

An overview of Object Oriented Design Metrics

Master Thesis

Department of Computer Science, Umeå University, Sweden

June 23, 2005

Author: Muktamyee Sarker

Email: ens03msr@cs.umu.se

Supervisor: Jürgen Börstler

Email: jubo@cs.umu.se

An overview of object oriented design metrics

 2

An overview of object oriented design metrics

 3

ACKNOWLEDGMENT

I would like to thank Mr.. Jürgen Börstler who supervised my thesis work with his

advices and suggestions in the fulfilments of this thesis. Without him, this study would

never exist. My special thanks to Mr. Per Lindström, for giving an opportunity to carry

out my studies. Thanks to my parents for financial and mental support.

An overview of object oriented design metrics

 4

An overview of object oriented design metrics

 5

ABSTRACT

Object oriented design is becoming more popular in software development environment

and object oriented design metrics is an essential part of software environment. This

study focus on a set of object oriented metrics that can be used to measure the quality of

an object oriented design.

The metrics for object oriented design focus on measurements that are applied to the class

and design characteristics. These measurements permit designers to access the software

early in process, making changes that will reduce complexity and improve the continuing

capability of the design.

This report summarizes the existing metrics, which will guide the designers to support

their design. We have categorized metrics and discussed in such a way that novice

designers can apply metrics in their design as needed.

An overview of object oriented design metrics

 6

An overview of object oriented design metrics

 7

Table of contents

1 Introduction... 9
2 Object Oriented Design .. 10

2.1 Internal quality of OOD... 10
2.2 Principles of OOD... 12

2.2.1 General Principles ... 12

2.2.2 Cohesion Principles .. 13

2.2.3 Coupling Principles... 14

2.3 Symptoms of bad design... 14
3 Metrics and Quality .. 16

3.1 Introduction... 16
3.2 Metrics .. 16

3.2.1 Process .. 17

3.2.2 Products... 17

3.2.3 Resources .. 18

3.3 Measuring quality ... 19
4 GQM... 21
5 Metrics for OO Design.. 25

5.1 Introduction... 25
5.2 Metrics Design Model... 25

5.2.1 Traditional Metrics.. 25

5.2.2 C.K. Metrics Model .. 27

5.2.3 MOOD Metrics Model.. 29

5.2.4 Other Metrics Models ... 34

5.2.5 Other OO Metrics ... 35

5.3 Similarity of OO Metrics .. 36
6 Evaluation of OO Metrics .. 40
7 Summary.. 46
8 References .. 48
9 Appendix.. 51

9.1 RefactorIT Tool .. 51
9.2 Metrics Collection... 51

An overview of object oriented design metrics

 8

An overview of object oriented design metrics

 9

1 Introduction

It is widely accepted that object oriented development requires a different way of

thinking than traditional structured development1 and software projects are shifting to

object oriented design. The main advantage of object oriented design is its modularity

and reusability. Object oriented metrics are used to measure properties of object oriented

designs.

Metrics are a means for attaining more accurate estimations of project milestones, and

developing a software system that contains minimal faults [7]. Project based metrics keep

track of project maintenance, budgeting etc. Design based metrics describe the

complexity, size and robustness of object oriented and keep track of design performance.

Compared to structural development, object oriented design is a comparatively new

technology. The metrics, which were useful for evaluating structural development, may

perhaps not affect the design using OO language. As for example, the “Lines of Code”

metric is used in structural development whereas it is not so much used in object oriented

design. Very few existing metrics (so called traditional metrics) can measure object

oriented design properly. As discussed by Bellin [7], Vessey et al. [40] claim that

“metrics such as Line of Code used on conventional source code are generally criticized

for being without solid theoretical basis”.

One study estimated corrective maintenance cost saving of 42% by using object oriented

metrics [21]. There are many object oriented metrics models available and several authors

have proposed ways to measure object oriented design. The motivation of this thesis is to

give an overview of object oriented design metrics.

This report is organised in the following way. The next section will discuss object

oriented design in the context of metrics. Section 3 discusses metrics and their quality.

Section 4 focuses on the Goal Question Metrics approach. Section 5 describes different

metrics models. Evaluations of metrics are discussed in section 6. In this section we will

show some of metrics analysis result. Section 7 discusses the summary of this study.

1 Jürgen Börstler: Teaching and Learning OO, Extended Abstract, Department of Computing Science

Umeå University, SE–901 87 Umeå, Sweden

An overview of object oriented design metrics

 10

2 Object Oriented Design

Object oriented design is concerned with developing an object-oriented module of a

software system to apply the identified requirements. Designer will use OOD because it

is a faster development process, module based architecture, contains high reusable

features, increases design quality and so on.

“Object-oriented design is a method of design encompassing the process of object-

oriented decomposing and a notation for depicting both logical and physical as

well as static and dynamic models of the system under design”[9].

Objects are the basic units of object oriented design. Identity, states and behaviors are the

main characteristics of any object. A class is a collection of objects which have common

behaviors.

 “A class represents a template for several objects and describe how these objects

are structured internally. Objects of the same class have the same definition both

for their operation and for their information structure” [19].

There are several essential themes in object oriented design. These themes are mostly

support object oriented design in the context of measuring. These are discussing in next

sub section.

2.1 Internal quality of OOD

Cohesion

Cohesion refers to the internal consistency within the parts of the design. Cohesion is

centred on data that is encapsulated within an object and on how methods interact with

data to provide well-bounded behaviour. A class is cohesive when its parts are highly

correlated. It should be difficult to split a cohesive class. Cohesion can be used to identify

the poorly designed classes.

“Cohesion measures the degree of connectivity among the elements of a single

class or object” [9].

An overview of object oriented design metrics

 11

Coupling

 Coupling indicates the relationship or interdependency between modules. For example,

object X is coupled to object Y if and only if X sends a message to Y that means the

number of collaboration between classes or the number of messages passed between

objects. Coupling is a measure of interconnecting among modules in a software structure.

Inheritance

Inheritance is a mechanism whereby one object acquires characteristics from one, or

more other objects. Inheritance occurs in all levels of a class hierarchy.

“Inheritance is the sharing of attributes and operations among classes based on a

hierarchical relationship”.
2

In general, conventional software does not support this characteristic because it is a

pivotal characteristic in many object oriented systems as well as many object oriented

metrics focus on it. (See chapter 5.3 for more information)

Encapsulation

Encapsulation is a mechanism to realize data abstraction and information hiding.

Encapsulation hides internal specification of an object and show only external interface.

“The process of compartmentalizing the elements of an abstraction that constitute

its structure and behaviour; encapsulation serves to separate the contractual

interface of an abstraction and its implementation” [9].

Encapsulation influences metrics by changing the focus of measurement from a single

module to a package of data.

Information Hiding

Booch [9] States that, information hiding is the process of hiding all the secrets of an

object that do not contribute to its essential characteristics. An object has a public

interface and a private representation; these two elements are kept distinct. Information

hiding acts a direct role in such metrics as object coupling and the degree of information

hiding.

2 Rumbaugh, J.,Blaha, M., Premerlani,W., Eddy F. And Lorenses, W: Object oriented modeling and design,
Prentice Hall, 1991.

An overview of object oriented design metrics

 12

“All information about a module should be private to the module unless it is

specifically declared public”.
3

Localization

In object oriented design approach localization is based on objects. In a design, if there is

some changes in the localization approach, the total plan will be violated, because one

function may involve several objects, and one object may provide many functions.

“Localization is the process of gathering and placing things in close physical

proximity to each other”.
4

Metrics should apply to the class as a complete entity. Even the relationship between

functions and classes is not necessarily one-to-one. For that reason, metrics that reflect

the manner in which classes collaborate must be capable of accommodating one-to-many

and many-to-one relationships [34].

2.2 Principles of OOD

This section shows some OO design principles, which are used for support in OO design.

Object oriented principles advise the designers what to support and what to avoid. We

categorized all design principles into three groups in the context of design metrics. These

are general principles, cohesion principles, and coupling principles. These principles are

collected by Martin [33]. Some of the principles are measure in section 6. The following

discussion is a summary of his principles according to our categories.

2.2.1 General Principles

The Open/Closed Principle (OCP): Open close principle states a module should be open

for extension but closed for modification i.e. Classes should be written so that they can be

extended without requiring the classes to be modified.

3 Meyer, B.: Object-oriented Software Construction, Prentice Hall, 1998.
4 Edward V. Berard, The Object Agency, Inc, http://www.toa.com/pub/moose.htm

An overview of object oriented design metrics

 13

The Liskov Substitution Principle (LSP): Liskov Substitution Principle mention

subclasses should be substitutable for their base classes i.e. a user of a base class instance

should still function if given an instance of a derived class instead.

The Dependency Inversion Principle (DIP): Dependency Inversion Principle state high

level classes should not depend on low level classes i.e. abstractions should not depend

upon the details. If the high level abstractions depend on the low level implementation,

the dependency is inverted from what it should be, [32].

The Interface Segregation Principle (ISP): Interface Segregation Principle state Clients

should not be forced to depend upon interfaces that they do not use. Many client-specific

interfaces are better than one general purpose interface.

2.2.2 Cohesion Principles

Reuse/Release Equivalency Principle (REP): The granule of reuse is the granule of

release. Only components that are released through a tracking system can be efficiently

reused. A reusable software element cannot really be reused in practice unless it is

managed by a release system of some kind of release numbers. All related classes must

be released together.

Common Reuse Principle (CRP): All classes in a package should be reused together. If

reuse one of the classes in the package, reuse them all. Classes are usually reused in

groups based on collaborations between library classes.

Common Closure Principle (CCP): The classes in a package should be closed against the

same kinds of changes. A change that affects a package affects all the classes in that

package. The main Goal of this principle is to limit the dispersion of changes among

released packages i.e. changes must affect the smallest number of released packages.

Classes within a package must be cohesive. Given a particular kind of change, either all

classes or no class in a component needs to be modified.

An overview of object oriented design metrics

 14

2.2.3 Coupling Principles

Acyclic Dependencies Principle (ADP): The dependency structure for a released

component must be a Directed Acyclic Graph (DAG) and there can be no cycles.

Stable Dependencies Principle (SDP): The dependencies between components in a design

should be in the direction of stability. A component should only depend upon

components that are more stable than it is.

Stable Abstractions Principle (SAP): The abstraction of a package should be proportional

to its stability. Packages that are maximally stable should be maximally abstract. Instable

packages should be concrete.

2.3 Symptoms of bad design

Designers can perform a good OO design by following the OOD principles discussed

above (sec 2.2). If designers know the reasons for and symptoms of bad design then it is

helpful for them to avoid the bad design. There are some reasons for bad design, as for

example: changing technology, domain complexity, lack of design skills and design

practices and so on.

Technology is “constantly changing”. So for a good design, it is usual to adapt with new

technologies. Now it is the era of OOD, because various properties of OOD (Inheritance,

modularity etc) support the modification without changing the previous or existing

modules. But one should always be careful about some properties of OOD, which can

make the design more complex, for example “inheritance” property. Designers cannot be

able to use OOD in such a way that it will help him in case of later with the change of

technologies but will not make the program more complex. Too much method makes a

system complex. We will discuss more about complexity in section 5.2. Martin [32]

proposes four primary symptoms tell whether designs are rotting. They are not

orthogonal, but are related to each other in ways that will become obvious. They are:

rigidity, fragility, immobility, and viscosity. The following is a summary of his work

An overview of object oriented design metrics

 15

Rigidity

The concept of rigidity is if the design change in simple way the entire design will be

change, i.e. a design is rigid if a single change causes a cascade of subsequent change in

dependent modules. More module changes in a design indicates more rigid the system.

Fragility

The idea of fragility is that changes cause new bugs i.e. the tendency of a program to

break in many places when a single change made. Martin [32] states the new problem are

in areas that have no conceptual relationship with the area that was changed, fixing those

problems leads to even more problem and the development team begins to resemble a

dog chasing its tail.

Immobility

Immobility means unsuccessful to reuse software from different or same design.

Sometimes it happens that one designer will find out that he needs a module which is

already written by another designer. It means similar module in a design makes

immobile.

Viscosity

Martin [32] states viscosity comes in two forms: viscosity of the design and viscosity of

the environment. Designers always look for more options to make changes their design if

they need to change something. In any cases designers maintain their design. According

to Martin [32], viscosity of design indicates, “when the design preserving methods are

harder to employ than the hacks, and then the viscosity of the design is high”. It is easy

to do the wrong thing, but hard to do the right thing. Viscosity of environment indicates

slow and inefficient environment in a design.

Object oriented design is fundamentally different from software developed using

conventional methods (procedural methods). The purposes of design principles are to

mark poor use of inheritance and poor dependencies of design structure, along with

among other kinds of design errors. The knowledge of Bad Design Symptom assists to

the designer to perform better. The metrics for object oriented system focus on

measurements that are applied to the class and the design characteristics, for example

encapsulation, information hiding, inheritances, localization, etc. So Object oriented

metrics are usually used to assess the quality of software designs. Next section we will

discuss metrics and their quality.

An overview of object oriented design metrics

 16

3 Metrics and Quality

This section focuses on measurements and corresponding measurement criteria. Different

kinds of metrics and their quality are also discussed in this subsection.

3.1 Introduction

Since object oriented system is becoming more pervasive, it is necessary that software

engineers have quantitative measurements for accessing the quality of designs at both the

architectural and components level. These measures allow to designer to access the

software early in the process, making changes that will reduce complexity and improve

the continuing capability of the product. The measurement process is to drive the

software measures and metrics that are appropriate for the representation of software that

is being measured. Suitable metrics are analysed based on pre-established guidelines and

past data [34].

3.2 Metrics

We categorized metrics into two groups: project based metrics and design based metrics.

Project based metrics contain process, product and resources; these are discussed in next

sub section. Design based metrics contain traditional metrics and object oriented metrics.

In traditional metrics, we will discuss complexity metrics, SLOC (Source lines of code),

and CP (Comment percentage) metric, see section 5.2.1. Object oriented metrics are

discussed in section (5.5.2 to 5.2.4). The following figure shows metrics hierarchy

according to our categorization.

Figure 1: Metrics hierarchy

An overview of object oriented design metrics

 17

Norman E. Fenton et al. [14] propose three kinds of entities and attributes to measure in

software design. The entities are process, product, resources and attributes are internal

and external attributes. The following is a summary of his discussion

3.2.1 Process

Processes are set of software related activates which are used to measure the status and

progress of the system design and to predict future effects. A process is usually related

with some timescale. The timing can be explicit, as when an activity must be finished by

a specific date, or implicit, as when one activity must be finished before another can

begin. The following examples of a process related metrics that it is proposed to collect

when working with object oriented software engineering (OOSE) [19].

• Total development time,

• Development time in each process and subprocess,

• Time spent to modify models from previous processes,

• Time spent in all kinds of subprocess, such as use case specification, object

specification, use case design, block design, block testing and use case testing for

each particular object,

• Number of different kind of fault found during reviews,

• Number of change proposals on previous models,

• Cost for quality assurance,

• Cost for introducing new development process and tools.

3.2.2 Products

Product metrics are used to control the quality of the software product. These metrics are

applied to incomplete software products in order to measure their complexity and to

predict properties of the final product. Products are any artefacts, deliverables or

documents that result from a process activity. Products are not restricted to the items that

management is committed to deliver to the customer. Any artefact or document produced

during the software life cycle can be measured. Various kinds of product related metrics

are proposed. None of these have been demonstrated to be generally useful as overall

quality predictor. However, some quality criteria can be used to predict a certain quality

property [19] as follow:

• Number, width and height of the inheritances hierarchies,

• Number of classes inheriting a specific operation,

An overview of object oriented design metrics

 18

• Number of classes that a specific class is dependent on,

• Number of classes that are dependent on a specific class,

• Number of direct users of a class or operation.

3.2.3 Resources

Resources are entities required by a process activity. The resources that we want to

measure include any input for software production. Thus, personnel, materials, tools, and

methods are candidates for measurement. According to internal and external attribute

each class of entity can be distinguish.

Internal attributes

Internal attributes of a product, process or resource are those that can be measured purely

in terms of the product, process, or resource itself. In other words, an internal attribute

can be measured by examining the product, process or resource on its own.

External attributes

External attributes of a product, process or resource are those that can be measured only

with respect to how the produce process or resource, relates to its environment. Here, the

behavior of the process, product or resource is important, rather than the entity itself.

Table 1 represents a classification of software metrics [14]. Essentially any software

metrics is an attempt to measure or predict some internal or external attribute of some

product, process, or resource. The table provides a feel for the board scope of software

metrics, and clarifies the distinguished between the attributes [37].

Attributes Entities

Internal External

Products

Specification Size, reuse, modularity,

redundancy, functionality,

syntactic correctness.

Comprehensibility, maintainability,

Design Size, reuse, modularity,

coupling, cohesiveness,

inheritance, functionality.

Quality, complexity, maintainability.

An overview of object oriented design metrics

 19

Code Size, reuse, modularity,

coupling, functionality,

algorithmic complexity,

control-flow structuredness.

Reliability, usability, maintainability,

reusability.

Test data Size, coverage level. Quality, reusability.

Process

Constructing

Specification

Time, effort, number of

requirements changes.

Quality, cost, stability.

Detailed

design

Time effort, number of

specification faults found.

Cost, cost-effectiveness.

Testing Time, effort, number of coding

faults found.

Cost, cost-effectiveness, stability, …

Resources

Personnel Age, price. Productivity, experience, intelligence.

Teams Size, communication level,

structuredness.

Productivity, quality.

Organization Size, ISO Certification, CMM

level

Maturity, profitability.

Software price, size. Usability, reliability.

Hardware Price, speed, memory size. Reliability.

Offices Size, temperature, light. Comfort, quality.

Table 1: Components of software measurements (taken from [14])

3.3 Measuring quality

Measurement enables to improve the software process, assist in the planning, tracking the

control of a design. A good software engineer uses measurements to asses the quality of

the analysis and design model, the source code, the test cases, etc. What does quality

mean?

An overview of object oriented design metrics

 20

“Quality refers to the inherent or distinctive characteristics or property of object, process

or other thing. Such characteristics or properties may set things apart from other things,

or may denote some degree of achievement or excellence”
5.

Many quality measures can be collected from literature, the main goal of metrics is to

measure errors and defects. The following quality factor should have every metrics [11,

20, 35]:

• Efficiency - Are the constructs efficiently designed?

The amount of computing resource and code required by a program to perform

its function.

• Complexity - Could the constructs be used more effectively to decrease the

architectural complexity?

….

• Understandability - Does the design increase the psychological complexity?

….

• Reusability - Does the design quality support possible reuse?

Extent to which a program or part of a program can be reused in other

application , related to the packaging and scope of the functions that the program

performs.

• Testability/Maintainability - Does the structure support ease of testing and

changes?

Effort required locating and fixing an error in a program, as well as effort

required to test a program to ensure that it performs its intended function.

How do we know that our metrics measure the desired design qualities? We should

establish the objectives of measurements before data collection begins and then we

should define each and every metrics in a way that measure the quality of a design. Next

section is discussing the widely known GQM approach.

5 This definition is taken from “http://en.wikipedia.org/wiki/Quality”

An overview of object oriented design metrics

 21

4 GQM

Basili et. al. [5] developed GQM (Goal Question Metric) approach. This approach was

originally defined for evaluating defects for a set of projects in the NASA Goddard Space

Flight Center environment. It provides a framework involving three steps:

1. List major goals of the development or maintenance project.

2. Derive from each goal the questions that must be answered to determine if the

goals are being met.

3. Decide what must be measured in order to be able to answer the questions

adequately.

He has also provided a series of templates which are useful for designers. The goals of

GQM can be expressed by means of a template which covers purpose, perspective and

environment; a set of guidelines also proposed for driving question and metrics. As

discussed in [14, 34] the following discussion is a summary of basili’s discussions.

Purpose

The purpose template is to articulate what is being analyzed, for example it is used to

characterize, evaluate, predict, motivate from the process, product, model, and metric.

This template also expresses what purpose it will be used. For example, a designer might

want to evaluate the maintenance process in order to improve.

Perspective

The perspective template focuses on the factors which are important within the process or

product that is being evaluated, for example cost, effectiveness, correctness, defects,

changes, product measures, maintainability, testability, usability. Customers and

developers are the main two perspective of software development process. A developer

might examine the cost from the viewpoint of the manager.

Environment

The environment template consists of the process factors, people factors, problem factors,

methods, tools constraints as for example the type of the computer system that is being

used, the skills of the stuff involves, the amount of trained resource available. For

example, the maintenance staffs are poorly motivated programmers who have limited

access to tools.

An overview of object oriented design metrics

 22

When the purpose, perspective and environment of a goal have been specified, the

process of questioning and metric development can begin. As for example, an application

of the template for the goal definition is as follow.

Figure 2: Goal template 6

 The result of the application of the GQM approach application is the specification of a

measurement system targeting a particular set of issues and a set of rules for the

interpretation of the measurement data [6]. The GQM approach has three levels. The

following is a summery of [6] discussion.

1. GOAL (Conceptual level): A goal is defined for an object, for a variety of

reasons, with respect to various models of quality, from various points of view,

relative to a particular environment. Objects of measurement are products,

 processes and resources (these are discussed in section 4.2).

2. QUESTION (Operational level): A set of questions is used to characterize the

way the assessment/achievement of a specific goal is going to be performed based

on some characterizing model.

3. METRIC (Quantitative level): A set of data is associated with every question in

order to answer it in a quantitative way. The data can be objectives and subjective.

6 As discussed Annabella Loconsole: ” Measuring the requirements management key process area”

An overview of object oriented design metrics

 23

• This data is said to be objective if they depend only on the object that is being

measured and not on the viewpoint from which they are taken. For example,

number of versions of a document, staff hours spent on a task, size of a

program.

• The data is said to be subjective if they depend on both the object that is being

measured and the viewpoint from which they are taken. For example,

readability of a text, level of user satisfaction.

The GQM approach define some goals, refine those goals into a set of questions, and the

questions are further refined into metrics. Consider the following figure, for a particular

question; G1 and G2 are two goals, Q2 in common for both of these goals. Metric M2 is

required by all three questions. The main idea of GQM is that each metric identified is

placed within a context, so metric M1 is collected in order to answer question Q1 to help

achieve the goal G1.

Figure 2: Goal-Question-Metrics hierarchy

Consider a goal7 is to evaluate the effectiveness of using a coding standard. To decide if

the standard is effective, we have to check some questions. A question might be ‘who is

using the standard’ because it is important to know what proportion of coders is using the

standard. The metric might be the proportion of coders using the standard, and so on. A

number of measurements may be needed to answer a single question; on the other hand, a

single measurement may be applied to more than one question. The following figure

shows how different metrics might be generated from a single goal.

7 This example is taken from Fenton [14]

An overview of object oriented design metrics

 24

Figure 3: Example of deriving metrics from goal and questions (taken from [14]).

An overview of object oriented design metrics

 25

5 Metrics for OO Design

5.1 Introduction

A significant number of object oriented metrics have been developed in literature. For

example, metrics proposed by Abreu [1], C.K metrics [12], Li and Henry [26] metircs,

MOOD metrics [1b], Lorenz and Kidd [27] metrics etcs. C.K metrics are the most

popular (used) among them. Another comprehensive set of metrics is MOOD metrics.

This subsection will focus on traditional metrics and above mention metrics (mainly C.K

and MOOD metrics).

5.2 Metrics Design Model

5.2.1 Traditional Metrics

In an object-oriented system, traditional metrics are generally applied to the methods that

comprise the operations of a class. Methods reflect how a problem is broken into

segments [36]. Traditional metrics have been applied for the measurement of software

complexity of structured systems since 1976 [28]. The following discussion shows three

popular traditional metrics.

McCabe Cyclomatic Complexity (CC)

Complexity metrics can be used to calculate essential information about constancy and

maintainability of software system from source code. It also provides advice during the

software project to help control the design. In the testing and maintain phase, complexity

metrics provide detail information about software module to identify the areas of possible

instability.

Cyclomatic complexity (McCabe) can be used to evaluate the complexity of a method

[36]. This metric measures the complexity of a the control flow graph8 of a method or

procedure. The idea is to draw the sequence a program may take as a graph with all

possible paths. The complexity is calculated as “connections - nodes + 2” and will give a

number denoting how complex the method is. See the following figure. Since complexity

will increase the possibility of errors, a too high9 McCabe number should be avoided

[19].

8 A graph is a representation of nodes and edges. When the edges are directed, the graph is said to be direct
graph.
9 Some standard require that no module should have a higher McCabe number than 10 [19]

An overview of object oriented design metrics

 26

N= 2-3+2 = 1 N= 6-6+2 = 2 N= 11-8+2 = 5

Figure 4: The McCabe complexity metrics (see [19])

As described in Laing et al. [23], McCabe et al. [28] mention cyclomatic complexity is a

measure of a module control flow complexity based on graph theory. Cyclomatic

complexity cannot be used to measure the complexity of a class because of inheritance,

but the cyclomatic complexity of individual methods can be combined with other

measures to evaluate the complexity of the class [36]. A high10 cyclomatic complexity

indicates that the code may be of low quality and difficult to test and maintain [23].

Source Lines of Code (SLOC)

SLOC is used to estimate the total effort that will be needed

to develop a program, as well as to calculate approximate productivity. The SLOC metric

measures the number of physical lines of active code, that is, no blank or commented

lines code [27]. Logical SLOC measures the number of statements, but their specific

definitions are fixed to specific language for example, in C programming language

logical SLOC measure the terminating semicolon.

Since functionality is not as much interconnected with SLOC, expert developers may be

capable to develop the same functionality with less code. So one program with less SLOC

may show more functionalities than another similar program. Programs with larger SLOC

values usually take more time to develop. Therefore, SLOC can be very effective in

estimating effort. Thresholds for evaluating the SLOC measures vary depending on the

coding language used and the complexity of the method [36].

10 More than 10

An overview of object oriented design metrics

 27

Comment Percentage (CP)

The CP metric is defined as the number of commented lines of code divided by the

number of non-blank lines of code [23]. The comment percentage is calculated by the

total number of comments divided by the total lines of code less the number of blank

lines. The SATC11 has found a comment percentage of about 30% is most effective [36].

5.2.2 C.K. Metrics Model

Chidamber and Kemerer define the so called CK metric suite [12]. This metric suite

offers informative insight into whether developers are following object oriented

principles (see section 2.2) in their design [26]. They claim that using several of their

metrics collectively helps managers and designers to make better design decision. CK

metrics have generated a significant amount of interest and are currently the most well

known suite of measurements for OO software [14]. Chidamber and Kemerer proposed

six metrics; the following discussion shows their metrics.

Weighted Method per Class (WMC)

WMC measures the complexity of a class. Complexity of a class can for example be

calculated by the cyclomatic complexities (sec 5.2.1) of its methods. High value of WMC

indicates the class is more complex than that of low values. So class with less WMC is

better. As WMC is complexity measurement metric, we can get an idea of required effort

to maintain a particular class.

Depth of Inheritance Tree (DIT)

DIT metric is the length of the maximum path from the node to the root of the tree. So

this metric calculates how far down a class is declared in the inheritance hierarchy. The

following figure shows the value of DIT for a simple class hierarchy. This metric also

measures how many ancestor classes can potentially affect this class. DIT represents the

complexity of the behaviour of a class, the complexity of design of a class and potential

reuse.

11 Software Assurance Technology Center

An overview of object oriented design metrics

 28

Figure 5: The value of DIT for the class hierarchy

If DIT increases, it means that more methods are to be expected to be inherited, which

makes it more difficult to calculate a class’s behavior. Thus it can be hard to understand a

system with many inheritance layers. On the other hand, a large DIT value indicates that

many methods might be reused.

Number of children (NOC)

This metric measures how many sub-classes are going to inherit the methods of the

parent class. As shown in above figure, class C1 has three children, subclasses C11, C12,

and C13. The size of NOC approximately indicates the level of reuse in an application

. If NOC grows it means reuse increases. On the other hand, as NOC increases, the

amount of testing will also increase because more children in a class indicate more

responsibility. So, NOC represents the effort required to test the class and reuse.

Coupling between objects (CBO)

The idea of this metrics is that an object is coupled to another object if two object act

upon each other. A class is coupled with another if the methods of one class use the

methods or attributes of the other class. An increase of CBO indicates the reusability of a

class will decrease. Thus, the CBO values for each class should be kept as low as

possible. CBO metric measure the required effort to test the class [17].

An overview of object oriented design metrics

 29

Response for a Class (RFC)

RFC is the number of methods that can be invoked in response to a message in a class.

Pressman [34] States, since RFC increases, the effort required for testing also increases

because the test sequence grows. If RFC increases, the overall design complexity of the

class increases and becomes hard to understand. On the other hand lower values indicate

greater polymorphism. The value of RFC can be from 0 to 50 for a class12, some cases the

higher value can be 100- it depends on project to project.

Lack of Cohesion in Methods (LCOM)

This metric uses the notion of degree of similarity of methods. LCOM measures the

amount of cohesiveness present, how well a system has been designed and how complex

a class is [17]. LCOM is a count of the number of method pairs whose similarity is zero,

minus the count of method pairs whose similarity is not zero.

Raymond [31b] discussed for example, a class C with 3 methods M1, M2, and M3. Let I1=

{a, b, c, d, e}, I2= {a, b, e}, and I3= {x, y, z}, where I1 is the set of instance variables used

by method M1. So two disjoint set can be found: I1 ∩ I2 (= {a, b, e}) and I3. Here, one

pair of methods who share at least one instance variable (I1 and I2). So LCOM = 2-1 =1.

Riel13 states “Most of the methods defined on a class should be using most of the data

members most of the time”. If LCOM is high, methods may be coupled to one another

via attributes and then class design will be complex. So, designers should keep cohesion

high, that is, keep LCOM low.

5.2.3 MOOD Metrics Model

Abreu et at.[1c] defined MOOD (Metrics for Object Oriented Design) metrics. MOOD

refers to a basic structural mechanism of the object-oriented paradigm as encapsulation

(MHF, AHF), inheritance (MIF, AIF), polymorphism (POF), and message passing

(COF). Each metrics is expressed as a measure where the numerator represents the actual

use of one of those feature for a given design [1d]. In MOOD metrics model, two main

features are used in every metrics; they are methods and attributes. Methods are used to

perform operations of several kinds such as obtaining or modifying the status of objects.

12 RefactorIT tool suggest the value of RFC. See more detail in Metrics measurement tool at:
http://www.refactorit.com/
13 Arthur J. Riel: “ Object oriented design heuristics”, heuristics # 4.6, Addison-Wesley, 1996.

An overview of object oriented design metrics

 30

Attributes are used to represent the status of each object in the system. Each feature

(methods and attributes) is either visible or hidden from a given class [1b, 1c, 1d].

We will discuss MOOD metrics in the context of encapsulation, inheritance,

polymorphism, and coupling. These are discussed below.

Encapsulation

The Method Hiding Factor (MHF) and Attribute Hiding Factor (AHF) were proposed

together as measure of encapsulation14 [1b]. MHF and AHF represent the average amount

of hiding between all classes in the system.

Method Hiding Factor (MHF)

The MHF metric states the sum of the invisibilities of all methods in all classes.

The invisibility of a method is the percentage of the total class from which the

method is hidden. Abreu et al. [1a] States, the MHF denominator is the total

number of methods defined in the system under consideration. The MHF metric

is defined as follows

)(/)(
11

i

TC

i
di

TC

i
h

CMCMMHF ∑∑
==

=

Here,)()()(
ihivid

CMCMCM +=

)(
id

CM = the number of methods defined in class Ci

)(
iv

CM = the number of methods that visible in the class Ci

)(
ih

CM = the number of methods hidden in Ci

Where the summation occurs over i=1 to TC. TC is defined as total number of

classes.

If the value of MHF is high (100%), it means all methods are private which indicates very

little functionality. Thus it is not possible to reuse methods with high MHF. MHF with

low (0%) value indicate all methods are public that means most of the methods are

unprotected.

14 Encapsulation is the process of hiding all the details of an object that do not contribute to its essential
characteristics [9).

An overview of object oriented design metrics

 31

Attribute Hiding Factor (AHF)

The AHF metric shows the sum of the invisibilities of all attributes in all classes.

The invisibility of an attribute is the percentage of the total classes from which

this attribute is hidden. MHF and AHF represent the average amount of hiding

among all classes in the system. The AHF metric is defined as follows.

)(/)(
11

i

TC

i
di

TC

i
h

CACAAHF ∑∑
==

=

Here,)()()(
ihivid

CACACA +=

)(
id

CA = the number of attributes defined in class Ci

)(
iv

CA = the number of attributes that visible in the class Ci

)(
ih

CA = the number of attributes hidden in Ci

Where the summation occurs over i=1 to TC. TC is defined as total number of

classes.

If the value of AHF is high (100%), it means all attributes are private. AHF with low

(0%) value indicate all attributes are public.

Inheritance

Inherited15 features in a class are those which are inherited and not overridden in that

class. Method Inheritance Factor (MIF) and Attribute Inheritance Factor (AIF) are

proposed to measure inheritance.

Method Inheritance Factor (MIF)

The MIF metric states the sum of inherited methods in all classes of the system

under consideration. The degree to which the class architecture of an object

oriented system makes use of inheritance for both methods and attributes [34].

MIF is defined as the ratio of the sum of the inherited methods in all classes of the

system as follow.

15 Inheritance is the process by which objects of one class acquire the properties of the objects of another
class.

An overview of object oriented design metrics

 32

)(/)(
11

i

TC

i
ai

TC

i
i

CMCMMIF ∑∑
==

=

Here,)()()(
iiidia

CMCMCM +=

)(
ia

CM = the number of methods defined in class Ci

)(
id

CM = the number of methods declared in the class Ci

)(
ii

CM = the number of methods inherited in Ci

Where the summation occurs over i=1 to TC. TC is defined as total number of

classes.

If the value of MIF is low (0%), it means that there is no methods exists in the class as

well as the class lacking an inheritance statement.

Attribute Inheritance Factor (AIF)

AIF is defined as the ratio of the sum of inherited attributes in all classes of the

system. AIF denominator is the total number of available attributes for all classes.

It is defined in an analogous manner and provides an indication of the impact of

inheritance in the object oriented software [34]. AIF is defined as follows

)(/)(
11

i

TC

i
ai

TC

i
i

CACAAIF ∑∑
==

=

Here,)()()(
iiidia

CACACA +=

)(
ia

CA = the number of available attributes defined in class Ci

)(
id

CA = the number of attributes that declared in the class Ci

)(
ii

CA = the number of inherited attributes in Ci

Where the summation occurs over i=1 to TC. TC is defined as total number of

classes.

If the value of AIF is low (0%), it means that there is no attribute exists in the class as

well as the class lacking an inheritance statement.

An overview of object oriented design metrics

 33

Polymorphism

Polymorphism16 is an important characteristic in object oriented paradigm.

Polymorphism measure the degree of overriding in the class inheritance tree.

Polymorphism Factor (POF)

The POF represents the actual number of possible different polymorphic situation.

It also represents the maximum number of possible distinct polymorphic situation

for class Ci. The POF is defined as follows.

[]∑∑
==

=
TC

i
iini

TC

i

CDCCMCMPOF
11

0
)(*)(/)(

Here,)(
0 i

CM =)()(
0 iin

CMCM +

)(
in

CM = the number of new methods defined in class Ci

)(
0 i

CM = the number of overriding methods in the class Ci

)(
i

CDC = the descendants count in Ci

The numerator represents the actual number of possible different polymorphic situation

and the denominator represents the maximum number of possible distinct polymorphic

situation for class Ci [1d]. The value of POF can be varies between 0% and 100%. If a

project have 0% POF, it indicates the project uses no polymorphism and 100% POF

indicates that all methods are overridden in all derived classes17.

Coupling

Coupling shows the relationship between module. A class is coupled to another class if it

calls methods of another class.

Coupling Factor (COF)

The COF is defined as the ratio of the maximum possible number of couplings in

the system to the actual number of coupling is not imputable to inheritance [31b].

The COF is defined as follows.

∑ ∑
= =

−

=

TC

i
ji

TC

j

TCTCCCclientisCOF
1

22

1

)/(),(_

16 Polymorphism means the ability to take more than one form.
17 These values can be found at “http://www.aivosto.com/project/help/pm-oo-mood.html”

An overview of object oriented design metrics

 34

Here),(_
ji

CCclientis = 1 if and only if, a relationship exists between the

client class, Cc and the server class Cs and Cc not equal to Cs.

And),(_
ji

CCclientis = 0, otherwise

Where the summation occurs over i=1 to TC. TC is defined as total number of

classes.

Pressman [34] argue that, although many factors affect software complexity,

understandability, and maintainability. It is reasonable to conclude that as “the COF

value” increases, the complexity of object oriented design will also increase, and as a

result the understandability, maintainability, and the potential for reuse may suffer. The

value of COF can be varies between 0% and 100%. 0%COF indicates no class are

coupled and 100% COF indicates all class are coupled with all other classes. High values

of COF should be avoided.

The idea in COF metric is as same idea used in CBO metrics because they both use

coupling factor. The main difference between COF and CBO is, in COF metric all

variable accesses are counted whereas CBO metric does not count variables18.

5.2.4 Other Metrics Models

Several researchers propose object oriented metrics from different point of view. These

metrics helps the designers to know which metrics are found at which level of decision.

[7, 1, 11] proposes their metrics in different categories19. The following is very brief

discussion20 of them.

Lorenz and Kidd [27] proposed metrics are focused on size, inheritance, internal, and

external measurements. Size metrics for the object oriented class focus on counts of

attributes and operations for an individual class. Inheritance based metrics focus on the

method in which operations are reused through the class hierarchy. Internal metrics are

focus on cohesion and code oriented issue. External metrics observe coupling and reuse.

18 “http://www.aivosto.com/project/help/pm-oo-mood.html”
19 They categories their metrics in different context and different point of views.
20 Most of the metrics I found in different source: articles, books, journals and internet. Since I don’t have
proper evidence, I discuss this section in very brief.

An overview of object oriented design metrics

 35

Belin et at. [7] categorized metrics in three groups. Group A consists of “number of

methods” metric, “number of classes” metric, and “number of levels” metric in the class

hierarchy tree. Group B focus on “code reuse” metric, “number of classes reused” metric,

and “percent of reused” classes modified metric. Group C discusses coupling metric,

cohesion metric, sufficiency metric, completeness metric and primitiveness metric. These

metrics are deal with the quality of an abstraction in an OO system

Brito e Abrue et al. categorized metrics are: design, size, complexity, reuse, productivity,

quality, method, class and system levels. They provide a catalogue for object oriented

design metrics [1]. That taxonomy is based on a Cartesian product of the two vectors:

(design, size, complexity, reuse, productivity, quality) and (method, class, system). His

proposed metrics are CC2 (Class Complexity), CR1 (Class Reuse), CC3 (Class

Complexity), CR2 (Class Reuse), CR3 (Class Reuse). In his measure, class and system

quality metrics that the authors suggest are based on counts of observed defects, failures,

and time between failures.

5.2.5 Other OO Metrics

Chen et al.[11] proposed metrics are 1.CCM (Class Coupling Metric), 2.OXM (Operating

Complexity Metric), 3.OACM (Operating Argument Complexity Metric), 4.ACM

(Attribute Complexity Metric), 5.OCM (Operating Coupling Metric), 6.CM (Cohesion

Metric), 7.CHM (Class Hierarchy of Method) and 8.RM (Reuse Metric). Metrics 1

through 3 are subjective in nature; metrics 4 through 7 involve counts of features; and

metric 8 is a boolean (0 or 1) indicator metric. To validate these metrics, the authors

conduct an experiment involving six "experts" whose subjective class scores are

regressed against the eight metrics. The resulting regression equation is used to score

future object classes [2].

Li, Wei, Henry, Salley et al. state that metrics for the object-oriented paradigm have yet

to be studied [26]. Since terminology varies among object oriented programming

languages, the authors consider the basic components of the paradigm as objects, classes,

attributes, inheritance, method, and message passing. They propose that each object-

oriented basic concept implies a programming behaviour. They assembled metrics are:

Data Abstraction Coupling (DAC), Number of methods (NOM), Message Passing

An overview of object oriented design metrics

 36

Coupling (MPC), and Number of semicolons per class (Size1), Number of methods per

attributes (Size2). There is no individual breakdown of which of these metrics is

significant in the prediction [2].

5.3 Similarity of OO Metrics

Object oriented metrics can be collected in different ways. Although different writers have

described different metrics, according to object oriented design, there are some similarities

found in different metrics model. The following table shows similar OO metrics. We have

categorized metrics in class, attribute, method, cohesion, coupling, and inheritance

category because most of the object oriented metrics are defined in above mention

categories. In this table we will discuss only CK metrics suite, MOOD metrics model,

and metrics defined by Chen & Lu, Li & Henry. Since other21 metrics are defined from

different context and different point of views, we have not considered those metrics in

our table.

Category Class Attribute Method Cohesion/

Coupling

Inheritance

MOOD [1b] MHF, AHF,

MIF, AIF,

POF, COF

AHF, AIF MHF,

MIF,

POF

 MIF, AIF

Chidamber

& Kemerar

[12]

WMC, RFC,

LCOM

LCOM WMC,

RFC,

LCOM

CBO DIT, NOC

Chen & Lu

[11]

OXM, RM,

OACM

 CCM,

OCM

CHM

Li & Henry

[26]

DAC, MPC,

NOM,

Size2 MPC,

NOM,

Size1,

Size2

MPC

Table 2: Similar object oriented metrics

21 Other metrics indicates section 5.2.4 which are categorized from different context and different point of
views.

An overview of object oriented design metrics

 37

We categorized these metrics (shown above table) to find out the right metrics to measure

class, methods, attributes, etc. Since we did not collect all proposed metrics and we did

not categorize all of them, this table is not complete to give clear recommendation as to

which metrics should be used. But these categorizations focus on common metrics which

will be helpful for novice designers to support their design measurements. The following

is a brief discussion of that categorization.

Class

The class is the fundamental unit of object oriented design. Therefore the metrics are used

to measure a class to access design quality. For example, MPC (Message Passing

Coupling) measures the complexity of message passing among classes. Although

messages are passed between objects, the types of messages passed are defined in classes.

So that, message passing is calculated at the class level instead of the object level. WMC

(Weighted Methods per Class) discuss the complexity of the methods. In general methods

are small enough so that the complexity of each could be considered as equal to unity.

RFC (Response For Class) metrics states the response set of a class consists of the set M

of methods of the class, and the set of methods invoked directly by the methods in M.

LCOM (Lack of Cohesion in Methods) measures the number of pairs of methods in the

class that have no attributes in common i.e. similarity is zero, minus the number of pairs

of methods whose similarity is not zero. If the difference is negative, the metrics value is

set to zero.

Attribute

Attributes define the properties of data object and take an instance of the data object,

describe the instance as well as make reference to another instance in another table. For

example, the AHF metric is defined as the ratio of the sum of inherited attributes in all

classes of the system under consideration to the total number of available attributes for all

classes22. LCOM metric counts the sets of methods that are not related through the

sharing of some of the class’s instance variables.

Method

A message is a request that an object makes of another object to perform an operation.

The operation executed as a result of receiving a message is called a method. For

example, WMC metric is the sum of the complexities of all class methods. It calculates

22 Software Measurement Page: http://yunus.hun.edu.tr/~sencer/oom.html

An overview of object oriented design metrics

 38

all declared methods and constructors of class. The RFC metric uses a number of

methods to review a combination of a class's complexity and the amount of

communication with other classes. The LCOM metrics uses data input variables or

attributes to measure the degree of similarity between methods. The MPC metric define a

class which sends a number of statements. This send statement is a message sent out from

a method in a class to a method in another class. Size1 is defined as the number of

noncommand lines of source code and Size2 defined as the total count of the number of

data attributes and the number of external local methods in a class23.

Coupling/Cohesion

The most potential outcome with object oriented metrics is obtained using coupling

metrics. In the context of design metrics, coupling and cohesion are used to measure a

systems structural complexity. These are also used to asses design. A class is coupled

with one more classes if the methods of one class use the methods or attributes of the

other classes. CK metrics suite includes measures for coupling and cohesion, the suite

provide descriptive power for administrative concern. Mainly high level of coupling and

low level of cohesion were associated with problems and maintainability. For example,

CBO (Coupling between Object Classes) is the number of other class with which a class

is coupled. CCM (Class Coupling Metrics) measures the coupling between class and

other class; MPC (Message Passing Coupling) measures the complexity of message

passing between classes as well as objects. Although messages are passed among objects,

the types of messages passed are defined is class.

A class is cohesive when its parts are highly correlated. It should be difficult to split a

cohesive class. Cohesion can be used to identify the poorly designed classes. High

functional cohesion as existing when the elements of a component all work together to

provide some well-bounded behavior [9]. High cohesion indicates good class subdivision.

Low cohesion increases complexity, thereby increasing the likelihood of errors during

development. Classes with low cohesion could probably be subdivided into two or more

subclasses with increased cohesion [36].

Inheritance

Inheritance shows the relationship among classes and reuse earlier defined objects as well

as variables and operators. Inheritance decreases complexity by reducing the number of

23 IEEE transaction on Software Engineering, Jan 2005, Vol 31, Number 1

An overview of object oriented design metrics

 39

operations and operators. There are some metrics used to measure the amount of

inheritance. For example NOC metric measures the number of direct subclasses of a

class. The size of NOC approximately indicates how an application reuses itself. DIT

metric calculates how far behind a class is declared in the inheritance hierarchy. MIF and

AIF allows expressing similarity between classes; the portrayal of generalization and

specialization relations; and simplification of the definition of inheriting classes, by

means of reuse [1c].

An overview of object oriented design metrics

 40

6 Evaluation of OO Metrics

Metrics have a number of interesting characteristics for providing development support.

Some of them are simple, precise, general and scalable to large size software systems

[30]. Abreu et al. state a set of metrics (see section 5.2.3) for evaluating the use of the

mechanism that support the main concepts of the object-oriented paradigm and the

consequent emphasis on reuse, that are believed to be responsible for the increasing in

software quality and development productivity [1a].

In this report, we analyzed some metrics by using RefactorIT (See Appendix 9.1) tool. In

our analysis we use two java packages to measure object oriented metrics. Package1

contains 25 classes, 103 methods and the total line of code (LOC) is 1023. Package2

contains 20 classes, 134 methods, and LOC is 1729. The main reason to choose those

packages is both of the packages have less then 2000 line of code and it is faster to

execute24. In this paper, we focused mainly LOC, WMC, RFC, DIT, NOC and DIP

metrics, because this tool support those metrics

Table 1 and table 2 represent package1 and package2 metrics respectively. In this

analysis we analyze WMC, RFC and DIT metrics elaborately, NOC and DIP metrics

discuss briefly.

Report created at May 14, 2005 12:20:44 AM

Type LOC WMC RFC DIT NOC DIP

Class 1 41 7 22 3 1 0

Class 2 166 22 61 2 1 0

Class 3 12 2 6 3 0 0

Class 4 27 7 6 1 0

Class 5 295 25 58 4 0 0.2

Class 6 18 4 9 4 0 0.25

Class 7 3 1 0 1 0 0

Class 8 7 5 3 1 0 0

Class 9 7 6 4 1 0 0

Class 10 11 5 6 4 0 0.2

24 We tried to analyze other packages which have more them 2000 line of code by this tool and it makes
hang the system.

An overview of object oriented design metrics

 41

Class 11 17 4 12 2 0 0

Class12 35 6 13 3 0 0

Class 13 52 12 16 3 0 0

Class 14 6 3 3 1 0 0

Class 15 32 7 5 3 0 0

Class 16 19 8 5 3 0 0

Class 17 101 10 23 3 0 0

Class 18 54 30 19 1 0

Class 19 81 22 31 4 0 0.333

Class 20 18 2 7 1 0

Class 21 5 1 1 3 0 0

Class 22 68 10 20 3 0 0

Class 23 79 10 23 4 0 0.5

Class 24 17 4 2 1 0 0

Class 25 5 2 3 3 0 0

Table 3: Package1 detail information

Report created at May 15, 2005 10:15:17 AM

Type LOC WMC RFC DIT NOC DIP

Class 1 25 1 2 1 0 0

Class 2 86 16 3 1 0

Class 3 69 7 4 2 0 0

Class 4 90 14 21 1 0 0.5

Class 5 108 10 26 3 0 0.167

Class 6 4 1 1 2 0 0

Class 7 73 9 25 1 0 0

Class 8 175 31 60 1 0 0.063

Class 9 32 4 11 1 0 0.286

Class 10 187 21 43 1 1 0.333

Class 11 40 3 12 2 0 0.273

Class 12 9 2 2 2 0 0.4

Class 13 51 7 10 2 0 0.143

Class 14 25 3 5 1 0 0.333

An overview of object oriented design metrics

 42

Class 15 174 15 43 3 0 0.067

Class 16 13 2 6 2 0 0

Class 17 163 28 48 1 0 0.333

Class 18 26 5 3 2 0 0

Class 19 137 21 38 1 0 0

Class 20 38 3 8 3 0 0.167

Table 4: Package2 detail information

Figure 6: Graphical representation of WMC from table 1 and table2

By the WMC metric we can observe cyclomatic complexity of methods of a class. Since

WMC metric can be found by the sum of complexity of all method. In our analysis we

found in package1, 20 classes WMC is 10 and only 1 class have WMC is 30. This result

indicates that most of the classes have more polymorphism and less complexity. In

package2, 13 classes have WMC 10 out of 20 classes; only 2 classes have WMC is more

then 25. Since a class consists at least one function, so the lower limit of WMC is 1 and

higher limit of WMC is 5025. Low WMC indicates greater polymorphism in a class and

high WMC indicates more complexity in the class. The WMC figures look quite similar

for both packages.

25 RefactorIT tool suggests the value of WMC. See more detail in Metrics measurement tool at:
http://www.refactorit.com/

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25

WMC

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19

WMC

An overview of object oriented design metrics

 43

Figure 7: Graphical representation of RFC from table 1 and table 2

In RefactorIT tool, RFC metric measured by the set of all methods and constructors that

can be invoked as a result of a message sent to an object of the class26 . RefactorIT tool

suggests the range of RFC should be 0 to 50. A class with large RFC indicates the class is

more complex and it’s harder to maintain. In our analysis, package1 have 25 classes, 20

of them have RFC threshold is around 20. Only two classes contain RFC threshold more

then 50. This result indicates that only 2 classes have to be modified to reduce

complexity. In package2, 13 classes have RFC with threshold 20 and other 7 classes have

RFC with threshold more then 30.

Figure 8: Graphical representation of DIT from table 1 and table2

26 RefactorIT manual: http://www.refactorit.com/

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25

RFC

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19

RFC

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15 17 19 21 23 25

DIT

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15 17 19

DIT

An overview of object oriented design metrics

 44

DIT metrics is the length of the maximum path from the node to the root of the tree. A

DIT value of 0 indicates a root. Since deeper trees constitute greater design complexity

as more methods and classes are involved, so maximum DIT value of 5. DIT value of 2

and 3 indicates a higher degree of reuse. If there is a majority of DIT values bellow 2, it

may represent poor exploitation of the advantages of OO design and inheritance

[RefactorIT]. In our analysis, packages 1 have 25 classes, 13 of them have DIT value is 2

to 3 and 8 classes have DIT value is 1 and rest of DIT value is 4. This result indicates,

classes of package 1 are a higher degree of reuse and fewer complexes. In package 2,

50% classes have DIT value is 2 and 50% classes have DIT value is 1.

NOC metric measures the number of direct subclass of a class. Since more children in a

class have more responsibility, thus it is harder to modify the class and requires more

testing. So NOC with less value is better and more NOC may indicate a misuse of

subclassing. In our analysis, both package1 and package2 have 0 and 1 NOC

respectively.

Now we will discuss the measurements of object oriented principles. We already

discussed DIP in section 2.2. DIP principles are mainly used for avoid developing

software which have bad symptom (see section 2.4 for more detail). The DIP metric

measure the ratio of dependencies that have abstract classes. In our analysis, most of the

class from package1 indicates 0.0 DIP whereas most of the classes from packag2 indicate

0.067 to 0.50 DIP. This result shows the classes from package1 are more depend on

abstract classes than package2’s classes.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25

DIP

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19

DIP

Figure 9: Graphical representations DIP from table 1 and table 2.

An overview of object oriented design metrics

 45

Cyclic dependency principle is used for quality measurements. Cyclic dependencies

calculate how many cycle involved in a package. According to ADP principle (see

section 2.2.3) designers should avoid package dependencies graph27. It will be very

difficult to maintain the design if one packages involved in many cycle, because a single

change in one package of a cycle may affect the other packages of a same cycle. In our

analysis there was no cycle among package1 and package2.

Software Assurance Technology Center (SATC) analysis C.K. metrics [23]. In their

analysis they use three applications to validate the reduced object-oriented metrics. They

discuss the applications as: System A, System B, and System C. System A was the

commercial software implemented in Java and consisted of approximately 50,000 lines of

code and had 46 classes. System B was implemented by NASA software which

applications was also implemented in Java and consisted of approximately 300,000 lines

of code and contained 1,000 classes. The last application, System C, was also a NASA

product implemented in the C++ programming language and approximately consisting of

500,000 lines of code distributed over 1,617 classes.

The distributions for all the metrics are similar between systems except for the DIT

metric. The DIT metric for Systems B and C are similar. However, System A exhibits a

different distribution from both Systems B and C. The distribution for System A shows

that over 60% of the classes in that system had a DIT metric of 0, suggesting a lack of

reuse via inheritance [35]. The reduced metrics set approach was able to classify the

software systems with respect to the level of code quality. Both the reduced metrics set

approach and the full metrics set (CK metrics suite and traditional) approach resulted in

the same software quality system classification. System A was low quality software,

System B was high, and System C was medium [36]. From this analysis we can get,

system A should be modified to get high quality software.

27 A graph is representation of nodes and link.

An overview of object oriented design metrics

 46

7 Summary

Several measures have been defined so far in order to estimate object oriented design.

Coupling and cohesion are used to measure a system’s structural complexity, and can be

used to assess design quality and to guide improvement efforts. The application of object

oriented design principles for example modularity, abstraction lead to better

maintainability and reusability. Designers always have to be considering the bad

symptoms of designs. Because, design with bad symptom needs more measurements.

Measurement can help to improve the software process, assist in the tracking and control

of a project and asses the quality of a product. By analyzing metrics, a developer can

correct those areas of software process that are the cause of software defects. The GQM

idea is a useful approach for deciding what to measure. It creates a hierarchy of goals;

questions that should be answered in order to know if the goal satisfy; and metrics that

must be made in order to answer the question. Thus, the GQM approach provides

guidelines for find out metrics.

A wide variety of object oriented metrics have been proposed to assess the testability of

an object oriented system. Most of the metrics focus on encapsulation, inheritance, class

complexity and polymorphism. CK metrics suite is a set of six metrics which capture

different aspects of an OO design; these metrics mainly focus on the class and the class

hierarchy. It includes complexity, coupling and cohesion as well. On the other hand

MOOD metrics focus on system level which includes encapsulation, inheritance,

polymorphism, and massage passing.

Many metrics have been adapted from CK metrics suite. In this literature we discussed

CK metrics elaborately and we also analysed some of the CK metrics. In our analysis we

found some result which are similar to the result of SATC’s [23] analysis. Basili et al. [5]

presented the results of an empirical validation of CK’s metrics. Their results suggest that

five of the six of CK’s metrics (WMC, DIT, RFC, NOC, and CBO) are useful quality

indicators for predicting fault-prone classes. We discussed some similar metrics for

example class, attributes, cohesion, coupling, etc categories. These categories will assist

to find out for a particular metrics.

An overview of object oriented design metrics

 47

Since very few object oriented metrics are empirically validated to measure object

oriented design and this report is not complete for suggesting which metrics should be

used. This report suggest that, only those metrics should be used which are empirically

validated. This study also advice to metrics developers that, metrics should be simple,

computable and programming language independent. There will be always something

new to measure and metrics developers have to make new metrics to satisfy them.

An overview of object oriented design metrics

 48

8 References

[1a] Abreu, Fernando B. ,Carapuca, Rogerio.: “Candidate Metrics for Object-

Oriented Software within a Taxonomy Framework.", Journal of systems

software 26, 1(July 1994)

[1b] Abreu, Fernando B: "The MOOD Metrics Set," Proc. ECOOP'95

Workshop on Metrics, 1995.

[1c] Abreu, Fernando B: “Design metrics for OO software system”,

ECOOP’95, Quantitative Methods Workshop, 1995

[1d] Abreu, Fernando B, Rita, E., Miguel, G. : “The Design of Eiffel Program:

Quantitative Evaluation Using the MOOD metrics”, Proceeding of

TOOLS’96 USA, Santa Barbara, California, July 1996

[2] Archer C.,Stinson M.: “Objece Oriented Software Measure”, Technical

report CMU/SEI-95-TR-002, ESC-TR-95-002, 1995

[3] Balasubramanian NV.: “Object oriented metrics”, Proceedings 3rd Asia-

Pacific Software Engineering Conference (APSEC’96). IEEE Computer

Society, 1996; 30-34.

[4] Banker, Rajiv D., Kauffman, Robert J.,Kumar, Rachina.: "An Empirical

Test of Object-based Output Measurement Metrics in a CASE

Environment." Journal of Management Information Systems 8,3 (Winter

1991): 127-150.

[5] Basili VR, Briand LC, Melo WL.: “A validation of object-oriented design

metrics as quality indicators”, Technical Report, University of Maryland,

Department of Computer Science, 1995; 1-24

[6] Basili, V.R., Gianluigi Caldiera, H. Dieter Rombach: “THE GOAL

QUESTION METRIC APPROACH.”

http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/gqm.pdf

[7] Bellin, D., Manish Tyagi, Maurice Tyler: "Object-Oriented Metrics:An

Overview", Computer Science Department,North Carolina A ,T state

University,Greensboro,Nc 27411-0002.

[8] Briand LC, Morasoa S.: “Defining and validating measures for object-

based high level design”, IEEE Transactions on Software Engineering

1999; 25(5): 722-743.

[9] Booch, G: “Object-Oriented Analysis and Design with Applications”, 2nd

ed., Benjamin Cummings, 1994

[10] Chapin N., Hale J., Khan K., Ramil J.: “Type of software evolution and

An overview of object oriented design metrics

 49

software maintenance”. Journal of software maintenance and

evolution,2001

[11] Chen, J-Y., Lum, J-F.: "A New Metrics for Object-Oriented Design."

Information of Software Technology 35,4(April 1993):232-240.

[12] Chidamber, Shyam , Kemerer, Chris F. "A Metrics Suite for Object-

Oriented Design." M.I.T. Sloan School of Management E53-315, 1993

[13] Demeyer, S., Ducasse, S. and Nierstrasz, O: “Refactorings via change

metrics”. In Proc. Int. Conf. 2000. ACM Press,

[14] Fenton, N., S.L. Pfleeger: “Software Metrics: A Rigorous and Practical

Approach”, PWS Publishing Co.

[15] Frederick T. Sheldon, Kshmata Jerath, and Hong Chung: “Metrices for

maintainability of class inheritance hierarchies”, Journal of software

maintenance and evaluation: Reachers and practice, 2002

[16] Harrison R., Steve J.: “An Evaluation of the MOOD Set of Object-

Oriented Software Metrics”, IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 24, NO. 6, JUNE 1998

[17] Harrison, R., Counsell, S.J. Nithi, R.V: "An Investigation into the

Applicability and Validity of Object-Oriented Design Metrics", technical

report

[18] Harrison, R., Samaraweera, L.G., Dobie, M.R., and Lewis, P.H:

“Comparing Programming Paradigms: An Evaluation of Functional and

Object-Oriented Programs,” Software Eng. J., vol. 11, pp. 247-254, July

1996.

[19] Jacobson, I., Christerson, M., Jonsson, P., and Overgaard G.: “Object-

Oriented Software Engineering: A Use-Case Driven Approach”, Addison-

Wesley, 1992

[20] Jon Avotins: "Defining and Designing a Quality OO Metrics Suite",

Depertment of Software Development,Monash University,Australia 3145

[21] Khaled El Emam,: “A Primer on OO Measurement”, 1530-1435/05 IEEE,

Proceeding of the Seventh International Software Metrics Symposium (

METRICS’01)

[22] Kitchenham B, Pfleeger SL, Fenton NE.: “Towards a framework for

software measurement validation”. IEEE Trans. On Software Engineering

1995; 21(12): 929-944

[23] Laing V.,Coleman C., : “Principal Components of Orthogonal OO

Metrics", Software Assurance Technology Center (SATC),2001

An overview of object oriented design metrics

 50

[24] Lee, Y., Liang, B., Wang, F.: "Some Complexity Metrics for Object

Oriented Programs Based on Information Flow", Proceedings: CompEuro,

March, 1993, pp. 302-310

[25] Li W.: “Another metric suite for object-oriented programming”. The

Journal of Systems and Software 1998; 44(2):155-162

[26] Li,Wei , Henry, Salley.: "Maintenance Metrics for the Object Oriented

Paradigm", First International Software Metrics Symposium.

Baltimore,Maryland, May 21-22, 1993. Los Alamitos, California: IEEE

Computer Society Press, 1993.

[27] Lorenz, Mark & Kidd Jeff: “Object-Oriented Software Metrics”, Prentice

Hall, 1994.

[28] McCabe and Associates,: “Using McCabe” QA 7.0, 1999, 9861 Broken

Land Parkway 4th Floor Columbia, MD 21046

[29] McCall, J., P., Richards, and G., Walters: “Factors in software quality”,

NTIS AD-A049-014,015,055, 1977

[30] Mens T., Demeyer S.: “Future Trends in software evolution metrics” ACM

2002 1-58113-508-4

[31a] Ramil, J.E and Lehman, M.M: “Metrics of evolution as effort predictors - a

case study”. In Conf. Software Maintenance, pages 163-172, October

[31b] Raymond, J. A, Alex, D.L: “Adata model for object oriented design

metrics”, Technical Report 1997, ISBN 0836 0227.

[32] Robert C. Martin , www.objectmentor.com

[33] Robert C. Martin:" Agile Software Development":Principles,Patterns and

Practices,2002.

[34] Roger S. Pressman: “Software Engineering”, Fifth edition, ISBN

0077096770

[35] Rosenberg, H Linda: “Applying and Interpreting Object Oriented Metrics”

Software Assurance Technology Office (SATO)

[36] Rosenberg, H. Linda, Lawrence E. Hyatt: “Software Quality Metrics for

Object-Oriented Environments”, Crosstalk Jounal,1997

[37] Scotto M., Sillitti A., Succi G., Vernazza T.: “A relational approach to

software metrics”, 2004 ACM Symposium on Applied Computing.

[38] Steven C., Doug Lea.: “Process and Metrics for Object-Oriented Software

Development”. OOPSLA 1993.

[39] Tang MH,Kao MH, Chen MH.: “An empirical study on object-oriented

metrics”. Proceedings 23rd Annual International Computer Software and

An overview of object oriented design metrics

 51

Application Conference. IEEE Computer Society, 1999;

[40] Vessey, I. and Weber R.: “Research on Structured Programming: An

Empiricist’s Evaluation”. IEEE Transaction on Software Engineering 10,4,

394-407

9 Appendix

9.1 RefactorIT Tool

Version: 2.5.0.7

Date: April 18, 2005

Company: Aqris Software AS, Ravala puiestee 5, 10143 Tallinn, ESTONIA

Web: http://www.refactorit.com

RefactorIT Evaluation license - a fully functional version of RefactorIT for

30 day trial period, without charge.RefactorIT makes possible to efficiency analyzing

information from source code. It supports java and C language.

9.2 Metrics Collection

(We found these metrics from different sources. In this study, most of them are discussed

very briefly)

ACM - Attribute Complexity Metric

AHF- Attribute Hiding Factor

AIF - Attribute Inheritance Factor

CBC - Count of Base Classes

CBO - Coupling Between Object classes

CC - Class Complexity

CC2 - Class Complexity (progeny count)

An overview of object oriented design metrics

 52

CC3 - Class Complexity (parent count)

CCM - Class Coupling Metric

CCR - Count of number of Contains Relationships

CHM - Class Hierarchy of Method

CM - Cohesion Metric

COF - Coupling Factor

COU - Count Of Uses

CR1 - Class Reuse (% of inherited methods that are overloaded)

CR2 - Class Reuse (number of times class is reused "as is")

CR3 - Class Reuse (number of times class is reused with adaptation)

CSC - Count of Standalone Classes

DAC - Data Abstraction Coupling (Number of abstract data types)

DIT - Depth of Inheritance Tree

GSDM - Graph of Source and Destination of Messages (no measure given)

HC - Hierarchy Complexity of system

IL - Inheritance Lattice (stated, but no measure indicated)

LCOM - Lack of Cohesion Of Methods

LOC - Lines Of Code

MC - Method Complexity

MCC - McCabe's Cyclomatic Complexity metric

MHF- Method Hiding Factor

MIF - Method Inheritance Factor

MPC - Message Passing Coupling (number of send statements in a class)

NOC - Number Of Children

NOM - Number Of local Methods

NOT - Number of Tramps (count of extraneous parameters)

OACM - Operation Argument Complexity Metric

OC - Object Counts (count of classes)

OCM - Operation Coupling Metric

OP - Object Points

OXM - Operation Complexity Metric (within a class)

PC - Program Complexity

POF - Polymorphism Factor

RFC - Raw Function Counts

RFC - Response For a Class

RFC = |RS| , where RS = response set for the class.

An overview of object oriented design metrics

 53

RL - Reuse Leverage

RM - Reuse Metric (of classes)

SC1 - System Complexity (total length of inheritance chain)

Size - Size of Object-Oriented system

Size1 - number of semi-colons in a class

Size2 - number of attributes + number of local methods

SR1 - System Reuse (% reused "as is" classes)

SR2 - System Reuse (% reused classes with adaptation)

SR3 - System Reuse (library quality factor)

SSM - Software Science Metrics (Halstead)

SSM - Software Science Metrics (Halstead)

SSM - Software Science Metrics (Halstead)

VOD - Violations Of the law of Demeter

WAC - Weighted Attributes per Class

WMC - Weighted Methods per Class

