4

5.10 (a) 37
(b) 7
(c) 10
(d) 11
(e) 21

5.11 (a) 11
(b) 37
(c) –33
(d) –25
(e) 38

5.12 (a) 3 and 37
(b) –1 and 10
(c) 4 and 28
(d) –3 and 21
(e) –2 and 48

5.13 112.32097
5.14 1.64872
5.15 0.66913
5.16 16
5.17 48
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5.18 y = f(x) = x2 – 3x + 1

5.19 y = f(x) = x2 + 3x + 1

5.20 f (x) = x3 + 2x2 + 1

5.21 8.875

5.22 23.75

5.23 f(0.12) = 0.1197; f(0.26) = 0.2571

5.24 54.850; 96,840

5.25 0.0000392

5.26 y = x3 – 8x2 + 15x + 20

5.27 y = x3 – 8x2 – 20

5.28 y = 2x3 – x2 + 70

5.29 y = x3 – x2 + 3x + 2

5.30 1030

5.31 200

5.32 –24

5.33 196

5.34 5.76843

5.35 3.54672

5.36 7.8653

5.37 2.5

5.38 19.28906

5.39 38

5.40 35.22217

5.41 32495.1328

5.42 37.14453

5.43 36.05469

5.44 19.8125

5.45 24.46875

5.46 37.64063

5.47 36.625

5.48 13.9375

5.49 478.375

5.50 0.30345

5.51 y1.6 = 0.36663

5.52 y36 = 35.9375

5.53 1.11864

5.54 1.90408

5.55 31846.8528

5.56 0.38866

5.57 1.54397

5.58 1.09658

5.59 46614.25781

5.60 1.61177

5.61 –5.83

5.62 0.83890

5.63 1.6778

5.64 1.913966

5.65 5.528961

5.66 f0,1(x) = 0.4x3 + 0.1x   0 ≤ x ≤ 1
f1,2(x) = – (x – 1)3 + 1.2(x – 1)2 + 1.3(x – 1)

+ 1.5 2 ≤ x ≤ 3
f2,3(x) = 0.6(x – 2)3 – 1.8(x – 2)2 + 0.7(x – 2)

+ 2.0    2 ≤ x ≤ 3
5.67 f (1.5) = 0.7679
5.68 f3,4(x) = 3.7 + 0.2536(x – 3) + 0.0536(x – 3)3

3 ≤ x ≤ 4
f4,5(x) = 3.9 + 0.1214(x – 4) – 0.1607(x – 4)2

+ 0.0679(x – 4)3 4 ≤ x ≤ 5
f5,6(x) = 3.9 – 0.025(x – 5) – 0.043(x – 5)2 +

0.282(x – 5)3 5 ≤ x ≤ 6
f6,7(x) = 4.2 + 0.907(x – 6) + 0.89(x – 6)2

–0.2967(x – 6)3 6 ≤ x ≤ 7
f ′(3.4) = 0.12864
f ′(5.2) = –0.00836
f ′(5.6) = 3.930432
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5.69 f2,3(0) = 0.7212
5.70 f0,1(x) = 0.98x3 – 0.68x2 + 0.2x    0 ≤ x ≤ 1

f1,2(x) = –1.04(x – 1)3 + 2.26(x – 1)2 + 1.78(x – 1) + 0.5    1 ≤ x ≤ 2
f2,3(x) = –0.82(x – 2)3 – 0.86(x – 2)2 + 3.18(x – 2) + 3.5    2 ≤ x ≤ 3

5.71 f ′′(3.4) = –0.02856
f ′(5.2) = –0.0927
f(5.6) = 3.9065

5.72 f1(x) = 2.5 – 1.41977(x – 3) + 0.186565(x – 3)3

f2(x) = 1 – 0.16045(x – 4.5) + 0.83954(x – 4.5)2 – 0.21414(x – 4.5)3

f3(x) = 2.5 – 0.02205(x – 7) – 0.76654(x – 7)2 + 0.12775(x – 7)3

f2(5) = 1.102889
5.73 y(2.6) = 0.18714

Chapter 6: Curve Fitting, Regression and
Correlation
6.1 a = –22.0007, b = 3.7484
6.2 a = –149.3849, b = 9.1956
6.3 a = 0.4449, b = 0.2747
6.4 a = –47.4598, b = 11.582
6.5 a = 22.917, b = 3.3883
6.6 a = 44.3333, b = 0.4167
6.7 a = 80.7777, b = 1.138
6.8 a = 39.3327, b = 0.4213
6.9 a = 1.1574, b = 0.2566
6.10 a = 124.0862, b = –13.5402
6.11 (a) a = –22.0007 and b = 3.7484

(b) se = 30.8722
(c) SSE = 7624.7219
(d) SST = 23973.6
(e) SSR = 16348.8781
( f ) r2 = 0.682
(g) r = 0.8258
(h) when x = 42, y = 135.4307

6.12 (a) a = –149.3849 and b = 9.1956
(b) se = 58.8065

(c) SSE = 13832.8076
(d) SST = 125520.8333
(e) SSR = 111688.0258
( f ) r2 = 0.8898
(g) r = 0.9433
(h) when x = 53, y = 337.9811

6.13 (a) a = 0.4449 and b = 0.2747
(b) se = 1.0550
(c) SSE = 5.5648
(d) SST = 66
(e) SSR = 60.4352
( f ) r2 = 0.9157
(g) r = 0.9569
(h) when x = 42, y = 11.9825

6.14 (a) a = –47.4598 and b = 11.582
(b) se = 5.5803
(c) SSE = 249.1216
(d) SST = 47682.1
(e) SSR = 47432.9784
( f ) r2 = 0.9948
(g) r = 0.9974
(h) when x = 20, y = 184.1804
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6.15 (a) a = 22.917 and b = 3.3883
(b) se = 5.6669
(c) SSE = 256.9085
(d) SST = 4573.6
(e) SSR = 4316.6915
( f ) r2 = 0.9438
(g) r = 0.9715
(h) when x = 15, y = 73.7415

6.16 (a) a = 44.3333 and b = 0.4167
(b) se = 12.6573
(c) SSE = 1281.6667
(d) SST = 1802.5
(e) SSR = 520.8333
( f ) r2 = 0.2890
(g) r = 0.5375
(h) when x = 82, y = 78.5

6.17 (a) a = 80.7777 and b = 1.138
(b) se = 7.0176
(c) SSE = 492.4669
(d) SST = 2500.6667
(e) SSR = 2008.1998
( f ) r2 = 0.8031
(g) r = 0.8961
(h) when x = 45, y = 131.988

6.18 (a) a = 39.3327 and b = 0.4213
(b) se = 1.3376
(c) SSE = 17.8917
(d) SST = 32.9167
(e) SSR = 15.0249
( f ) r2 = 0.4565
(g) r = 0.6756
(h) when x = 72, y = 69.6634

6.19 (a) a = 1.1574 and b = 0.2556
(b) se = 1.0438
(c) SSE = 5.4473

(d) SST = 58.2143
(e) SSR = 52.767
( f ) r2 = 0.9064
(g) r = 0.9521
(h) when x = 41, y = 11.6778

6.20 (a) a = 124.0862 and b = –13.5402
(b) se = 15.4208
(c) SSE = 1426.8046
(d) SST = 9402
(e) SSR = 7975.1954
( f ) r2 = 0.85
(g) r = 0.92
(h) when x = 53, y = 29.3046

6.21 b = 0.8671 and m = 1.3471

6.22 b = 0.5686 and m = 1.5903

6.23 b = 0.3990 and m = 0.9057

6.24 b = 2.9256 and m = 1.3777

6.25 b = 18.9926 and m = 0.4983

6.26 a = 1.2675, b = 1.2475 and c = –0.0727;
Sy/x = 0.6520; r = 0.9653

6.27 a = –291.9285, b = 417.3647 and
c = –146.3105; St = 8.2232; Sr = 0.0406;
r = 0.9975; Sy/x = 0.1163

6.28 a = 24.1204, b = 1.9639, c = –0.0323,
Sy/x = 1.5211, St = 288, Sr = 4.6277,
r2 = 0.9839, r = 0.9919

6.29 a = 2.5095, b = 1.2, c = 0.7333,
Sy/x = 0.2024, St = 332.0571,
Sr = 0.1638, r2 = 0.9995, r = 0.9998

6.30 a = 18.9414, b = –0.0313, c = 0.0014,
Sy/x = 4.7437, St = 211.755, Sr = 67.5086,
r2 = 0.6812, r = 0.8253

6.31 a = 14.4217, b = 8.9904, c = –5.6087,
St = 1051.3356, Sr = 4.3466, Sy/x = 0.7244,
r2 = 0.9959, r = 0.9979
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6.32 a = 7.3427, b = –4.5932, c = –2.7062, St = 728.5556, Sr = 50.742, Sy/x = 8.457, r2 = 0.9304, r = 0.9645
6.33 a = 2.2561, b = 3.8171, c = 5.3333, St = 577.84, Sr = 4.2007, Sy/x = 0.6001, r2 = 0.9927, r = 0.9964
6.34 a = 23.9103, b = –4.691, c = –9.591, St = 850.36, Sr = 1.9791, Sy/x = 0.2827, r2 = 0.9977, r = 0.9988
6.35 a = 29.4487, b = –5.7449, c = 19.8449, St = 3463.61, Sr = 2.0574, Sy/x = 0.2939, r2 = 0.9994, r = 0.9997
6.36 a = 107.6961 and b = –0.0143
6.37 a = 2.7077 and b = 0.0369
6.38 a = 20.0771 and b = 0.0325
6.39 a = 63.5770 and b = 0.3548
6.40 a = 1.9077 and b = 1.5146
6.41 a = 4.0672 and b = 0.7823
6.42 a = 2.3946 and b = 177.5202
6.43 a = 13.2275 and b = 37.5036
6.44 a = 1.8515 and b = 284.4318
6.45 a = –0.0359 and b = 7.6495; r = 0.9998
6.46 a = 25.0550; b = 3.2229; Sum of squares of errors = 269.5377
6.47 a = 3.3385; b = 2.9169; Sum of squares of errors = 7.8421
6.48 a = –88.6813; b = 7.4678; Sum of squares of errors = 205.2290
6.49 a = 1.2045; b = 0.2599; Sum of squares of errors = 1.6846
6.50 a = –40.8141; b = 11.1799; Sum of squares of errors = 308.9377
6.51 a = 21.5949; b = 3.5681; Sum of squares of errors = 271.3282
6.52 a = 22.4556; b = 3.13; Sum of squares of errors = 86.0916
6.53 a = 5.2116; b = 2.8682; Sum of squares of errors = 5.6054
6.54 a = –88.3833; b = 7.5646; Sum of squares of errors = 17572.5447
6.55 a = –1.2576; b = 0.3166; Sum of squares of errors = 1.1108
6.56 a = –49.1549; b = 11.7656; Sum of squares of errors = 41.9142
6.57 a = 18.6429; b = 3.4286; Sum of squares of errors = 14.1888

Chapter 7: Numerical Integration
7.1 I = 0.9023
7.2 I = 0.26
7.3 (a) I = 1.8591, rel error = 0.0819

(b) I = 1.7539, rel error = 0.0207
(c) I = 1.7272, rel error = 0.0052
(d) I = 1.7205, rel error = 0.0052

7.4 I = 0.7854

7.5 (a) I = 2.5268, rel error = 0.2
(b) I = 2.1122, rel error = 0.0086

7.6 I = 0.0305
7.7 I = –1.81285
7.8 I = 1.7505
7.9 I = 0.9045
7.10 I = 0.7854
7.11 I = 1.718
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7.12 I = 0.82212
7.13 I = 1.187
7.14 I = 1.8278472
7.15 I = –2.56622
7.16 I = 0.785395
7.17 I = 1.3571
7.18 I = 0.78535
7.19 I = 0.7853959
7.20 I = 1.14
7.21 I = 3.1832
7.22 I = 1.8278475
7.23 I = 0.091111
7.24 I = 0.785395
7.25 I = 1.30859
7.26 I = 1.4056
7.27 I = 0.78535
7.28 I = 1.4056

7.29 I = 1.827858
7.30 I = 1.82784745
7.31 I = 0.52359895
7.32 I = 1.1071
7.33 1.8278
7.34 0.6931
7.35 0.264241
7.36 –0.8948314
7.37 18.6667
7.38 1.3600
7.39 (a) 0.16061

(b) 0.19226
(c) 0.64269
(d) 2.58797

7.40 0.088757
7.41 R3,3 = 11.5246
7.42 0.74997

Chapter 8: Numerical Solution of  Ordinary Differential Equations
8.1 y(0.1) = 1.1053
8.2 y(0.1) = 1.1103, y(0.2) = 1.2427
8.3 y(0.2) = 0.83746
8.4 y(0.1) = 3.005, y(0.2) = 3.020
8.5 y(0.1) = 0.9828
8.6 y(0.2) = 0.02
8.7 1.1053
8.8 y(1.1) = 1.1066, y(1.2) = 1.228
8.9 y(0.2) = 0.80227
8.10 y(0.2) = 0.4539
8.11 y(0.1) = 1.1057, y(0.3) = 1.3694
8.12 y(4.1) = 4.005, y(4.2) = 4.0098
8.13 y(1) = 3.18
8.14 y(0.5) = 4.7, y(1) = 4.893, y(1.5) = 4.55, y(2) = 4.052
8.15 y(1.25) = 0.34565 with h = 0.5, y(1.175) = 0.1897 with h = 0.025
8.16 y(0.1) = 1.1, y(0.2) = 1.23, y(0.3) = 1.39, y(0.4) = 1.61
8.17 y(0.5) = 0.2836165, y(1) = 3.2190993
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8.18 y(1.1) = 1.22428
8.19 y(0.3) = 1.2432
8.20 y(0.5) = –3.946, y(1) = 4.188, y(1.5) = 4.063, y(2) = 3.764
8.21 y(0.1) = 1.1055
8.22 y(2) = 5.524
8.23 y(0.075) = 1.076
8.24 y(2.5) = 1.83334, y(3) = 2.5
8.25 y(0.1) = 2.2050, y(0.2) = 2.421, y(0.3) = 2.6492, y(0.4) = 2.8909
8.26 [x, y] = [0  1, 0.1  1.0863, 0.2  1.1768, 0.3  1.2708, 0.4  1.3676, 0.5  1.4664]
8.27 [t, y] = [0.1  1.00025, 0.2  1.00243, 0.3  1.00825, 0.4  1.01926, 0.5  1.03688]
8.28 x = 0.1, y = 1.11034
8.29 y(0.1) = 2.2050
8.30 y(1.2) = 1.4028
8.31 y(0.8) = 0.84899
8.32 y(1) = 1.4983
8.33 y(0.2) = 1.196, y(0.4) = 1.3752
8.34 y(0.5) = 4.069, y(1) = 4.32, y(1.5) = 4.167
8.35 y(0.5) = 3.21875
8.36 y(0.2) = 0.2027, y(0.4) = 0.4228, y(0.6) = 0.6841
8.37 y(0.2) = 1.00265
8.38 y(0.4) = 0.7785
8.39 yp(0.8) = 1.02337, yC(0.8) = 1.0296
8.40 y(0.4) = 1.01925
8.41 y(1.4) = 2.575
8.42 y(2.2) = 1.33666667, y(2.4) = 1.6857143, y(2.6) = 1.975, y(2.8) = 2.2444444, y(3) = 2.5
8.43 y(0.8) = 2.4366
8.44 y(0.2) = 1.2428, y(0.3)= 1.3997
8.45 y(0.4) = 1.8392
8.46 y(0.4) = 1.01927, y(0.5) = 1.04779
8.47 y(0.8) = 1.0294, y(1.0) = 1.5549
8.48 y(0.5) = 0.6065, y(0.6) = 0.5490, y(0.7) = 0.4965
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Appendix A

(a)
( 1/ 2) 5 / 3 ( 1/ 6)

2 ( 1) 4
− −+ +
− − −s s s

(b)
( )

2 3 2

(3 / 8) (1/ 2) ( 3 / 8) (5 / 4)1/ 2
2 ( 2)

−
+ + + +

− −s ss s s

(c) 2 3 2

(1/ 8) (3 / 4) (1/ 2) ( / 8) 3 / 4
4

− −
+ − +

+
s

s s s s

(d) 2 3

( 1/16) (1/ 8) (1/16) (1/ 4)
2 ( 2)s ss s

− + + −
+ +

(e) 2 2

(1/ 6) (1/ 3) 1 ( 2) 2 1
1 2 3( 2) 2 ( 2) 2

s
s s s s

+
+ − −

+ + + + +

( f )
3 4

6 6 1 2
8 1ss s

− + −
+

(g) 3

2 1
1( 1) ss

+
++

(h) 2 2 2 2

10 2( 1)
( 1) 2 ( 1) 2

s
s s

+
+

+ + + +

(i) ( 3)
( 1)( 2)

s
s s

+
+ +

Appendix C
(a) x = 0.3334, y = –0.4444, z = 0.5555
(b) x = 3, y = –1, z = –2
(c) x = 2, y = –3, z = 5
(d) x = –1, y = 4, z = 3
(e) x1 = 1, x2 = 2, x3 = –1, x4 = 0
( f ) x1 = 1, x2 = 1, x3 = 1, x4 = 1

P P P
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