

Object-Oriented Programming and Java

Danny Poo Derek Kiong
Swarnalatha Ashok

Object-Oriented

Second edition

Programming
and Java

• •

School of Computing
National University of Singapore, Singapore

Institute of Systems Science
National University of Singapore, Singapore

Ms Swarnalatha Ashok
Institute of Systems Science
National University of Singapore, Singapore

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN-13: 978-1-84628-962-0 e-ISBN-13: 978-1-84628-963-7
First edition © Springer Singapore 1998; 978-981-3083-96-7

Printed on acid-free paper

© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the
case of reprographic reproduction in accordance with the terms of licences issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free for
general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that
may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Dr Danny Poo Dr Derek Kiong

Library of Congress Control Number: 2007934261

1 Introduction 1
1.1 Object-Oriented Programming 1
1.2 Objects and Their Interactions in the Real World 2
1.3 Objects and Their Interactions in Programming 3
1.4 Simulation 3
1.5 Java 4
1.6 Summary 4
1.7 Exercises 5

2 Object, Class, Message and Method 7
2.1 Objects and Class 7
2.2 Message and Method
 2.2.1 Message Components 10
 2.2.2 Method
 2.2.3 Client and Server
2.3 Creating Objects 12
2.4 Summary 14
2.5 Exercises 14

3 A Quick Tour of Java 17
3.1 Primitive Types 17
3.2 Object Definition 18
 3.2.1 Variable Definitions 18
 3.2.2 Methods 19
3.3 Object Instantiation 20
3.4 Object Access and Message Passing 21
3.5 Representational Independence 21
3.6 Overloading 22
3.7 Initialization and Constructors 23

9

10
11

Preface to 1st Edition xiii
Preface to 2nd Edition
Overview xvii
Acknowledgement xix

Table of Contents

xv

vi Table of Contents

 3.11 Arrays 34
3.12 Result Returned by Method 35
3.13 Summary 36
3.14 Exercises 36

4 Implementation in Java 39
4.1 Calculator 39
 4.1.1 The clear() Method 40
 4.1.2 The display() Method 41
 4.1.3 The digit() Method 41
 4.1.4 41
4.2 Code Execution 42
4.3 Simple User Interface 44
4.4 Another Interface for CalculatorEngine 46

4.5 Summary 49
4.6 Exercises 49

5 Classification, Generalization, and Specialization 51
5.1 Classification 51
5.2 Hierarchical Relationship of Classes 53
 5.2.1 Superclass and Subclass 53
 5.2.2 A Class Hierarchy Diagram 54
5.3 Generalization 55
5.4 Specialization 56
5.5 Organization of Class Hierarchy 56
5.6 Abstract and Concrete Classes 57
5.7 Summary 58
5.8 Exercises 58

6 Inheritance 61
6.1 Common Properties 61
6.2 Inheritance 62
6.3 Implementing Inheritance 64
6.4 Code Reuse 67

4.4.1

Operator Methods

Event-Driven Programming 48

 3.8.2 Expression Statements 30
 3.8.3 Control-flow Statements 30
3.9 Blocks 32
 3.9.1 Local Declarations 32
 3.10 More Control-flow Statements 33

3.8 Expressions, Statements, and Control-flow Mechanisms 24
 3.8.1 Operators 24

Table of Contents vii

6.7 Inheritance Chain 75
 6.7.1 Multiple Inheritance 76
 6.7.2 Problems Associated with Multiple Inheritance 77
 6.7.3 Contract and Implementation Parts 79
 6.7.4 Contract and Implementation Inheritance 79
6.8 Interface 80
 6.8.1 Multiple Inheritance Using Interface 80
 6.8.2 Attributes in an Interface 83
 6.8.3 Methods in an Interface 83
 6.8.4 Abstract Class and Interface 83
 6.8.5 Extending Interface 84
 6.8.6 Limitations of Interface for

Multiple Inheritance 85
6.9 Summary 88
6.10 Exercises 89

7 Polymorphism 93
7.1 Static Binding 93
7.2 Dynamic Binding 96
7.3 Operation Overloading 97
 7.3.1 Same Method Signature 97
 7.3.2 Overloading Method Names 98
7.4 Polymorphism 100
 7.4.1 Selection of Method 100
 7.4.2 Incremental Development 101
 7.4.3 Increased Code Readability 102
7.5 Summary 102
7.6 Exercises 102

8 Modularity 103
8.1 Methods and Classes as Program Units 103
8.2 Object and Class Properties 103
 8.2.1 Counting Instances 104
 8.2.2 Shared Attributes 106
 8.2.3 Class Attributes 107

 6.5.1 Change in Property Definition for
All Subclasses 67

 6.5.2 Change in Property Definition for Some
Subclasses 68

 6.5.3 Adding/Deleting a Class 72
6.6 Accessing Inherited Properties 75

6.5 Making Changes in Class Hierarchy 67

viii Table of Contents

8.5 Encapsulation 111
 8.5.1 Bundling and Information Hiding 112
 8.5.2 Enhanced Software Maintainability 112
 8.5.3 Trade-Off 115
8.6 Summary 116
8.7 Exercises 117

9 Exception Handling 119
9.1 Using Exceptions 119
9.2 Exception Terminology 120
9.3 Constructs and Exception Semantics in Java 120
 9.3.1 Defining Exception Objects 121
 9.3.2 Defining Exception Handlers 121
 9.3.3 Raising Exceptions 122
9.4 A Simple Example 123
9.5 Paradigms for Exception Handling 125
 9.5.1 Multiple Handlers 125
 9.5.2 Regular Exception Handling 127
 9.5.3 Accessing Exception Objects 128
 9.5.4 Subconditions 128
 9.5.5 Nested Exception Handlers 129
 9.5.6 Layered Condition Handling 130
9.6 Code Finalization and Cleaning Up 130
 9.6.1 Object Finalization 131
 9.6.2 Block Finalization 131
9.7 Summary 132
9.8 Exercises 133

10 Input and Output Operations 135
10.1 An Introduction to the Java API 135
10.2 Reading the Java API Documentation 136
10.3 Basic Input and Output 138
10.4 File Manipulation 141
 10.4.1 File Input 142
 10.4.2 File Output 143

 8.2.4 Class Methods 107
 8.2.5 Name Aliases
8.3 Controlling Visibility 108
8.4 Packages 110
 8.4.1 The package Keyword 110
 8.4.2 The import Keyword 110

108

 10.4.3 Printing Using PrintStream 144

Table of Contents ix

10.9 Formatting the Output Using the Format String 151
10.10 The File Class 152
10.11 Random Access File Operations 152
10.12 Summary 153
10.13 Exercises 153

11 Networking and Multithreading 155
11.1 The Network Model 155
11.2 Sockets in Java 156
 11.2.1 Example Client: Web Page Retriever 157
11.3 Listener Sockets in Java 161
 11.3.1 Example Server: Simple Web Server 161
 11.3.2 Running the Web Server 164
11.4 Considering Multiple Threads of Execution 165
11.5 Creating Multiple Threads of Execution 166
 11.5.1 Thread Creation Using the Thread Class 166
 11.5.2 Thread Creation Using the

Runnable Interface 168
11.6 Improvement of Web Server Example 168
11.7 Thread Synchronization and Shared Resources 169
11.8 Summary 175
11.9 Exercises 176

12 Generics and Collections Framework 179
12.1 Introduction 179
12.2 Rationale Behind Generics 179
 12.2.1 The Problem 180
 12.2.2 Run-time Type Identification (RTTI) 182
12.3 Java Generics 183
 12.3.1 Generic Class 183
 12.3.2 Generic Method 185
12.4 Collections Framework 186
 12.4.1 Collections Interface
 12.4.2 ArrayList Class 187

186

10.5 Framework for Code Reuse 145
10.6 DataInputStream and DataOutputStream Byte

Stream Class 147
10.7 Character Stream Classes 148
10.8 Tokenizing the Input Using the Scanner Class 150

12.4.3 HashSet Class 190
12.4.4 HashMap Class 194

 12.5 Sorting Collections 196

x Table of Contents

 12.6.2 binarySearch Method 198
12.7 Summary 199
12.8 Exercises 199

13 Graphical Interfaces and Windows 201
13.1 The AWT Model 201
13.2 Basic AWT Constituents 202
 13.2.1 Frames 203
 13.2.2 Components 204
 13.2.3 Panels 205
 13.2.4 Layout in Panels 206
 13.2.5 Events 209
 13.2.6 Events in JDK 1.1 (and later versions) 212
 13.3 Basic Components 214
 13.3.1 Label Component 214
 13.3.2 Button Component 215
 13.3.3 Checkbox Component 215
 13.3.4 CheckboxGroup Component 215
 13.3.5 TextArea Component 216
 13.3.6 Choice Component 217
 13.3.7 List Component 218
 13.3.8 Menus and Menu Items 219
 13.3.9 Dialog Frames 221
 13.3.10 File Dialog Frames 223
13.4 Custom Components 224
13.5 Other Kinds of Class Definitions 226
 13.5.1 Inner Classes 227
 13.5.2 Anonymous Classes 227
 13.5.3 Local Classes 228
13.6 Swing Components 230
 13.6.1 Transiting from AWT to Swing 231
 13.6.2 Model versus View 234
13.7 Summary 235
13.8 Exercises 236

 12.5.1 Sort Algorithm
 12.5.2 Comparator Interface
12.6 Searching Collections 198
 12.6.1 indexOf and contains Methods 198

196
197

14 Applets and Loaders 237
14.1 Applet Characteristics 237
14.2 Applet Life Cycle 241

Table of Contents xi

14.6 Efficient Repainting 247
14.7 Applet Parameters 248
14.8 Loading Code Dynamically 250
14.9 Security Restrictions for Untrusted Code 253
 14.9.1 Security Policy 255
 14.9.2 Keys 256
 14.9.3 Permissions 256
14.10 Summary 258
14.11 Exercises 258

15 Java Servlets 259
15.1 Dynamic Web Pages and Servlets 259
15.2 Tomcat Installation 260
 15.2.1 Downloading and Installation 260
 15.2.2 Configuration 261
 15.2.3 Starting and Stopping Tomcat 262
15.3 Sample Servlet 263
15.4 Servlet Characteristics 266
15.5 Servlet Paramters and Headers 266
15.6 Servlet Output 271
15.7 Handling Sessions 271
 15.7.1 Session Timeout 274
15.8 Concurrency 274
15.9 Customized Processors 274
15.10 Summary 276
15.11 Exercises 277

16 Object Serialization and Remote Method Invocation 279
16.1 Object Serialization 279
16.2 Components in Object Serialization 281
16.3 Custom Serialization 281
 16.3.1 The Externalizable Interface 284
16.4 Distributed Computing with Java 284
16.4.1 RMI and CORBA 285
16.4.2 Java Limitations 285
16.5 An Overview of Java RMI 286

14.3 Custom Applets 242
14.4 Images and Audio 243
14.5 Animation in Applets 245

16.6 Using Java RMI 287
 16.6.1 Setting Up the Environment on Your

Local Machine 287

xii Table of Contents

16.7 RMI System Architecture 289
16.8 Under the Hood 291
16.9 RMI Deployment 293
16.10 Summary 295
16.11 Exercises 295

17 Java Database Connectivity 297
17.1 Introduction 297
17.2 Java Database Connectivity 297
17.3 JDBC Architecture 298
17.4 JDBC Drivers
 17.4.1 Types of Drivers
 17.5 JDBC APIs 302
 17.5.1 Establishing a Connection 302
 17.5.2 Data Manipulation
17.6 Data Definition Language (DDL) with JDBC 305
 17.6.1 Creating a Table 305
 17.6.2 Dropping a Table 306
17.7 Data Manipulation Language (DML) with JDBC 307
 17.7.1 Creating (Inserting) Records Using JDBC 307
 17.7.2 Deleting Records Using JDBC 307
 17.7.3 Retrieving Records Using JDBC 307
 17.7.4 Updating Records Using JDBC 309
 17.7.5 Updatable Result Sets 310
 17.7.6 Prepared Statements 311
17.8 Summary 313
17.9 Exercises 313

298
299

303

 Index 315

 16.6.2 How RMI Works
 16.6.3 An RMI Example 288

287

Preface to 1st Edition

Control abstraction was the message of the first programming revolution seen in
high-level programming languages such as Algol and Pascal. The focus of the next
revolution was data abstraction, which proposed languages such as Modula and Ada.

The object-oriented revolution began slowly in the 1960s with the programming
language Simula, but moved onto more languages such as Smalltalk, Objective-C
and C++. Java is almost a hybrid between Smalltalk and C++, and has gained
widespread acceptance due to its association with the Internet, its availability to a
large user base and reusable libraries for programming in a graphical environment.

Our programming lineage has passed through Pascal, C and C++. As with
many other programmers, good run-time checks with automatic memory manage-
ment and a reusable API made Java a very attractive option. After a half-day on the
original Java Whitepaper and the early Java online tutorial, we were sold on the Java
bandwagon and already writing code. In another two days’ time, we were using
the Abstract Windowing Toolkit (AWT) package for graphical applications. In
situations where there is no large investment into older languages, we are quite
happy to abandon them completely.

Effective programming in Java comes from understanding three key areas –
object-oriented concepts, the syntax and semantics of the Java programming language
and the Java Application Programming Interface (API). This is our emphasis when
we conduct professional courses, and in this book as well.

Much of the material in this book is based on previous courses which we
have conducted over the past two years to the industry and the National University
of Singapore (NUS). Courses conducted for the industry last about 5 to 7 days,
depending on the amount of coaching that participants require. In the Department of
Information Systems and Computer Science at NUS, a course on “Object-Oriented
Methods” runs over 13 weeks.

As you might have noticed, we have taken to Java as ducks to water. Java has
allowed us to think about and specify object behavior. This results in executable
code which is merely secondary. What is important is the clean specification of
object behavior. Similarly, in getting accustomed to working with objects, we
believe that you will enjoy it too.

Preface to 2nd Edition

Since publishing the first edition almost 10 years ago, we have seen Java being used
in many high school and university programming courses. Further, many projects
now use Java as the implementation language. Similarly, at the Institute of Systems
Science, we have seen professional developers warming up to Java for the first time
in 1998, to those who use Java in their daily work in 2007.

We have thus updated the material to cover J2EE topics such as JDBC, RMI,
Serialization and Java Servlets. We have also added a chapter on Generics as the
Java language evolved to allow this elegant feature.

For those who might be embarking on a Java journey now, we wish you a
pleasant journey and a well-used road map. Many have taken this journey before and
are enjoying the fruits of their learning investment.

Chapter 1 presents an introduction to the object-oriented world consisting of objects
and object communication via the exchange of messages. Object-oriented concepts
and terminology used in object-oriented methodology are discussed in chapter 2.
Chapter 3 shows how these concepts materialize in the form of Java code and
representations. It discusses the basic features and syntax of Java and builds upon the
concepts using an incremental Counter example.

Following on from language syntax, chapter 4 demonstrates the standard pro-
gramming environment using the Java Development Kit (JDK), and how a class
definition may be compiled and executed, integrated and reused within other code
fragments. The chapter also delves into using the Java Application Programming
Interface (API) to demonstrate the ease and productivity gains of code libraries.

Chapter 5 returns to the discussion of objects, in particular, the organization of
objects into manageable classes. The concept of class enables a developer to organize
a complex problem domain into more manageable components. Grouping objects into
classes is an act known as classification in object-oriented modeling. When classes
are formed, they can be further distinguished into superclasses or subclasses, accord-
ing to their similarities or differences in properties. Class hierarchies can then be
formed. The creation of superclasses and subclasses is achieved through abstracttion
mechanisms known as generalization and specialization respectively. Classification,
generalization and specialization are thus important abstraction mechanisms for
organizing objects and managing complexities.

Inheritance is discussed in chapter 6. Common properties of classes can be shared
with other classes of objects via the inheritance mechanism. It is through inheritance
that software component reuse is possible in object-oriented programming. Software
reusability is important because code need not be produced from scratch, thereby
increasing the productivity of developers.

Another topic close to the heart of object-oriented programming is polymorphism.
This topic is concerned with object messaging and how objects of different classes
respond to the same message. With polymorphism, objects of different class definition
can respond to the same message with the appropriate method. In this way, generic
software code can be produced, thus enhancing the maintainability of software systems.
Polymorphism is supported by dynamic binding and operation overloading, topics
that are central to the discussion in chapter 7.

Enhancing software maintainability is a significant software development
objective. A programming technique known as Structured Programming was intro-

Overview

for achieving maintainable software. Modularity is emphasized in object-oriented
duced in the 1980s, promoting modularity as a Software Engineering principle

programming in the form of method, object, and class definition. Encapsulation is
the manifestation of modularity in object-oriented programming to the fullest. As
will be made clear in chapter 8, encapsulation brings together related properties into
class definitions with the structural definition of classes hidden from their users. The
purpose of this approach is to hide the implementation detail of objects so that when
changes in implementation of objects are called for, users of the objects will not be
adversely affected.

Exception Handling is considered in chapter 9. This is especially important in
object-oriented programming, as the mechanism for the glue and safety net in code
integration and reuse.

The Java API is introduced in chapter 10 and continues with the core classes for
input/output, networking, graphical components and applets within Web browsers.
Input and output rely on InputStream and OutputStream classes, as well as Reader
and Writer classes in JDK 1.1.

Chapter 11 introduces network connections via TCP/IP using the Socket
class, similar to those for input and output in chapter 10, as they share behavior from
InputStream and OutputStream. As multi-processing is typically used with client/
server applications, we have also included the multi-threading API in this chapter,
together with a skeleton Web server as the working example.

Collection classes with Generics in chapter 12 show how the concepts of modu-
larity and encapsulation work to facilitate code reuse. This chapter not only gives an
overview of the classes in the Collections Framework, but this framework is an
excellent sample of how reusable code is written.

The AWT model is elaborated with descriptions of its constituents and example
usage for Graphical User Interfaces in chapter 13. There are sufficient code examples
to build interfaces for most simple applications. We have also incorporated Swing
classes for better interactivity.

Applet development relate to graphical interfaces and the issue of dynamic
loading of compiled Java bytecodes. This is discussed in chapter 14. Situations where
applet behavior differs from Java applications, security measures and implementing a
loader over the network are also considered.

Chapter 15 covers Java Servlets. It is related to dynamic code loading and
applets in chapter 14, but occurring on the server side. This forms the basis for Java-
based Web applications.

Chapter 16 examines Java Object Serialization and Remote Method Invocation.
The former may be viewed as a continuation of input and output facilities discussed

Remote Method Invocation (RMI) for distributed applications. A simple client/server
application framework using RMI is provided.

Chapter 17 provides an overview of the popular requirement of working with
databases – Java Database Connectivity. This topic warrants a whole book, but we
limit our discussion to the rationale, perspective and architecture of JDBC together
with necessary methods for working with real databases.

xviii Overview

in chapter 10, but with the focus to implement object persistence. Object Serialization
is also used to move objects over a network and forms a key role in implementing

In revising the text, we are thankful to readers of the first edition who have given
encouraging feedback. If not for these folks, we would never have considered this
second round.

We also thank our colleagues and bosses at our respective work places who
have supported and encouraged this book revision. We also thank the folks at
Springer Verlag who felt that a second edition was worthy.

Special thanks are due to Derek’s former colleagues at the now defunct Centre
for Internet Research (CIR), National University of Singapore, who had worked to
use the Internet productively. The lineage of CIR may be traced back to the Technet
Unit in the Computer Centre of the National University of Singapore, which was first
to provide and promote Internet services in Singapore. The effort saw the spin-off
to PacNet in Singapore. In particular, Dr. Thio Hoe Tong, former Director of the
Computer Centre and Dr Tan Tin Wee, have supported the Java team even in the
early days when we played with the Alpha releases of Java.

Poo, Kiong & Ashok
National University of Singapore

August 2007

Acknowledgement

1
Introduction

Object-oriented programming has been in practice for many years now. While the
fundamental object-oriented concepts were first introduced via the class construct in
the Simula programming language in the 1960s, the programming technique was
only accepted with the advent of Smalltalk-80 more than a decade later.

Object-oriented programming has come a long way. More and more programs
are now designed and developed using this approach. What is object-oriented pro-
gramming? What makes it attractive as an alternative programming approach? How
does it differ from the traditional procedural programming approach? These ques-
tions will be discussed in this chapter.

1.1 Object-Oriented Programming

The procedural approach to programming was the de facto approach in the early
days of programming. Here, code is modularized based on a system’s processes.
For instance, in developing a library application system, we would have considered
processes such as the checking in an d out of books, making reservations of books,
cataloging of books, and so on. Problem solving would involve the analysis of
these processes in terms of the procedural tasks carried out and the production of a
system whose representation is based on the procedural flow of the processes.

Object-oriented programming, on the other hand, models objects and their in-
teractions in the problem space and the production of a system based on these objects
and their interactions.

Since the real-world problem domain is characterized by objects and their in-
teractions, a software application developed using the object-oriented programming
approach will result in the production of a computer system that has a closer repre-
sentation of the real-world problem domain than would be the case if the procedural
programming approach is used.

2 Object-Oriented Programming and Java

1.2 Objects and Their Interactions in the Real World

Let us consider a real-world situation. There are two persons, Benjamin and his wife,
Bambie. They are customers of HomeCare, a company dealing in luxurious furni-
ture. HomeCare sells a variety of sofa sets. Each sofa set is labeled with an identifi-
cation number and a price tag. After viewing the sofa sets for an hour, Benjamin and
Bambie decide to purchase a green leather 5-seater set. They approach Sean, a sales-
person, to place their order.

In making his request known to Sean, Benjamin sends a message to Sean, “I
would like to purchase this green leather, 5-seater set. Can you please have it sent to
me by next Wednesday?”

The message that Benjamin has sent to Sean is a takeOrder message. It con-
tains information such as the type of sofa set (a green leather, 5-seater set) and the
date of delivery (next Wednesday). This information is known as the parameters of
the takeOrder message.

In response to Benjamin’s message, Sean replies to Benjamin by returning the
result of his request. We can represent the interaction between Benjamin and Sean
graphically using Figure 1-1.

 takeOrder

result

Benjamin Sean

Figure 1-1: Interaction between Benjamin and Sean.

Sean was able to respond to Benjamin’s takeOrder message because he under-

stood it and had the means to handle Benjamin’s request. Although Sean knew how
to satisfy Benjamin’s request, Benjamin did not. In fact, most of the time, customers
do not know how a salesperson has satisfied their orders. All they get from salesper-
sons are replies such as, “I am sorry, madam, we are unable to satisfy your request
because the sofa you wanted has been sold,” or “Sir, your request has been satisfied.
We will deliver the goods on Wednesday between 10 am to 11 am to the address
indicated. Thank you for your order.”

Sean, as a salesperson at HomeCare, has a responsibility towards Benjamin. He
maintains his responsibility by applying a set of operations:

1. He determines if there is sufficient stock to satisfy Benjamin’s request.
2. He determines if the requested date for delivery is a suitable date.
3. He instructs the warehouse staff to deliver the goods to Benjamin’s address

on the requested date, if the above conditions are satisfied.
4. Finally, he informs Benjamin the result of his request.

Introduction 3

1.3 Objects and Their Interactions in Programming

The interactions between Benjamin and Sean in the above real-world situation can be
represented in object-oriented programming terms. For instance, Benjamin and Sean
are objects that interact by sending messages. Benjamin is thus a message-sending
object, while Sean is a message-receiving object. Alternatively, we can label
Benjamin as a sender and Sean as a receiver.

The takeOrder request from Benjamin to Sean is an example of a message. It
may have additional, accompanying information known as parameters (or argu-
ments) of the message. The fact that Sean responded to Benjamin’s message indi-
cates that the message is a valid message. Each valid message corresponds to a
method that Sean uses to fulfill his responsibility to Benjamin.

An invalid message, on the other hand, is one that the receiver does not have
the capability to respond to, that is, the receiver does not have a corresponding
method to match the message. For example, if Benjamin had requested a discount on
the price, his request would have been rejected because Sean, being a salesperson,
would not have the capability (or a corresponding method) to respond to the
message.

A method contains a number of operations detailing how Sean is to satisfy the
demand Benjamin put on Sean through the request.

Figure 1-2 summarizes the relationships of these terms.

Benjamin Sean

takeOrder(sofa type, who,
address, delivery date)

result

Message

ObjectObject

Method
Arguments

Figure 1-2: Object interactions in object-oriented programming terms.

While Benjamin may know what Sean can do through his methods, he may not

know how Sean does them. This is an important principle of object-oriented pro-
gramming known as information hiding: the sender of a message does not know how
a receiver is going to satisfy the request in the message.

1.4 Simulation

Based on the above example, it is clear that concepts in object-oriented programming
such as object, message and method, do provide a close representation of real-world
objects and their interactions. These concepts are thus suitable for simulating actual
object interactions in real-world situations.

4 Object-Oriented Programming and Java

It is this ability for modeling real-world problems that identified object-oriented

programming as being suitable for simulation. The Simula programming language
was designed in the early 1970s to provide simulation abilities using object-oriented
concepts.

1.5 Java

Java was first introduced in 1995 as a simple and secure object-oriented program-
ming language. It is a unique language in that, being a new language at that time, it
was able to attract a lot of interest from the computing community. Within two years
after Java was launched, there were an estimated 400,000 Java programmers and
over 100 books on Java programming.

There are a few possible reasons for the phenomenal interest in Java. The year
1995 saw a maturing of Web technologies, and Java’s multiplatform capability,
which enabled a Java program to execute on any computer, was exceedingly attrac-
tive, especially on an open network like the Internet. Java is implemented via part
compilation and subsequent execution on an interpreter implemented in software.
Java applications are therefore object code portable as long as a Java virtual machine
is implemented for the target machine.

The popularity of Java is also ironically due to its similarity with its close rival
C++. Java takes the pain out of learning a new language by reusing much of C and
C++. At the same time, safe programming practice in Java and language facilities for
automatic memory management were benefits that were attractive to programmers
on the verge of deserting their C/C++ camps.

In relation to the Internet, Java applets have given rise to a new generation of
distributed applications with low software distribution and maintenance costs. As
applets are embedded in an HTML document via <APPLET> tags, its transmission to
the client machine for execution is implicitly handled by the underlying network
protocols and thus makes the typical channels of distribution and installation
obsolete.

While the object-oriented programming framework promotes reusability of
software and code, this very practice has been demonstrated in the rich set of class
libraries seen in the Java language. The Java foundation class libraries provide for
windowing and graphical user interface programming, network communications, and
multimedia facilities. Together, they demonstrate the practical and productive work
done in Java.

1.6 Summary

In this chapter, we discussed:

• An overview of object-oriented programming concepts and their applicabi-

lity for modeling and representing real-world entities and their interactions
in the problem-solving process.

Introduction 5

• Object-oriented concepts of object, message, and method.
• An overview of the Java programming language and the potential of produc-

tive software development

1.7 Exercises

1. Distinguish the programming approach used in procedural programming
and object-oriented programming.

2. Discuss the validity of the following statement: The object-oriented pro-
gramming approach is ideal for simulating real-world problems.

3. Consider the following scenarios and outline the objects and their interac-
tions in terms of messages and arguments:

(a) a driver driving a car;
(b) a customer making a cash withdrawal from an automated teller

machine (ATM);
(c) a customer buying a compact disk player from a vendor;
(d) a traffic policeman directing traffic at a junction;
(e) a lecturer delivering his/her lecture to a class of students;
(f) a tutorial discussion between an instructor and students.

2
Object, Class, Message and Method

We had our first introduction to objects, message and method in Chapter 1. Another
concept closely associated with the concept of objects is class. In object-oriented
programming, a class is a definition template for structuring and creating objects.

In this chapter, we will discuss the concept of object, message, method and
class and how these concepts are used in a computer model.

2.1 Objects and Class

In Chapter 1, we introduced Benjamin. Now, meet Bernie, another customer at
HomeCare. As customers of HomeCare, Benjamin and Bernie share some similar
information. For example, both have a name, an address, and a budget—information
that is relevant when describing customers. This information is known as object
attributes.

An object attribute definition allows for objects to have independent attribute
values. For example, Benjamin may have a larger budget and thus a larger budget
value (say $2000) than Bernie whose budget may be $1000. Collectively, the values
of an object’s attributes represent the state of the object.

Besides attributes, Benjamin and Bernie also exhibit some behavior typical of a
customer. For instance, Benjamin and Bernie execute a method when making a
purchase. Let us call this method purchase(). The method purchase() is made up
of a set of operations that Benjamin and Bernie would use to send a purchase request
to a salesperson.

Structurally, Benjamin and Bernie can be represented as follows:

8 Object-Oriented Programming and Java

name, address and budget are attributes while purchase() and getBudget()

are methods of the two objects. Note that both objects share a common definition of
attributes and methods. In fact, all customers of HomeCare share the same set of
attribute and method definitions. They all have attributes name, address and budget,
and methods purchase() and getBudget(). In defining these objects, a common
definition known as class is used.

A class is a definition template for structuring and creating objects with the
same attributes and methods. Benjamin and Bernie, being customers of HomeCare,
can therefore be defined by a class called Customer as follows:

One major difference between objects and class is in the way attributes and

methods are treated in objects and classes. A class is a definition about objects; the
attributes and methods in a class are thus declarations that do not contain values.
However, objects are created instances of a class. Each has its own attributes and
methods. The values of the set of attributes describe the state of the objects.

Let us now examine the salespersons. Salespersons also have attributes and
methods. Sean and Sara are two salespersons at HomeCare. They are thus capable of
a behavior typical of a salesperson, for example, taking orders from customers. To
fulfill their role as salespersons in a purchase transaction, Sean and Sara perform a
method. We shall call this method takeOrder(), and represent Sean and Sara as
follows:

Benjamin as an Object
 Attributes:
 name = Benjamin
 address = 1, Robinson Road
 budget = 2000
 Methods:
 purchase() {send a purchase request to a salesperson}
 getBudget() {return budget}
Bernie as an Object
 Attributes:
 name = Bernie

 budget = 1000
 Methods:
 purchase() {send a purchase request to a salesperson}
 getBudget() {return budget}

Class Customer
 Attributes:
 name
 address
 budget
 Methods:
 purchase() {send a purchase request to a salesperson}
 getBudget() {return budget}

 address = 18, Sophia Road"
""

""
" "

""

"
" "

Object, Class, Message and Method 9

Being salespersons, Sean and Sara share similar attributes and methods as

expected. Like the customers, their definition can be described by a class called
SalesPerson with the following representation:

Note that the definition of the SalesPerson class is different from the Customer

class since customers and salespersons behave differently—customers make orders
and salespersons take orders.

2.2 Message and Method

Objects communicate with one another by sending messages. A message is a method
call from a message-sending object to a message-receiving object. A message-
sending object is a sender while a message-receiving object is a receiver.

Sean as an Object
 Attributes:
 name = Sean
 Methods:
 takeOrder() {
 check with warehouse on stock availability
 check with warehouse on delivery schedule
 if ok
 then {instruct warehouse to deliver stock(address, date)
 return ok}
 else return not ok
 }

Sara as an Object
 Attributes:
 name = Sara
 Methods:
 takeOrder() {
 check with warehouse on stock availability
 check with warehouse on delivery schedule
 if ok
 then {instruct warehouse to deliver stock(address, date)
 return ok}
 else return not ok
 }

Class SalesPerson
 Attributes:
 name
 Methods:
 takeOrder() {
 check with warehouse on stock availability
 check with warehouse on delivery schedule
 if ok
 then {instruct warehouse to deliver stock(address, date)
 return ok}
 else return not ok
 }

""

""

10 Object-Oriented Programming and Java

An object responds to a message by executing one of its methods. Additional

information, known as arguments, may accompany a method call. Such para-
meterization allows for added flexibility in message passing. The set of methods
collectively defines the dynamic behavior of an object. An object may have as many
methods as required.

2.2.1 Message Components

A message is composed of three components:

• an object identifier that indicates the message receiver,
• a method name (corresponding to a method of the receiver), and
• arguments (additional information required for the execution of the method).

Earlier we saw that Benjamin sent a message to Sean when Benjamin wanted to

buy a sofa set. The reasonable location for Benjamin to send the message to Sean is
in Benjamin’s purchase() method as shown below (indicated in bold):

The message Sean.takeOrder(who, stock, address, date) is interpreted as
follows:

• Sean is the receiver of the message;
• takeOrder is a method call on Sean;

2.2.2 Method

A message is valid if the receiver has a method that corresponds to the method
named in the message and the appropriate arguments, if any, are supplied with the
message. Only valid messages are executed by the receiver. The takeOrder()
message is valid because Sean has a corresponding method and the required
arguments (who, stock, address, date) are supplied with the message.

Sean’s takeOrder() method is made up of a set of operations (indicated in
bold below) as follows:

Benjamin as an Object
 Attributes:
 name = Benjamin
 address = 1, Robinson Road
 budget = 2000
 Methods:
 purchase() {

 }
 getBudget() {return budget}

""
" "
" "

• "Benjamin", "stock", "address", "date" are arguments of the message.

 Sean.takeOrder("Benjamin", "sofa", "1, Robinson Road",
 "12 November")

Object, Class, Message and Method 11

In the above description, a message is sent from Sean to a Warehouse object to

inquire on the order and delivery schedule in Sean’s takeOrder() method. If both
conditions are satisfied, Sean will instruct the Warehouse object to arrange for
delivery.

How Sean carries out the method is known only to Sean. Neither Benjamin nor
the other customers know how Sean does it. For example, to check on the stock and
delivery schedule with the warehouse, Sean may have called the warehouse over the
phone or he may have checked the information against a list he had gotten from the
warehouse. What Benjamin knows of Sean is that Sean is capable of responding to
his request since his message to Sean is acceptable by Sean.

In object-oriented programming, Benjamin and Sean are said to have followed
the principle of information hiding—How Sean is going to satisfy Benjamin’s request
is hidden from Benjamin. In this way, Sean is free to select whatever way he chooses
to satisfy Benjamin’s request; he may phone the warehouse or look up the pre-
prepared list and vice versa.

2.2.3 Client and Server

By executing a method, a message-receiving object (such as Sean) is said to serve
the message-sending object (such as Benjamin). A message-receiving object is thus a
server to a message-sending object and the message-sending object is thus a client of
the server.

takeOrder

result

Benjamin Sean

yes/no

available?

send
ok

Figure 2-1: Object communication process.

In any object communication, there are at least a client and a server. The client

sends a message to request a server to perform a task. The task is fulfilled by a

Sean as an Object

 Methods:
 takeOrder(who, stock, address, date) {
 check with warehouse on stock availability
 check with warehouse on delivery schedule
 if ok then {
 instruct warehouse to deliver stock to address on date

 } else return not ok
 }

 Attributes:
 name = Sean " "

 return ok

12 Object-Oriented Programming and Java

message-corresponding method of the server. In sending a message to the ware-
house, Sean is said to be the client and the warehouse is said to be the server.

Benjamin, Sean, and the warehouse are three objects involved in a communi-
cation process. Benjamin is the initiator, with Sean and the warehouse as partners in
the communication process. Figure 2-1 depicts a typical communication process
amongst objects.

2.3 Creating Objects

In object-oriented programming, objects are created from classes. Instances of
Customer objects are created from a Customer class and SalesPerson objects from a
SalesPerson class.

Created object instances are individuals with their own state. To illustrate, let
us consider the example of counters. A counter is a device that keeps account of the
number of times an event has occurred. It has two buttons: an initialize button that
resets the counter to 0, and an add button that adds 1 to its present number. Figure 2-2
shows a counter with a number 10.

initialize add

10

Figure 2-2: A counter.

Structurally, the first counter object can be represented as follows:

Figure 2-3 shows two more counters.

initialize add

2

add

7

initialize

Figure 2-3: Two Additional Counters

Like the first counter, these two counters may be reset to zero and incremented

through the initialize and add buttons respectively, and represented as follows:

First Counter Object
 Attributes:
 number = 10
 Methods:
 add() {number = number + 1}
 initialize() {number = 0}
 getNumber() {return number}

Object, Class, Message and Method 13

All the three counters share the same definition of attributes and methods, and

like in the previous examples, they can be defined by a class as follows:

The Counter class has:

• an attribute, number;
• an initialize() method that causes a counter to reset its number to 0.
• an add() method that causes a counter to add 1 to its number; and
• a getNumber() method that returns the current value of the attribute

number.

Suppose a new object is created from the Counter class. Although the new

Counter object would have the same definition of attributes and methods as the
previous three counters, its attribute value may not be the same as the other counters.
This suggests that the state of the counters may be different from one another.

For the newly created fourth Counter object, it has a state represented by the

attribute number with a value of 0, the value at initialization:

Second Counter Object
 Attributes:
 number = 2
 Methods:
 add() {number = number + 1}
 initialize() {number = 0}
 getNumber() {return number}

Third Counter Object
 Attributes:
 number = 7
 Methods:
 add() {number = number + 1}
 initialize() {number = 0}
 getNumber() {return number}

Class Counter
 Attributes:
 number
 Methods:
 add() {number = number + 1}
 initialize() {number = 0}
 getNumber() {return number}

Fourth Counter Object
 Attributes:
 number = 0
 Methods:
 add() {number = number + 1}
 initialize() {number = 0}
 getNumber() {return number}

14 Object-Oriented Programming and Java

Note that the attribute value of the fourth Counter object is different from the

other three counters.

2.4 Summary

In this chapter, we discussed:

• Objects are defined by classes.
• Objects from the same class share the same definition of attributes and

methods.
• Objects from the same class may not have the same attribute values.
• Objects from different classes do not share the same definition of attributes

or methods.
• Objects created from the same class share the same definition of attributes

and methods but their state may differ.
• A method is a set of operations executed by an object upon the receipt of a

message.
• A message has three components: an object identifier, a method name and

arguments.
• A message-receiving object is a server to a message-sending object known

as a client.

2.5 Exercises

1. Distinguish the terms “Object” and “Class”.
2. Consider the scenario of buying flowers from a florist. Outline the

objects in such a transaction together with the messages exchanged.
3. Given a class definition Rectangle below, describe the structure of

any 3 instances of Rectangle.

4. How would you implement the concept of class and method in a

non-object-oriented programming language such as COBOL,
Pascal or C?

5. Define using the following structure a class definition for cars. A
car generally has abilities to start, move forward, move backward,

class Rectangle {
Attributes:
 length
 width
Methods:
 getLength() { return length }
 getWidth() { return width }
 draw() { ... }

 }

Object, Class, Message and Method 15

stop and off. A car can also return to its relative location. The
starting location is a value 0.

6. Distinguish between a client and a server.
7. A client communicates with a server by sending a ___________ to

the server. The ___________ is a call on a ___________ of the
server.

class Car {
Attributes:
 ...
Methods:
 ...

}

3
A Quick Tour of Java

Earlier, we introduced key object-oriented concepts such as objects, methods and
classes and how these may be ultimately used in a computer model. In this chapter,
we see how the Java programming language is used to construct our object model of
the problem domain. This approach is advantageous in that it allows our model to
operate or “come alive” under computer control.

3.1 Primitive Types

The Java programming language allows the creation of objects that will ultimately
participate in message communication. We have seen that objects may have diverse
behavior and that it is more convenient to specify objects via classification, that is,
class constructs.

Before examining class definitions for user-specified objects, we should be
mindful that Java also provides primitive values from which other (bigger) objects
may be described in terms of and constructed from. For example, a complex number
may be seen as being comprised of two numbers representing the real and imaginary
parts.

The primitive types byte, short, int and long defined in the Java language
allow for the representation of discrete integer values of widths 8, 16, 32, and 64
bits, respectively. These in turn correspond to the representation of numeric

The primitive types float and double allow for the representation of single
and double precision floating-point real values with representational widths of 32
and 64 bits, respectively. The adopted IEEE 754 standard includes both positive and
negative sign-magnitude numbers, both positive and negative zeros and infinities,
and unique not-a-number representations.

ranges –128 to 127, –32768 to 32767, –2147483648 to 2147483647, and
–9223372036854775808 to 9223372036854775807, respectively.

18 Object-Oriented Programming and Java

Values of type float are of the form s·m·2e, where s is either +1 or –1, m is a

positive integer less than 224, and e is an integer between –149 and 104. Similarly,
values of type double have the similar form s·m·2e, but m is a positive integer less
than 253, and e is an integer between –1075 and 970.

Finally, the primitive types char and boolean allow for 16-bit multi-byte
characters and false/true boolean values, respectively.

3.2 Object Definition

Building upon the primitive values supported by the language proper, other entities
to be manipulated are user-designed objects which are defined via class constructs. A
class construct in Java consists of the class keyword followed by the class name
and braces { } which delimit the declaration of attributes and methods for its in-
stances. The Counter class introduced in Chapter 2 would have the following form
in Java:

Object attributes are, in turn, either nested component objects or primitive types

used to represent the object. An instance method manipulates the object by altering
its attribute values. The number attribute and add() method in the Counter class
below are representative of an object’s state and operation, respectively:

The number attribute is also known as an instance variable because it occurs in

every object or instance of the Counter class. This further implies that an attribute in
one instance is independent from that in another instance. In the same vein, a method
manipulates object attributes in the same instance. This occurs when a method is
invoked and the corresponding code in its body is executed. In our recent example,
invoking the add() method of an object will increment the corresponding number
attribute.

3.2.1 Variable Definitions

Variable definitions in Java take the form below, where the type name T precedes the
variable name v:

T v;

class Counter {
 attribute and method declarations
}

class Counter {
 int number;
 void add() {
 number = number +1;
 }
}

A Quick Tour of Java 19

Typing in a programming language allows the values for a variable to be

anticipated. As such, appropriate storage may be set aside for these values.
There is another subtle advantage of typing in programming languages: the val-

ues associated with the variable also imply what operations are valid and applicable.
For example, multiplication and division applies to numeric values but not to charac-
ter values. Thus, the language compiler may flag multiplication and division of char-
acter values as erroneous.

All variables in Java are typed, allowing the compiler to verify during compila-
tion that operations on the object associated with the variable are legitimate.

3.2.2 Methods

A method definition that occurs in a class construct is made up of two distinct por-
tions: the method signature header and its implementation code body surrounded by
the braces { ... }.

The method signature portion, such as void add() in the Counter example, has
the generic form below, where m is the method name, T its return type, with Rn and
pn being parameter types and names, respectively (n being the number of parame-
ters):

T m(R1 p1, R2 p2, ... Rn pn)

We have seen that a method named m() is invoked to correspond to a message
m sent to the object. Consequently, the object may return a result to the message
sender. The type of this value is denoted by T. If no result needs be returned, the
keyword void is used instead.

The formal parameters p1, p2…pn contain the additional values sent together
with the message. They have corresponding types R1, R2…Rn, and are used by the
compiler to verify that the correct parameters are supplied for each method invoca-
tion. Any number of formal parameters may be specified, but the number of actual
parameters in a message must match those originally specified in the method signa-
ture.

The implementation of a method consists of a block of statements surrounded
by { }. Often, such methods would modify the object’s attributes. In the case of the
add() method of our Counter example, it increments the variable number. A block
consists of declarations of any local variable, expressions and control-flow con-
structs. These will be discussed in detail in following sections.

 class Counter {
 int number;
 void add() {
 number = number+1;
 }

In the slightly expanded version of the Counter class below, an extra initialize()
method has been added to re-initialize the Counter value so that counting can be
easily restarted. This allows instances to respond to the additional initialize message.

20 Object-Oriented Programming and Java

If the number of times a counter is restarted is significant, we can introduce
another attribute reused to maintain this information. Correspondingly, this attribute
is incremented in the block of the initialize() method:

The previous example of the class Counter definition shows that an object may

have as many attributes and methods as required to effectively model the object. In
the most recent definition, objects of the class Counter have two attributes (number
and reused, both with an initial value of 0 when created) and two methods (add()
and initialize()).

3.3 Object Instantiation

except by calling the object allocator function new(). The expression new Counter()
returns a newly created instance of the Counter class. However, in order that this
new object may be referred to, it is assigned to an appropriate variable. Assuming the
variable carpark in the fragment below, a new Counter object may be created via
new Counter(), and then assigned to the former:

Counter carpark;
...
carpark = new Counter();

Henceforth, the newly created object may be referred to via the variable

carpark. Where more Counter objects are needed, the object allocator function
new() may be repeatedly invoked, and the resultant objects assigned to other vari-
ables such as entrance and exitDoor:

Counter entrance, exitDoor;
...
entrance = new Counter();
exitDoor = new Counter();

class Counter {
 int number = 0;
 int reused = 0;
 void add(){
 number = number+1;
 }
 void initialize(){
 number = 0;
 reused = reused+1;
 }
}

 void initialize() {
 number = 0;
 }
}

template for objects to be created. However, no instances of the class is crested,
A class construct provides a description for objects of that class, and serves as a

A Quick Tour of Java 21

3.4 Object Access and Message Passing

Since the attributes and methods of an object are considered its characteristics, these
are accessed via the qualification operator “.” with respect to an object proper. Thus,
the counts of the various Counters carpark, entrance and exitDoor are
carpark.number, entrance.number and exitDoor.number, respectively. The
total number from these counters is:

carpark.number + entrance.number + exitDoor.number

Similarly, the initialize() method of Counters carpark, entrance and

exitDoor may be invoked via:

carpark.initialize();
entrance.initialize();
exitDoor.initialize();

3.5 Representational Independence

While accessing object attributes directly is permissible, it is not ideal because it
couples implementation code to the current object representation. As such, any
changes in object representation propagates to dependent code, resulting in high
software maintenance cost.

A common object-oriented programming practice is information hiding—to
make object representations inaccessible to clients so that modifications in (server)
object representations do not propagate excessively. This decoupling of dependen-
cies reduces software maintenance cost.

Limiting access to object representations in Java is mainly achieved by the two
main constraint specifiers private and public. The former limits access of the
following entity to within the class construct, while the latter makes it accessible to
any client code.

Since constraint specifiers in the above class definition hides the internal repre-

sentation of Counter objects, the resultant attributes are no longer accessible, and
useless for interrogation. In this case, accessor methods getNumber() and
getReused() are required, as outlined in the following code fragment. They provide

class Counter {
 private int number = 0;
 private int reused = 0;
 public void add() {
 number = number+1;
 }
 public void initialize() {
 number = 0;
 reused = reused+1;
 }
}

22 Object-Oriented Programming and Java

access to internal details, but without dependency overheads. Representation inde-
pendence is maintained by confining access to private attributes to within the class
construct. This topic is further discussed in Chapter 8.

3.6 Overloading

Attribute names of a class may be the same as those in another class since they are
accessed independently. An attribute x in a class does not necessarily have any se-
mantic bearing with another as they have different scopes, and does not preclude
using the same attribute there.

Within a Java class construct, methods may share the same name as long as
they may be distinguished either by:

• the number of parameters, or
• different parameter types.

This criterion requires a message with associated parameters to be uniquely

matched with the intended method definition.
If we had wanted a Counter to be incremented other than by 1, we could define

another add() method that takes an integer parameter instead:

class Counter {
 private int number = 0;
 private int reused = 0;
 public void add() {
 number = number+1;
 }
 public void initialize() {
 number = 0;
 reused = reused+1;
 }
 public int getNumber() { return number; }
 public int getReused() { return reused; }
}

class Counter {
 private int number = 0;
 private int reused = 0;
 public void add() {
 number = number+1;
 }
 public void add(int x) {
 number = number+x;
 }
 public void initialize() {
 number = 0;
 reused = reused+1;
 }
 public int getNumber() { return number; }
 public int getReused() { return reused; }
}

A Quick Tour of Java 23

If carpark had been assigned an instance of Counter, carpark.add() would

invoke the first method to increment by 1, while carpark.add(2) would invoke the
new one just defined.

3.7 Initialization and Constructors

Currently, object creation and initialization are seen as distinct operations. The
abstraction in object-oriented programming languages often allows these two opera-
tions to be combined implicitly. As such, constructors may be seen as unique
methods invoked implicitly when an object instance is created. Implicit initialization
relieves the programmer from performing this important function, but more impor-
tantly prevents uninitialized objects as a result of absent-minded programmers. Care-
fully designed constructors allow for object invariants to be maintained regardless of
how they were created.

Apart from having the same name as the class, and not having a return result
type, a constructor is not different from a method. It has similar syntax for its
parameters and implementation body.

In place of attribute initialization, our next Counter example uses a constructor
method. This offers additional functionality compared with the former approach.

While this change is not significant in our trivial example, constructors allow

more flexibility such as the execution of arbitrary expressions and statements when
compared with static attribute initializers. As with methods, constructors may also be
overloaded. This provides for varied ways for objects to be created and initialized.

The additional new overloaded constructors in the new class definition below
allows for various initial values for number and reused other than just 0:

class Counter {
 private int number, reused;
 public void add() {
 number = number+1;
 }
 public void initialize() {
 number = 0;
 reused = reused+1;
 }
 public int getNumber() { return number; }
 public int getReused() { return reused; }
 Counter() { number = 0; reused = 0; }
}

class Counter {
 private int number, reused;
 public void add() {
 number = number+1;
 }
 public void initialize() {
 number = 0;
 reused = reused+1;
 }

24 Object-Oriented Programming and Java

3.8 Expressions, Statements, and Control-flow Mechanisms

We saw earlier that a method definition consists of the method signature and its
implementation body. As an object responds to messages by executing code in the
method body to affect changes in its state, assignment is a very common operation.

v = E;

Assignment consists of a left-hand variable that will contains or “holds” the

value specified via the right-hand expression. It may be a literal value such as 3, a
variable that holds the intended value such as number, or an operator with appropri-
ate operands, such as x+4, or even r.f or y*p(5). In the same way that + is an opera-
tor, . and () are also operators. The last expression involves nested expressions: the
result of p(5) is used in multiplication.

3.8.1 Operators

We first examine the operators in Java.

 (a) Arithmetic Operators

The arithmetic operators in Java include the common addition “+”, subtraction

“-”, multiplication “*” and division “/” operations.

int a = 13;
int v = 7;

a+v // returns result 20
a-v // returns result 6
a*v // returns result 91
a/v // returns result 1

These operators apply to numeric operands, and return the type of operands.

When operands are mixed, the widest is used to prevent unexpected truncation.

float b = 13;
int w = 7;

b+w // returns result 20.0
b-w // returns result 6.0

 public int getNumber() { return number; }
 public int getReused() { return reused; }
 Counter() { number = 0; reused = 0; }
 Counter(int x) { number = x; reused = 0; }
 Counter(int x, int y) { number = x; reused = y; }
 Counter(float z) { number = (int) z; reused = 0; }
}

A Quick Tour of Java 25

b*w // returns result 91.0
b/w // returns result 1.8571428

The “%” operator returns the remainder of integer division.

int a = 13;
int v = 3;

a/v // returns result 4
a%v // returns result 1

When used as a unary operator, “-” negates the numeric operand.

int a = 13;

-a // returns result -13

 (b) Logical Operators

The logical operators in Java include the standard and “&&”, or “||” and not

“!”. Each operator returns a boolean result:

&& returns true if both operands are true.

x y x && y

false false false
false true false
true false false
true true true

|| returns true if at least one operand is true.

x y x || y

false false false
false true true
true false true
true true true

! returns true if the single operand is false.

x ! x
false true
true false

26 Object-Oriented Programming and Java

 (c) Relational Operators

The equality “==” and inequality “!=” operators in Java operate on all values

and objects to return a boolean result.

The following relational operators in Java operate on numeric values.

< less than
> greater than
<= less than or equal
>= greater than or equal

 (d) Bitwise Operators

The following bitwise operators in Java operate on corresponding bits of byte,

short, int and long values.

& bitwise “and”
^ bitwise exclusive “or”
| bitwise inclusive “or”
~ bitwise one’s complement

int h = 4;
int j = 4;
int k = 6;
Counter m = new Counter();
Counter n = new Counter();

h == j // returns true, h and j have the same value
h == k // returns false
k == k // returns true

m == n // false, m and n are different objects even if they have the
 // same constituents
n == n // true

int h = 4;
int j = 4;
int k = 6;

h < k // returns true
h < j // returns false
h <= j // returns true

>> << right and left bitwise shift
>>> right bitwise unsigned shift

A Quick Tour of Java 27

 (e) Assignment

Having seen the basic means of providing new values to variables, assignment

“=” is more correctly viewed as an operator rather than a statement. In addition to
assigning the right-side value to the left-side variable, it also returns the value
assigned. As such, the assignment expression may appear in the context of an enclos-
ing expression. (In the example below, the result of the assignment operator to vari-
able a is not used.)

int a, b;

a = b = 2;

int a, b;

a = (b = 2);

The code fragments above assign 2 to b and the result of 2 is assigned to a. This

is because unlike the common arithmetic operators which associates from left-to-
right, the assignment operator associates from right-to-left. This is highlighted in the
next section on operator precedence.

In general, an assignment operator results in a side-effect since it changes the
value of the variable being assigned. Other related assignment operators have the
special form “op=”, where op is a typical operator.

x op= f; x = x op f;

implies

has the same meaning as

int a = 15; // binary 000001111
int v = 34; // binary 000100010

a & v // returns result 2 000000010
a ^ v // returns result 45 000101101
a | v // returns result 47 000101111
~a // returns result -16
 // 11111111111111111111111111110000

v >> 3 // returns result 4 000000100
v << 3 // returns result 272 100010000

~a >> 3 // returns -2
 // 11111111111111111111111111111110
~a >>> 3 // returns 536870910
 // 01111111111111111111111111111110

28 Object-Oriented Programming and Java

In the above equivalent form, op may be operators such as +, -, *, /, %, >>, <<,

&, ̂or |. Thus +=, -=, *=, /=, %=, >>=, <<=, &=, ^=, and |= are also valid assign-
ment operators.1

The other two operators related to assignment are auto-increment “++” and
auto-decrement “––”. Since they are used in either postfix and prefix forms, four
scenarios are as illustrated in the code fragments below.

The postfix form (such as f++) returns the result before the incre-
ment/decrement operation, whereas the prefix form (such as ++f) returns the results
after the increment/decrement operation. In the code fragments below, f is either
incremented or decremented. However, g is either assigned a “pre” or a “post” value
depending on whether the prefix or postfix forms are used, respctively.

int f, g;

f = 6;
g = f++;
// g has 6
// f has 7

int f, g;

f = 6;
g = ++f;
// g has 7
// f has 7

int f, g;

f = 6;
g = f--;
// g has 6
// f has 5

int f, g;

f = 6;
g = --f;
// g has 5
// f has 5

 (f) Conditional Expression

The conditional expression operator ? : returns one of two values depending

on the boolean condition. For example, the expression A?B:C returns the value of B
if A is true, else the value of C is returned.

 (g) Typecast

The typecast operator (type)E performs 2 basic functions at run-time depend-

ing on the source expression E. For a numeric type (such as int, float, or double),
it converts the value to another of the specified type.

1 There is a subtle difference between x[i++] += 4 and x[i++] = x[i++] + 4, in that i++
is evaluated once in the former but twice in the latter.

A Quick Tour of Java 29

int k = 5;
double d = 4.16;

k = (int) d*k;

The resultant expression of d*k is double value, and the typecast operation

converts it to an integer. For variable, the operator confirms that the object refer-
enced is compatible with the specified class.

 (h) Precedence and Associativity

Since most operators have operands that can be (nested) expressions, operator
precedence and associativity rules are necessary to define the evaluation order. For
example in evaluating “a+b*c”, “b*c” is evaluated before its result is added to a
because multiplication “*” has higher precedence than addition “+”.

The operators at the top of the table have higher precedence than those at the
bottom. It is as though precedence pulls operands, so that operators with a higher
precedence are evaluated before those with lower precedence. All binary operations
are left-associative, except assignment operators which associate right-to-left.

Table 3-1: Operator precedence.

Operator

[] . (params) E++ E--
unary operators: -E !E ~E ++E --E
new (type)E
* / %
+ -
>> << >>>
< > <= >=
== !=
&
^
|
&&
||
? :
= += -= *= /= %= >>= <<= &= ^= |=

Object x = new Counter();
Counter c;

c = x; // illegal since not all Objects are Counters
c = (Counter) x; // legitimate because x is at run-time
 // verified to reference a Counter

Table 3.1 summarizes the operators discussed so far.

30 Object-Oriented Programming and Java

Precedence allows the expression “a>>b+c” to be unambiguously interpreted as

“a>>(b+c)”, and not “(a>>b)+c”. Similarly, “!m&&n” is interpreted as “(!m)&&n”
and not “!(m&&n)”.

Associativity rules come into effect when equal precedence levels do not help
in resolving evaluation order. Due to associativity rules (which is left-to-right for “/”
and “*”, that is, evaluating the left operator and then right), “a/b*c” is interpreted as
“(a/b)*c” and not “a/(b*c)”.

Similarly, due to right-to-left associativity, “~y++” is interpreted as “~(y++)”
instead of “(~y)++”.

3.8.2 Expression Statements

The simplest and most common statements in Java are expression statements, which
consist of an assignment expression, method invocation or instance creation followed
by a semicolon. The following are expression statements:

3.8.3 Control-flow Statements

Apart from the simple statements, there are control-flow statements that affect the
execution order of statements. These statements are commonly grouped under condi-
tional and iterative statements.

(a) Conditional Statements

Conditional statements allow for conditions to be attached to a statement as to

whether it will be executed. The most basic form is the if statement. In the code
fragment below, the statement S is executed only if the boolean condition E evalu-
ates to true:

A slight variation is the if-else statement which allows for an either-or

choice. If the boolean condition E evaluates to is true and S is executed, then R
would not. If S is not executed, then R would be:

int a, b;
T c;

a = 1; // assignment expressions
a++;
c = new T();

new T(); // instance creation

c.m(); // method invocation

if (E)
 S;

A Quick Tour of Java 31

Apart from one-way and two-way branches in flow-control, the switch state-

ment allows for multi-way selection:

Generally, the switch statement allows for the execution of a choice of state-

ments depending on the expression E: S1 when E evaluates to the constant c1, S2
when c2, …, etc., the mappings given by each switch limb. The break statement
causes flow-control to leave the switch statement immediately.

In the case of the execution of statement S3 when E evaluates to c3, the absence
of a break statement causes execution to continue to S4 instead. The default limb
is used when the evaluated value of E does not match any constant values in the
limbs.

 (b) Iterative Statements

Iterative statements allow for constituent statements to be executed repeatedly.

In the most basic way, the body of the while-statement below is repeatedly executed
when the boolean condition E is true. The loop terminates when E is false, after
which execution proceeds to the next statement:

The while-statement is known as a pretest loop since the constituent S is only

executed if the condition E evaluates to is true. Thus, if E was false in the first
instance, the statement S is never executed.

On the other hand, the do-while statement is a posttest loop. R is first executed
and subsequently while the boolean expression F evaluates to true, R is executed
again. Again, the loop terminates when F evaluates to false. Thus, this control flow
construct will execute R at least once.

if (E)
 S;
else
 R;

switch (E) {
 c1: S1;
 break;
 c2: S2;
 break;
 c3: S3;
 c4: S4;
 break;
 default: Sd;
}

while (E)
 S;

do {
 R;
} while (F);

32 Object-Oriented Programming and Java

3.9 Blocks

A block, indicated by { }, may occur at any location where a statement is valid. It is
considered the sequential construct as the group of statements it surrounds is treated
as a single statement or processing unit.

Thus, while the various control-flow constructs merely show a single statement
as the constituent body, a block may be used where such constructs should contain
more than one statement. For example, factorial may be computed by the following
while-statement:

Blocks allow for control-flow constructs to be nested within bigger constructs.

In the code fragment below, the nested if-else statement allows for the number of
even numbers and sum of odd numbers in the range to be computed.

3.9.1 Local Declarations

In treating a statement sequence as a single statement, a block may also be thought of
as a sub-machine which fulfills a specific task. As such, the scope of local variable
declarations is the rest of the block in which the declaration occurs. This allows
declarations and associated references to be localized, thereby aiding maintainability.

f = 1;
while (k > 1) {
 f = f*k;
 k--;
}

even = 0; sumOfOdd = 0;
f = 1;
while (k > 1) {
 f = f*k;
 if (k % 2 == 0)
 even++;
 else
 sumOfOdd = sumOfOdd + k;
 k--;
}

while (k > 1) {
 f = f*k;
 if (k % 2 == 0) {
 double d = 4.5;

 even++;
 } else {
 long d = 23546;
 ...
 sumOfOdd = sumOfOdd + k;
 }
 k--;
}

A Quick Tour of Java 33

The code fragment above is legitimate because both local declarations of d

have been confined to their respective nested blocks – d is a double in the first block,
while d is a long in the second.

With instance variables, a local declaration has the same form below, where T
is the declared type of variable v.

T v;

For notational convenience, declarations may have two variations:

• a list of variables with the same type separated by commas; and
• an initial value may be provided via an expression following an

assignment operator

T v, w = n(), z;

3.10 More Control-flow Statements

Three other control-flow statements are commonly used: for-statement, break and
continue. The for-statement is often used as a counter-controlled loop to iterate
through a loop a fixed number of times, even though it does not have explicit
mechanisms for counter control. For example, the earlier factorial example could be
re-coded as follows:

The generic form of the for-statement

is often easier thought of as a transformed while-statement, where Q, T, and S are
the initializer, conditional and re-initializer expressions:

The break-statement was encountered when the switch-statement was dis-

cussed. Its more generic function is to transfer control out of the innermost switch,
while, do or for-statement. This is why using the break-statement ensures that only
the statements associated with the case-limb are executed.

for (f = 1; k > 1; k--)
 f = f*k;

for (Q; R; S)
 T;

Q;
while (R) {
 T;
 S;
}

34 Object-Oriented Programming and Java

For the situation with the while, do or for-statements, the break-statement

allows for a quick exit from the iteration. In many situations, its use can result in a
simpler program structure. For example, the following two code fragments have
similar effects.

Finally, the continue-statement transfers control to the beginning of the inner-

most iterative loop so as to reevaluate the boolean condition for the next iteration.
Unlike, the break-statement, control-flow does not exit from the loop. As such, the
following two code fragments have similar effects.

While the differences between program structures in the above examples may

seem mild for the break and continue statements to be useful, it is more pro-
nounced for program structures that are deeply nested.

3.11 Arrays

Just as objects are created dynamically (i.e., it happens at run-time during program
execution), arrays in Java are similarly created. The size of an array need not be
specified or computed during compilation.

An array is thus declared using the subscript operator, but without indication of
the upper bound:

Counter gates[];

An array is created via the new operator, but with the array size within square

brackets:

finished = false;
while (E && !finished) {
 S;
 if (F) {
 U;
 finished = true;
 }
 if (!finished)
 T;
}

while (E) {
 S;
 if (F) {
 U;
 break;
 }
 T;
}

while (E) {
 S;
 if (F) {
 U;
 continue;
 }
 T;
}

skip = false;
while (E) {
 S;
 if (F) {
 U;
 skip = true;
 }
 if (!skip)
 T;
 else
 skip = false;
}

A Quick Tour of Java 35

gates = new Counter[8];

The array size associated with gates is 8, but this does not imply eight Counter

objects. Instead, it is important to understand a Counter array as being similar with
multiple variables, that is, it is an object that does not further contain Counter objects
but merely references eight potential Counter objects.

Thus, individual array elements must be created explicitly:

3.12 Result Returned by Method

Now that we have examined the statement constructs in Java, we return to see how a
method may return a result to its sender. A method in a class definition has the fol-
lowing general form, with the return-statement returning control-flow back to the
message sender:

The value returned v, must be of the type T as indicated in the method signa-

ture. If the sender does not require any results, the keyword void should be used as
the return type. In this case, the returning expression v would be omitted in the
return statement. The return-statement need not be the last statement in the block
as implied in the previous example. In a non-trivial structure, multiple return-
statements might be used as in the next example, but the programmer must evaluate
if the situation improves program structure and readability.

Counter gates[];
gates = new Counter[8];
for (int i=0; i<8; i++);
 gates[i] = new Counter();

T foo(gT g, hT h ...)
{
 // local definitions

 // statements

 return v;
}

T foo(gT g, hT h ...)
{
 for (E; F; G)
 if (H)
 return v;
 else if (J) {
 b;
 return w;
 }
 return x;
}

36 Object-Oriented Programming and Java

3.13 Summary

In this chapter, we discussed:

• Primitive types in Java.
• class constructs.
• Definition of instance variables and methods.
• Object instantiation.
• Message passing and expressions.
• Statements and control-flow mechanisms.

Generally, these constructs are representative of what Java offers. The class

construct is key in Java because it allows for objects to be defined to model the prob-
lem domain. Below that, variables and methods are defined, which correspond to
data and code. Code abstraction result in hierarchical statement blocks (with optional
local variables) and control flow mechanisms. Figure 3-1 illustrates this hierarchy.

Java application

primitive values objects

class definitions

consists of

defined by

instance variables instance methods

consists of

local variables statements

assignment control flowmessage
passing

Figure 3-1: Hierarchical relationships of Java constructs.

3.14 Exercises

1. Which of the following are valid variable names in Java?

_object
object–oriented

A Quick Tour of Java 37

object_oriented
object.oriented
$java
java
integer
string
Int
933
fm90.5
1fm

2. Define a Square class with the length of its side as an instance vari-

able. Include an appropriate constructor method and methods to
enlarge an instance as well as compute its area.

3. Using the Square class in Question 2, create ten randomly sized
squares and find the sum of their areas. (The method Math.random()
returns a random number between 0.0 and 1.0 each time it is invoked.)

4. Add the functionality for a Square object to draw itself via ASCII
characters. For example, a Square of length 4 can be drawn as:

or:

5. Find a number with nine digits d1d2d3,…, d9 such that the sub-string
number d1, …, dn is divisible by n, 1<=n<=9. Note that each of the
digits may be used once.

The System.out.print() and System.out.println() methods
may be useful.

XXXX
X++X
X++X
XXXX

* *
* *

4
Implementation in Java

In Chapter 3, we demonstrated how object-oriented concepts can be implemented via
notations in the Java programming language. For validation purposes, these concepts
allow objects in our system to be operational. We now proceed to see how they are
practically applied to example problems as typical programs.

4.1 Calculator

We first consider how a simple calculator with the basic four arithmetic functions, as
illustrated in Figure 4-1, may be implemented. Most generic machines allow adding
11 to 13 to be accomplished via the buttons 1 3 + 1 1 = .

C 0 =

7 8 9

4 5 6

1 2 3

/

*

–

+

34

Figure 4-1: Four-function calculator.

40 Object-Oriented Programming and Java

For a simple implementation, we will initially not concern ourselves with the

nonessentials of external looks (e.g., keypad layout or casing specifics as in real
calculators), but instead concentrate on the core calculating engine. Enhancements
involving mechanisms for the user interface may be subsequently considered. This is
consistent with the software engineering principle of abstraction.

Conceptually, the core calculator engine may be viewed as being comprised of
registers to hold values, together with built-in operators such as addition and subtrac-
tion to manipulate such values. Having operations involving two operands, the calcu-
lator needs at least two registers.

Four arithmetic operations imply at least four operators. A compute operator is
required to get its execution started, together with a clear operator to prepare the
registers for new computations. These correspond to the equal and clear keys on a
calculator. Lastly, the digits form the basic input mechanism for numeric operands.
We would assume that the display operator will retrieve a value for display on the
calculator panel.

Object initialization may be easily accomplished via constructor methods. In
this case, a CalculatorEngine object is initialized via invoking the clear operator.
The resultant Java code skeleton for CalculatorEngine objects with this basic rep-
resentation is shown in Listing 4-1. Note that all operators easily correspond to
instance methods, as well as to buttons on the face on a conventional calculator.
Code represented by ellipses will be elaborated in due course.

 Listing 4-1: CalculatorEngine skeleton.

4.1.1 The clear() Method

The clear() method initializes the CalculatorEngine object to the state for a calcu-
lator to begin the key sequence for next calculation. It is thus intuitive to set the
variables value and keep to 0.

class CalculatorEngine {
 int value;
 int keep; // two calculator registers
 void add() { ... }
 void subtract() { ... }
 void multiply() { ... }
 void divide() { ... }
 void compute() { ... }
 void clear() { ... }
 void digit(int x) { ... }
 int display() { ... }
 CalculatorEngine() { clear(); }
}

void clear() {
 value = 0;
 keep = 0;
}

Implementation in Java 41

4.1.2 The display() Method

To implement the display() method to provide computation results, we must first
clarify the purposes of the instance variables value and keep. The former is updated
as a result of new inputs from numeric keys or the result of an operator, and thus is
used to update the display area.

As expressions are keyed in using an infix notation (e.g., 1 3 + 1 1 =),
the first operand must be stashed away before it is overwritten by the entry of the
second operand. The keep instance variable serves this purpose.

int display() {
 return(value);
}

4.1.3 The digit() Method

The digit() method accumulates digits keyed in via the numeric keypad. A new
digit shifts existing digits in the value instance variable one place to the left. This
manipulation is accomplished by multiplication by 10 and followed by addition of
the last digit.

While this method stands out amongst the other methods as it expects an inte-

ger parameter to indicate which numeric key was pushed, it can be circumvented by
using wrapper methods such as zero(), one(), two(), three(), ...nine().

4.1.4 Operator Methods

The infix mode of the add, subtract, multiply and divide operators requires that the
specified operation be stashed away to be applied after input of the second operand.
For this purpose, we define another instance variable toDo which records the action
to be associated with the next compute operation.

void digit(int x) {
 value = value*10 + x;
}

void one() {
 digit(1);
}

void two() {
 digit(2);
}
...

char toDo;
void add() {
 keep = value; // keep first operand
 value = 0; // initialise and get ready for second operand
 toDo = ’+’; // this is what we should do later
}

42 Object-Oriented Programming and Java

Since all the binary operations have the same form, it is again natural to adopt

abstraction techniques to relocate common code in a binaryOperation() method:

Lastly, we conclude with the compute operation which provides the answer to

applying the operator in toDo on the operands value and keep.

4.2 Code Execution

In the previous chapter, we learned that the new operator creates an object instance of
the class that it is applied to. Thus,

CalculatorEngine c = new CalculatorEngine();

creates an instance and associates it with the variable c. Subsequently, the code
sequence

c.digit(1);
c.digit(3);
c.add();
c.digit(1);
c.digit(1);
c.compute();

void subtract() {
 keep = value; // keep first operand
 value = 0; // initialise and get ready for second operand
 toDo = ’-’; // this is what we should do later
}

void binaryOperation(char op) {
 keep = value; // keep first operand
 value = 0; // initialize and get ready for second operand
 toDo = op;
}

void compute(){

 value = keep + value;

 value = keep - value;

 value = keep * value;

 value = keep / value;
 keep = 0;
}

void add() { binaryOperation('+'); }
void subtract() { binaryOperation('-'); }
void multiply() { binaryOperation('*'); }
void divide() { binaryOperation('/'); }

 if (toDo == '+')

 else if (toDo == '-')

 else if (toDo == '*')

 else if (toDo == '/')

Implementation in Java 43

computes the value of the expression 13 + 11. For verification purposes, the Java
API (Application Program Interface) method System.out.println() may be used
to produce output on the screen:

System.out.println(c.display());

There is, however, a slight snag: the CalculatorEngine object instance is the

only object in existence, yet which object would send it messages to compute
expressions? Or even more fundamental, at the very commencement of program
execution when no objects existed, how was the first object created?

Java solves this issue through the introduction of class methods, which are
invoked with respect to the class they are associated with rather than object instan-
ces. More specifically, the body of the static method named main() is the first code
sequence to be executed. As such, the previous code sequence must be brought into
main() and rearranged as follows:

The various code fragments may be brought together within a class construct in

the file CalculatorEngine.java as shown in Listing 4-2.

public static void main(String arg[]) {
 CalculatorEngine c = new CalculatorEngine();
 c.digit(1);
 c.digit(3);
 c.add();
 c.digit(1);
 c.digit(1);
 c.compute();
 System.out.println(c.display());
}

class CalculatorEngine {
 int value;
 int keep; // two calculator registers
 char toDo;

 void binaryOperation(char op) {
 keep = value; // keep first operand
 value = 0; // initialize and get ready for second operand
 toDo = op;
 }

 void compute() {

 value = keep + value;

 value = keep - value;

 value = keep * value;

 value = keep / value;
 keep = 0;
 }

 void add() { binaryOperation('+'); }
 void subtract() { binaryOperation('-'); }
 void multiply() { binaryOperation('*'); }
 void divide() { binaryOperation('/'); }

 if (toDo == '+')

 else if (toDo == '-')

 else if (toDo == '*')

 else if (toDo == '/')

44 Object-Oriented Programming and Java

 Listing 4-2: CalculatorEngine class.

With the Java Development Kit (JDK) appropriately installed, it may be com-

piled via:

$ javac CalculatorEngine.java

where CalculatorEngine.java is the name of the file containing the Java source
and $ is the system’s command line prompt. Similarly, execution of the resultant
Java byte code may proceed via:

$ java CalculatorEngine

4.3 Simple User Interface

CalculatorEngine object instance, it is an absolutely clumsy situation. Each
evaluation of a new arithmetic expression requires editing code and recompilation.
Ideally, we should be compiling the source once, but inputting different expressions
for evaluation.

It is common to have an user interface object to work cooperatively with the
CalculatorEngine. This separation of concerns allow for the CalculatorEngine to

 value = value*10 + x;
 }

 int display() {
 return(value);
 }

 CalculatorEngine() { clear(); }

 public static void main(String arg[]) {
 CalculatorEngine c = new CalculatorEngine();
 c.digit(1);
 c.digit(3);
 c.add();
 c.digit(1);
 c.digit(1);
 c.compute();
 System.out.println(c.display());
 }
}

 void clear() {
 value = 0;
 keep = 0;
 }

 void digit(int x) {

While the code in static void main() does execute to show the behavior of a

Implementation in Java 45

be independent of interface issues. We will initially consider a line-mode user inter-
face and subsequently enhance it for a windowing environment.

To this end, a CalculatorInterface object fulfills this role. It has the role of
a middleman that does not work too much, but instead accepts input and passes it
onto the CalculatorEngine. Similarly, feedback from the CalculatorEngine is
collected and becomes output for the CalculatorInterface object.

The implementation of CalculatorInterface consists of an initializing phase
where a CalculatorEngine object is bound to an CalculatorInterface object,
and an execution phase which performs the necessary dispatching. These are imple-
mented by the constructor and run() methods of CalculatorInterface respec-
tively, as illustrated in Listing 4-3.

 Listing 4-3: CalculatorInput class.

While the code for CalculatorInterface relies on facilities for exception
and input/output handling that have not been described yet, these may initially be
ignored. Nevertheless, the code serves two immediate purposes here:

import java.io.*;

class CalculatorInput {
 BufferedReader stream;
 CalculatorEngine engine;

 CalculatorInput(CalculatorEngine e) {
 InputStreamReader input = new InputStreamReader(System.in);
 stream = new BufferedReader(input) ;
 engine = e;
 }

 void run() throws Exception {
 for (;;) {
 System.out.print("[" + engine.display() + "]");
 String m = stream.readLine();
 if (m == null) break;
 if (m.length() > 0) {
 char c = m.charAt(0);
 if (c == '+') engine.add();
 else if (c == '-') engine.subtract();
 else if (c == '*') engine.multiply();
 else if (c == '/') engine.divide();
 else if (c >= '0' && c <= '9') engine.digit(c - '0');
 else if (c == '=') engine.compute();
 else if (c == 'c' || c == 'C') engine.clear();
 }
 }
 }

 public static void main(String arg[]) throws Exception {
 CalculatorEngine e = new CalculatorEngine();
 CalculatorInput x = new CalculatorInput(e) ;
 x.run();
 }
}

46 Object-Oriented Programming and Java

•

•

Until these topics are discussed in Chapters 9 and 10, it is not harmful that at

present, they be taken by faith. The “throws Exception” signature suffix allows for
Java exceptions to be for the moment ignored. It is useful for modular and secure
programming methodology. It also suffices that the BufferedReader class facilitates
input, and that the readLine() method allows an input line to be read.

The new user interface class may be compiled via

$ javac CalculatorInput.java

This provides the added flexibility of arbitrary computations via keyboard input

sequences. The calculator display is indicated within square brackets “[]”:

$ java CalculatorInput
[0]1
[1]3
[13]+
[0]1
[1]1
[11]=
[24]

4.4 Another Interface for CalculatorEngine

The separation of concerns between CalculatorEngine and CalculatorInterface
allows for the former to be reused in different environments. To show the ease of
code reusability when a neat modular structure is adopted, another user-interface
framework to work with CalculatorEngine is introduced in this section.

Similar to CalculatorInput, CalculatorFrame provides an environment for a
CalculatorEngine object to execute. The major difference is that CalculatorFrame
caters for a windowing environment, and gives the illusion that the calculator “hides”
behind the frame.

It demonstrates the context of a test harness and how it is easily constructed
to aid incremental development.
It shows the synergistic cooperation of two objects with distinct concerns in
an object-oriented design environment.

Implementation in Java 47

Windowing facilities in Java will be discussed in Chapter 13. However, this

graphical calculator example is still appropriate since its objective is to show the
benefits of modular code and reusable API libraries in Java. Code in the constructor
method sets up a calculator frame with buttons and a display at appropriate locations.
Using a graphical user interface in this instance is fairly straightforward since mouse
clicks on calculator buttons are mapped to actionPerformed() method. As such,
code that performs the necessary dispatching to CalculatorEngine shown in List-
ing 4-4 is similar to that in the run() method in CalculatorInput.

import java.awt.*;
import java.awt.event.*;

class CalculatorFrame extends Frame implements ActionListener {

 CalculatorEngine engine;
 TextField display;

 WindowListener listener = new WindowAdapter() {
 public void windowClosing(WindowEvent e) { System.exit(0); }
 };
 CalculatorFrame(CalculatorEngine e) {
 super("Calculator");
 Panel top, bottom; Button b;

 engine = e;
 top = new Panel();
 top.add(display = new TextField(20));
 bottom = new Panel();
 bottom.setLayout(new GridLayout(4,4));
 bottom.add(b = new Button("1")); b.addActionListener(this);
 bottom.add(b = new Button("2")); b.addActionListener(this);
 bottom.add(b = new Button("3")); b.addActionListener(this);
 bottom.add(b = new Button("+")); b.addActionListener(this);
 bottom.add(b = new Button("4")); b.addActionListener(this);
 bottom.add(b = new Button("5")); b.addActionListener(this);
 bottom.add(b = new Button("6")); b.addActionListener(this);
 bottom.add(b = new Button("-")); b.addActionListener(this);
 bottom.add(b = new Button("7")); b.addActionListener(this);
 bottom.add(b = new Button("8")); b.addActionListener(this);
 bottom.add(b = new Button("9")); b.addActionListener(this);
 bottom.add(b = new Button("*")); b.addActionListener(this);
 bottom.add(b = new Button("C")); b.addActionListener(this);
 bottom.add(b = new Button("0")); b.addActionListener(this);
 bottom.add(b = new Button("=")); b.addActionListener(this);
 bottom.add(b = new Button("/")); b.addActionListener(this);
 setLayout(new BorderLayout());
 add("North", top);
 add("South", bottom) ;
 addWindowListener(listener) ;
 setSize(180, 160) ;
 show();
 }
 public void actionPerformed(ActionEvent e) {
 char c = e.getActionCommand().charAt(0);
 if (c == '+') engine.add();
 else if (c == '-') engine.subtract();
 else if (c == '*') engine.multiply();

48 Object-Oriented Programming and Java

 Listing 4-4: CalculatorFrame class.

4.4.1 Event-Driven Programming

While much code may be presently skipped, it is of great encouragement to readers
that the API libraries allow for windowing applications to be developed with mini-
mal user-code. Much code occur in the constructor and actionPerformed() meth-
ods, which sets up the calculator buttons and respond to mouse clicks.

The code in the CalculatorFrame class looks somewhat strange because it is
not completely procedural in its specification. In particular, while the body of the
actionPerformed() method resembles that in run()in CalculatorInput, the for-
mer is not explicitly invoked from within the class, such as from static void
main() (as was the case for CalculatorInput) .

Procedural programming is the paradigm where actions are specified in a step-
by-step sequence such as a baking recipe. Within each Java method, code is specified
procedurally and the execution order may be easily determined.

In event-driven programming, code fragments are instead associated with
events and invoked when these events occur. In a typical graphical environment with
windowing facilities, events correspond to mouse movements, mouse clicks and
keystrokes from the keyboard. It is impossible to determine or plan in advance what
course of actions users might take to accomplish a certain task. Instead, we associate
code fragments with significant events so that their side-effects will be appropriate
response to such external events.

In an object-oriented system, methods are convenient units of code, and are
used to receive stimuli from external devices. In Java, an ActionListener keeps a
lookout for events involving mouse clicks. This is relevant to our CalculatorFrame,
and we in turn implement the actionPerformed() method as a trigger point for
mouse clicks on calculator buttons.

Thus, for each push as a calculator button, actionPerformed() is invoked, and
it uses the getActionCommand() to identify which button. The framework for win-
dowing using the AWT API will be further elaborated in Chapter 13.

Similarly, WindowAdaptor is used to monitor events involving windows, and
windowClosing() is the corresponding method which is invoked when the user
clicks to close the calculator window. Execution is terminated via System.exit(0).

 else if (c == '/') engine.divide();
 else if (c >= '0' && c <= '9') engine.digit(c - '0');
 else if (c == '=') engine.compute();
 else if (c == 'C') engine.clear();
 display.setText(new Integer(engine.display()).toString());
 }
 public static void main(String arg[]) {
 new CalculatorFrame(new CalculatorEngine());
 }
}

Implementation in Java 49

4.5 Summary

This chapter demonstrates Java syntax and semantics covered earlier in Chapter 3.
The calculator case study example shows how:

• a class construct may be developed and compiled for execution by the

virtual machine;
• execution commences with the static void main() method;
• objects are instantiated and appropriately coordinated for cooperative

message passing to model;
• the BufferedReader class is used for input;
• the AWT package is used for GUI programming using frames and involv-

ing event-handling.

4.6 Exercises

1. The operators for CalculatorEngine are binary and require two operands.
How would unary operators that require one operand be incorporated?
Modify the CalculatorEngine class to add the following capabilities.

• squareOf
• factorial

2. Choose two interface characters most apt for squareOf and factorial
and incorporate the additional capability into the CalculatorInput class.

3. Rearrange the layout of the calculator panel in the CalculatorFrame class
to accommodate the new capabilities, and modify the appropriate event-
handlers to take advantage of these functions.

4. The CalculatorFrame class produces the result of 247 corresponding to
the key input sequence 1 3 + 1 1 = 7 . Explain the reason for this
observation, and suggest how it may be corrected.

5
Classification, Generalization, and Specialization

Objects with similar definitions have been grouped and defined into classes. The act
of identifying and categorizing similar objects into classes is known as classification
in object-oriented modeling. In this chapter, we will examine how objects are
grouped into classes and how the relationships of classes can be organized into a
class hierarchy using abstraction mechanisms generalization and specialization. In
addition, we will discuss the concept of superclass and subclass as a prelude to dis-
cussing generalization and specialization.

5.1 Classification

In Table 5-1, there are 18 instances of animal. Each entry has a name and a short
description. Some of the animals share common information. We will group the
animals based on their commonality with one another.

We begin with Mighty, Flipper, Willy, Janet, Jeremy, Bunny, and Smudge.
These objects are grouped together into the Mammal category because they share
some common information typical of a mammal:

• their young are born alive;
• they are warm-blooded;
• they breathe through their lungs; and
• their bodies are covered with hair.

52 Object-Oriented Programming and Java

Table 5-1: A list of objects.

Object What is it? Object What is it?
Angel Fish Mighty Elephant
Bunny Rabbit Smudge Cat
Janet Female person Jaws Shark
Jeremy Male person Swift Eagle
Flipper Dolphin Willy Whale
Heather Hen Parry Parrot
Wise Owl Sally Snake
Kermit Frog Lily Lizard
Beatle Bug Ben Bee

Similarly, Parry, Heather, Wise, and Swift are grouped into a Bird category

because they share common information typical of a bird:

• they have a beak;
• they have two legs;
• they have two wings;
• their wings and body are covered with feathers;
• they can fly;
• they lay eggs; and
• they are warm-blooded.

In a like manner, we group:

• Angel and Jaws into a Fish category;
• Sally and Lily into a Reptile category;
• Beatle and Ben into an Insect category; and
• Kermit into an Amphibian category.

Figure 5-1 shows the six categories of animal we have produced so far. In

object-oriented modeling, the act of categorizing objects is known as classification.
The categories formed are known as classes.

From a modeling perspective, classes form meaningful abstractions for organiz-
ing information; any reference to the classes would indirectly refer to the objects in
the class.

Classification, Generalization and Specialization 53

Amphibian

- Kermit

Amphibian

- - Kermit

Insect

- Beatle

- Ben

Insect

- Beatle

- Ben

Mammal

- Mighty

- Janet

- Jeremy

- Bunny

- Smudge

- Flipper

- Willy

Bird

- Parry

- Heather

- Swift

- Wise

Bird

- Parry

- Heather

- Swift

- Wise

Fish

- Angel

- Jaws

Fish

- Angel

- Jaws
Reptile

- Lily

- Sally

Reptile

- Lily

- Sally

Figure 5-1: Categories of animal.

5.2 Hierarchical Relationship of Classes

Classes formed can be organized in a hierarchical manner. Depending on the position
of a class in the hierarchy, it may be known as a superclass or a subclass of a class.
Let us examine the notion of superclass and subclass here.

5.2.1 Superclass and Subclass

In Chapter 2, we introduced Sean and Sara as salespersons of HomeCare. We also
mentioned that Sean and Sara are objects of the SalesPerson class. Let us introduce
two more employees, Simon and Sandy. Specifically, Simon and Sandy are manag-
ers with properties that are slightly different from Sean and Sara. We will classify
Simon and Sandy as objects of a different class: Manager. All four persons are
employees of HomeCare and objects of another class: Employee. The relationships
of these classes and objects are illustrated in Figure 5-2.

Note that Sean and Sara are shown as instances of the SalesPerson class while
Simon and Sandy are instances of the Manager class. The enclosing boundary of the
Employee class over these objects indicates that the objects are also instances of the
Employee class.

Insect

- Beatle

- Ben

- Sean

- Sara

Fish

- Angel

- Jaws

- Simon

- Sandy

Employee

SalesPerson Manager

Figure 5-2: Employee, SalesPerson and Manager classes.

54 Object-Oriented Programming and Java

Sean and Sara therefore belong to two classes: the Employee class and Sales-

Person class. Likewise, Simon and Sandy belong to the Employee and Manager
class. This implies that the information about Sean and Sara as employees is also true
of them as salespersons. We can thus refer to Sean as an employee or a salesperson.

Which class Sean is referred to is a matter of generality. When Sean is referred
to as an employee, we are being general about who he is but when he is referred to as
a salesperson, specific information about his role and employment is specified. For
example, Sean takes orders and earns a commission for each sale since he is a sales-
person but this does not apply to Sandy who is a manager, despite the fact that both
are employees of HomeCare. Similarly, when we speak of an object as an employee,
we are being general and its differences with objects of other classes are ignored.

The Employee class is said to be a generalized class of SalesPerson and Man-
ager. Conversely, SalesPerson and Manager are said to be specialized classes of the
Employee class. Generalized and specialized classes can be organized into a class
hierarchy with the generalized classes placed toward the top of the hierarchy and the
specialized classes toward the bottom of the hierarchy.

A specialized class is known as a subclass of a class while the generalized class is
known as a superclass of a subclass in object-oriented terms. For example, SalesPerson
is a subclass of the Employee class which is also the superclass of SalesPerson.

5.2.2 A Class Hierarchy Diagram

The hierarchical relationships among classes can be seen in a class hierarchy dia-
gram in Figure 5-3. A box in the diagram represents a class while a triangle denotes
the hierarchical relationship between classes with a superclass positioned at the top.
Subclasses are placed toward the bottom of a class hierarchy diagram.

A class can be a superclass to a class or a subclass of another class or both
depending on its position in the hierarchy. For example in Figure 5-3:

Customer

Person

Manager SalesPerson

Employee

Superclass

Superclass
and

Subclass

SubclassSubclass

Subclass

points to a
superclass

Figure 5-3: A class hierarchy diagram.

Classification, Generalization and Specialization 55

• Manager and SalesPerson are subclasses of the Employee class.
• Employee is a subclass of the Person class.
• Person is a superclass of Customer and Employee class.
• Employee is thus a superclass (to Manager and SalesPerson) and a subclass

(of Person) in the hierarchy.

5.3 Generalization

Generalization is the act of capturing similarities between classes and defining the
similarities in a new generalized class; the classes then become subclasses of the
generalized class. For example, the Mammal, Fish, Bird, Reptile, and Amphibian
classes introduced earlier, are similar in that all objects from these classes have a
backbone. Based on this similarity, we can refer to them via a new superclass, say
Animal-with-Backbone. Hence, we can refer to Kermit (an object of the Amphibian
class) as an object of the Animal-with-Backbone class too. Similarly, the Insect class
can be generalized into an Animal-without-Backbone class since objects from the
Insert class are without a backbone. Figure 5-4 summarizes the relationships of these
classes.

Animal
without

Backbone

Animal
with

Backbone

Mammal Fish Bird Reptile Amphibian Insect

Superclass

Subclass

Figure 5-4: Generalizing classes.

The Animal-with-Backbone class and Animal-without-Backbone class can be

further generalized by considering the similarities of objects from these two classes.
Let us call the generalized class, Animal. The generalization of properties of Animal-
with-Backbone class and Animal-without-Backbone class into the Animal class is
shown in Figure 5-5.

The Animal class, being the topmost class in the class hierarchy, is thus the
most general class of the entire Animal class hierarchy. This means that Swift, which
is an object of the Bird class, is also an object of the Animal-with-Backbone class
and Animal class, for example. When we refer to Swift as an object of the Animal
class, we are being general about it and we would be ignoring specific information
about Swift as a bird in this reference.

56 Object-Oriented Programming and Java

Animal
without

Backbone

Animal
with

Backbone

Animal

Mammal Fish Bird Reptile Amphibian Insect

GeneralizationSpecialization
Superclass

Superclass
and Subclass

Subclass

Figure 5-5: A class hierarchy for animals.

5.4 Specialization

In contrast, specialization is the act of capturing differences among objects in a class
and creating new distinct subclasses with the differences. In this way, we are special-
izing information about objects of the superclass into subclasses. For example, in
creating Animal-with-Backbone class and Animal-without-Backbone class from the
Animal class, we are distinguishing information about objects with a backbone from
others without a backbone into Animal-with-Backbone and Animal-without-
Backbone classes. Eventually, only objects with a backbone would be classified into
the Animal-with-Backbone class and the others into the Animal-without-Backbone
class.

Similarly, objects from the Animal-with-Backbone class can be further classi-
fied into the Mammal, Fish, Bird, Reptile, or Amphibian classes depending on their
properties definition.

5.5 Organization of Class Hierarchy

Classes in a class hierarchy diagram are organized in such a way that generalized
classes are placed toward the top of the hierarchy.

As we traverse higher into a class hierarchy, the classes become more general
in definition and more objects can be classified into them. As we traverse lower into
the class hierarchy, the subclasses become more specialized in definition and fewer
objects can be classified into them.

Classification, Generalization and Specialization 57

5.6 Abstract and Concrete Classes

There are classes in a class hierarchy that are so general that there is really no inten-
tion to create objects from them. Such classes are meant to contain common attrib-
utes or methods of subclasses for reuse purpose. These classes are known as abstract
classes in object-oriented modeling. For example, the Animal-with-Backbone class
has been included into the class hierarchy to contain properties similar to objects in
classes Mammal, Fish, Bird, Reptile, and Amphibian. Similarly, the Animal-without-
Backbone class abstract general information about insects and finally, the Animal
class generalizes all common properties of classes in its definition.

While classes Animal, Animal-with-Backbone and Animal-without-Backbone
abstract the common properties of objects, object instances are actually created from
the lowest level subclasses. Such classes from which objects are instantiated are
known as concrete classes. Thus, Mammal, Fish, Bird, Reptile, Amphibian and
Insect are concrete classes for the above class hierarchy on animals.

Abstract classes are implemented in Java using the abstract keyword as fol-
lows:

and concrete classes are defined in the usual way:

abstract class Animal {
...
}

abstract class Animal-with-Backbone extends Animal {
...
}

abstract class Animal-without-Backbone extends Animal {
...
}

class Mammal extends Animal-with-Backbone {
 Mammal(String name) {}
 ...
}

class Fish extends Animal-with-Backbone {
 Fish() {}

 ...

class Mammal extends Animal-with-Backbone {
 Mammal(String name) {}
 ...
}

class Fish extends Animal-with-Backbone {
 Fish() {}

 ...
}

}

58 Object-Oriented Programming and Java

Intuitively,

Animal a = new Animal();

is not valid while

is valid.

5.7 Summary

The following concepts were discussed in this chapter:

• Classification—categorizing objects into a class.
• A subclass is a specialized class of a superclass, and a superclass is a gen-

eralized class of a subclass.
• Generalization—the act of capturing similarities between classes and

defining the similarities in a new generalized class; the classes then become
subclasses of the generalized class.

• Specialization—the act of capturing differences among objects in a class
and creating new distinct subclasses with the differences.

• Abstract class—a class from which no object instances will be created.
• Concrete class—a class from which object instances will be created.

5.8 Exercises

1. In your own words, describe generalization and specialization.
2. Information about some objects is given below. Classify the objects into

these classes: Bird, Insect, Fish, and Four-Legged Animal.
3. Create generalized classes for the classes in Question 2 and produce a

class hierarchy.
4. Indicate in your class hierarchy for Question 3 abstract classes and con-

crete classes.

class Amphibian extends Animal-with-Backbone {
 Amphibian() {}
 ...
}

class Insect extends Animal-without-Backbone {
 Insect() {}
 ...
}

Mammal j = new Mammal("John");

Classification, Generalization and Specialization 59

Object What is it? Data Methods
Aaron Ant a, b, d, f X(),Z()
Beatle Bug a, b, d, f X(),Z()
Smudge Dog a, b, d, l X(),Z()
Swift Eagle a, b, c, e X(),Y()
Herman Hawk a, b, c, e X(),Y()
Oscar Orange u N()
Rosie Rose v O()
Tora Tiger a, b, d, l X(),Z()
Goldie Goldfish a, b, d, g X(),Z()
John Male Person a, b, d, h, i X(),Z()
Jack Jaguar a, b, d, l X(),Z()
Angel Goldfish a, b, d, g X(),Z()

6
Inheritance

In Chapter 5, we discussed generalization/specialization as an abstraction mechanism
for modeling classes and their hierarchical relationships with one another. We also
introduced superclasses as generalized classes of subclasses.

In this chapter, we will discuss inheritance as a mechanism for propagating
properties (attributes and methods) of superclasses to subclasses. The properties then
form part of the subclasses’ definition. From an implementation standpoint, inheri-
tance encourages software reuse. The impact of inheritance on software development
will also be discussed.

6.1 Common Properties

A class hierarchy on persons and employees was earlier introduced in Chapter 5.
This hierarchy is reproduced in Figure 6-1 but with attribute and method definitions
added onto it.

We can make the following observations about the class diagram:

• attribute name and method getName() are common in all three classes;
• attribute employee number and method getEmployeeNumber() are com-

mon in Employee and SalesPerson class;
• attribute commission is specific to SalesPerson class and does not appear

in other classes.

62 Object-Oriented Programming and Java

Customer

Person

Manager

SalesPerson

Employee

name
getName()

name
employee number
getName()
getEmployeeNumber()

name
employee number
commission
getName()
getEmployeeNumber()
getCommission()
takeOrder()

Figure 6-1: Common properties in classes.

6.2 Inheritance

From a software reuse standpoint, generalized properties defined in superclasses
should be made available to subclasses without having to declare them explicitly in
the subclasses. In object-oriented programming, such reuse is possible via inheri-
tance.

Inheritance is the ability of a subclass to take on the general properties of super-
classes in the inheritance chain. The properties then form part of the subclass’ defini-
tion. Inheritance enables superclasses’ properties to be propagated downward to the
subclasses in a class hierarchy, and makes the properties available as part of the sub-
classes’ definition. These properties are said to be inherited (or taken on) by the
subclasses.

Using inheritance, the SalesPerson class of Figure 6-1 can now be defined by a
combination of properties from:

• the Employee class;
• the Person class; and
• its own specific attribute and method definition.

Figure 6-2 shows the modified class hierarchy for persons (with inherited prop-

erties highlighted in bold). The Person class has the following definition:

Class Person {
 Attributes :
 name
 Methods :
 getName() {return name}
}

Inheritance 63

Customer

Person

Manager SalesPerson

Employee

name
getName()

name
address
budget

getName()
purchase()
getBudget()

name
employee number
getName()

name
employee number

getName()

name
employee number
commission
getName()
getEmployeeNumber()
getCommission()
takeOrder()

Figure 6-2: Classes with inherited properties.

The Employee class is reduced to (with inherited properties highlighted in

bold):

The SalesPerson class is simplified into (with inherited properties highlighted

in bold):

Class Employee {
 Attributes :
 name (inherited from Person class)
 employee number
 Methods :
 getName() {return name} (inherited from Person class)
 getEmployeeNumber(){return employee number}
}

Class SalesPerson {
 Attributes :
 name (inherited from Person Class)
 employee number (inherited from Employee class)
 commission
 Methods :
 takeOrder(who, stock, address, date) {
 check with warehouse on stock availability
 check with warehouse on delivery schedule
 if ok
 then {instruct warehouse to deliver stock
 to address on date
 return ok}
 else return not ok
 }
 getName() {return name} (inherited from Person class)
 getEmployeeNumber(){return employee number}
 (inherited from Employee class)
 getCommission() {return commission}
}

64 Object-Oriented Programming and Java

Note that attributes name and employee name, and methods getName() and

getEmployeeNumber() of the SalesPerson class are not explicitly defined in the
SalesPerson class but are propagated downward from the superclasses through in-
heritance.

Only downward propagation of properties from superclasses to subclasses is
permissible. There is no upward propagation of properties in object-oriented pro-
gramming. Therefore, information specific to subclasses are unique to subclasses and
are not propagated to superclasses. For this reason, attribute commission and method
getCommission() of the SalesPerson class do not form part of the Employee class
definition.

6.3 Implementing Inheritance

Let us now extend the Person class hierarchy to include a new class, Secretary. Fig-
ure 6-3 shows the modified class hierarchy with inherited properties highlighted
in bold. The information in the extended hierarchy suggests that all employees have
a basic salary except managers and salespersons, who are paid an allowance and
commission, respectively.

Person

Employee

name
getName()

name
address
budget
getName()
purchase()
getBudget()

name
employee number
basicSalary
getName()
getEmployeeNumber()
getBasicSalary()

Manager Secretary

name
employee number
basicSalary
allowance
getName()
getEmployeeNumber()
getBasicSalary()
getAllowance()

name
employee number
basicSalary
getName()
getEmployeeNumber()
getBasicSalary()

SalesPerson

name
employee number
basicSalary
commission
getName()
getEmployeeNumber()
getBasicSalary()
takeOrder()
getCommission()

Customer

Figure 6-3: Including the Secretary class.

Inheritance 65

The Superclass–Subclass relationship in a class hierarchy is denoted in the code

by the keyword extends. This suggests that a subclass is an extension of a super-
class. For example, the following code fragment suggests that Employee is an exten-
sion of the Person class; Manager, SalesPerson and Secretary, being subclasses, are
extensions of the Employee class:

Listing 6-1 is the code implementing the Person hierarchy. Code execution be-

gins with the Employee class since it is the only class that contains static void
main(). To execute main(), type the following at the command prompt line:

$ java Employee

Executing the code produces the following output:

The Manager Simon (employee number 01234M) has a salary of 9000
The Secretary Selene (employee number 98765S) has a salary of 2500
The Manager Simon also has an allowance of 2000

The output suggests that some information was made available from the super-

classes in deriving the manager's and secretary's salary. Objects instantiated from the
Manager or Secretary class were able to respond to requests for their basicSalary
because they have inherited from the Employee class the attribute basicSalary and
method getBasicSalary().

Let us examine main(). The code begins with the instantiation of two objects, a
manager and a secretary. The manager object is referenced by variable m while the
secretary object is referenced by variable s:

The state of the two objects is depicted in Figure 6-4.

class Employee extends Person {
 ...
}

class Manager extends Employee {
 ...
}

class SalesPerson extends Employee {
 ...
}

class Secretary extends Employee {
 ...
}

Manager m = new Manager("Simon", "01234M", 9000.0f, 2000.0f);
Secretary s = new Secretary("Selene", "98765S", 2500.0f);

66 Object-Oriented Programming and Java

 Listing 6-1: Inheritance in the extended Person hierarchy.

class Person {
 private String name;
 Person(String aName) {name=aName;}
 public String getName() { return name; }
}

class Employee extends Person {
 private float basicSalary;
 private String employeeNumber;

 Employee(String aName, String aEmployeeNumber,
 float aBasicSalary) {
 super(aName);
 employeeNumber = aEmployeeNumber;
 basicSalary = aBasicSalary;
 }

 public String getEmployeeNumber() { return employeeNumber; }
 public float getBasicSalary() { return basicSalary; }

 public static void main(String argv[]) {
 Manager m = new Manager(

 System.out.print("The Manager "+m.getName()+
 " (employee number "+m.getEmployeeNumber()+")");
 System.out.println(" has a salary of "+m.getBasicSalary());
 System.out.print("The Secretary "+s.getName()+
 " (employee number "+s.getEmployeeNumber()+")");
 System.out.print("The Manager "+m.getName());
 System.out.println(" also has an allowance of " +m.getAllowance());
 }
}

class Manager extends Employee {
 private float allowance;

 Manager(String aName, String aEmployeeNumber,
 float aBasicSalary, float aAllowanceAmt) {
 super(aName, aEmployeeNumber, aBasicSalary);
 allowance = aAllowanceAmt;
 }
 public float getAllowance() {
 return allowance;
 }
}

class Secretary extends Employee {
 Secretary (String aName, String aEmployeeNumber,
 float aBasicSalary) {
 super(aName, aEmployeeNumber, aBasicSalary);
 }
}

"Simon", "01234M", 9000.0f,2000.0f);
 Secretary s = new Secretary("Selene", "98765S", 2500.0f);

Inheritance 67

Manager
Attributes
- name : Simon
- employeeNumber : 01234M
- basicSalary : 9000
- allowance : 2000
Operations
- getName()
- getEmployeeNumber()
- getBasicSalary()
- getAllowance()

Secretary
Attributes
- name : Simon
- employeeNumber : 98765S
- basicSalary : 2500
Operations
- getName()
- getEmployeeNumber()
- getBasicSalary()

Figure 6-4: State of Manager and Secretary object.

The remainder of main() are output statements. Some methods from various

classes, invoked in producing the outputs, for example, getName() from the Person
class, and getEmployeeNumber() and getBasicSalary() from the Employee
class, are propagated through the inheritance mechanism to the subclasses, Manager
and Secretary.

6.4 Code Reuse

By allowing information of a superclass to be taken on by subclasses, the informa-
tion is said to be reused at the subclass level. All newly created instances of the sub-
classes would have as part of their definition the inherited information. employee
number, basic salary, and getEmployeeNumber() of the Employee class and name
and getName() of the Person class are said to be reused by the Manager and Secre-
tary class.

6.5 Making Changes in Class Hierarchy

Changes to software specification are inevitable. Let us consider how changes in a
class hierarchy impact software maintenance as a whole. The following situations
will be discussed:

• Change in property definition for all subclasses.
• Change in property definition for some subclasses.
• Adding/deleting a class.

6.5.1 Change in Property Definition for All Subclasses

Suppose a change in representational scheme of the employee number in Figure 6-3
is required. This change will affect not only the attribute employee number but also
the method getEmployeeNumber() and possibly other classes that inherit employee
number. We will examine this change in two possibilities:

a. inheritance is not available;
b. inheritance is available.

68 Object-Oriented Programming and Java

(a) Inheritance Is Not Available

In the case where inheritance is not available, the attribute employee number

and method getEmployeeNumber() would have to be defined in all the relevant
classes, for example, Employee, Manager, SalesPerson and Secretary. The change in
representational scheme of employee number would thus have to be effected indi-
vidually on these classes. The redundancy arising from the multiple definition of
employee number and getEmployeeNumber() may lead to inconsistency in defini-
tion if the change is not carried out properly.

(b) Inheritance Is Available

With inheritance, the situation is different. We would first define attribute

employee number and method getEmployeeNumber() in Employee class and let
subclasses Manager, SalesPerson and Secretary inherit these definitions from Em-
ployee class. The required change in representational scheme for attribute employee
number would be limited to the Employee class. The change would be propagated to
the subclasses via inheritance. In this way, the change is thus limited to the super-
class, enabling a uniform and consistent property definition for all subclasses. In
addition, redundancy in property definition at the subclass level can be minimized
and software maintenance enhanced.

6.5.2 Change in Property Definition for Some Subclasses

In some situations, a change in property definition at the superclass level may not
necessarily apply to all subclasses. The above solution would therefore not apply in
these situations. To illustrate, let us extend the Person class hierarchy further to in-
clude two more employee classes: Technician and Clerk.

Let us assume the following for a HomeCare employee:

• a manager—basic salary plus allowance;
• a salesperson—basic salary plus commission;
• a secretary—basic salary;
• a technician—basic salary;
• a clerk—basic salary.

At the Employee class, a getPay() method is defined to return the monthly pay

of an employee since the method applies to all classes of employee. The definition of
the Person class remains the same as before:

class Person {
 private String name;
 Person(String aName) {name=aName;}
 public String getName() { return name; }
}

Inheritance 69

Employee extends Person as follows:

As before, main() is defined in the Employee class with additional code for
Technician and Clerk class highlighted in bold. There is no change in class definition
for Manager and Secretary. Technician and Clerk extend Employee, since they are
subclasses of Employee:

Executing main() produces the following output:

The Manager Simon (employee number 01234M) has a pay of 9000
The Secretary Selene (employee number 98765S) has a pay of 2500
The Technician Terrence (employee number 42356T) has a pay of 2000
The Clerk Charmaine (employee number 68329C) has a pay of 1200

class Employee extends Person {
 private float basicSalary;
 private String employeeNumber;

 Employee(String aName, String aEmployeeNumber,
 float aBasicSalary) {
 super(aName);
 employeeNumber = aEmployeeNumber;
 basicSalary = aBasicSalary;
 }

 public String getEmployeeNumber() { return employeeNumber; }
 public float getBasicSalary() { return basicSalary; }
 public float getPay() { return basicSalary; }
 public static void main(String argv[]) {

 Technician t = new Technician("Terrence", "42356T", 2000.0f);
 Clerk c = new Clerk("Charmaine", "68329C", 1200.0f);

 }
}

class Technician extends Employee {
 Technician (String aName, String aEmployeeNumber,
 float aBasicSalary) {
 super(aName, aEmployeeNumber, aBasicSalary);
 }
}
class Clerk extends Employee {
 Clerk (String aName, String aEmployeeNumber,
 float aBasicSalary) {
 super(aName, aEmployeeNumber, aBasicSalary);
 }
}

 Manager m = new Manager("Simon", "01234M", 9000.0f, 2000.0f);
 Secretary s = new Secretary("Selene", "98765S", 2500.0f);

 System.out.print("The Manager "+m.getName()+
 " (employee number "+m.getEmployeeNumber()+")");
 System.out.println(" has a pay of "+m.getPay());
 System.out.print("The Secretary "+s.getName()+
 " (employee number "+s.getEmployeeNumber()+")");

 System.out.print("The Technician "+t.getName()+
 System.out.println(" has a pay of "+s.getPay());

 " (employee number "+t.getEmployeeNumber()+")");
 System.out.println(" has a pay of "+t.getPay());
 System.out.print("The Clerk "+c.getName()+
 " (employee number "+c.getEmployeeNumber()+")");
 System.out.println(" has a pay of "+c.getPay());

70 Object-Oriented Programming and Java

A cursory examination of the output reveals an inaccuracy in the manager’s

pay: an omission of allowance amounting to $2000. What has gone wrong?

Manager

employee number
basicSalary
getEmployeeNumber()
getBasicSalary()

allowance
getAllowance()
getPay()

Secretary Technician Clerk

getPay() getPay() getPay()

Employee

Figure 6-5: Extended Employee class hierarchy.

The above problem can be approached in two ways:

• Remove the getPay() method from the Employee class and define it indi-

vidually in the subclasses (Secretary, Technician, Clerk, and Manager).
• Maintain the definition of getPay() method in Employee class and rede-

fine it in the Manager class.

Figure 6-5 illustrates a class diagram for the first approach. Each of the sub-

classes has its own implementation of the getPay() method. One disadvantage of
this approach is that the definition of the getPay() method has to be repeated in all
the subclasses. This is highly inefficient and can be difficult to maintain especially in
situations where the number of subclasses is large.

Manager

Employee

employee number
basicSalary
getEmployeeNumber()
getBasicSalary()
getPay()

allowance
getAllowance()
getPay()

Secretary Technician Clerk

Figure 6-6: Redefining getPay() method of Manager.

Inheritance 71

In the second approach, the definition of the getPay() method is maintained at the

Employee class but redefined in the Manager class. This ensures that the getPay()
method is inherited by all subclasses of Employee, including the Manager class.

Since a similar getPay() method is defined in Manager, the getPay() method
of the Manager class would be used in the resolution of method call by the object-
oriented system instead. This is depicted in Figure 6-6 and Listing 6-2.

The getPay() method of the Manager class is said to redefine the getPay()
method of the Employee class. Note that a redefined method has the same method
name and parameter definition of a redefining method. While a redefining method
has the same method signature with the redefined method, the implementation of the
methods may differ. In this case, the getPay() method of the Manager class includes
an additional computation of the allowance component.

Listing 6-2: Redefining the getPay() method.

Judging from the output of the two solutions, both approaches are correct:

The Manager Simon (employee number 01234M) has a pay of 11000
The Secretary Selene (employee number 98765S) has a pay of 2500
The Technician Terrence (employee number 42356T) has a pay of 2000
The Clerk Charmaine (employee number 68329C) has a pay of 1200

class Person {
 ...
}
class Employee extends Person {
 ...
 public float getPay() { return basicSalary; }
 public static void main(String argv[]) {
 ...
 }
}
class Manager extends Employee {
 private float allowance;
 Manager(String aName, String aEmployeeNumber,
 float aBasicSalary, float aAllowanceAmt) {
 super(aName, aEmployeeNumber, aBasicSalary);
 allowance = aAllowanceAmt;
 }
 public float getAllowance() {
 return allowance;
 }
 public float getPay() {
 return (basicSalary + allowance);
 }
}
class Secretary extends Employee {
 ...
}
class Technician extends Employee {
 ...
}
class Clerk extends Employee {
 ...
}

72 Object-Oriented Programming and Java

However, the second approach is better than the first approach as it enhances

software reuse and minimizes the effect of change on other classes. Redefinition of
methods is supported in object-oriented programming and closely connected with
operation overloading. We will further discuss operation overloading in the next
chapter.

6.5.3 Adding/Deleting a Class

Adding a class into an existing class hierarchy can be detrimental to the stability of
the hierarchy. It is always recommended that the addition of a new class be created
as a subclass in the class hierarchy. The definition of existing classes will not be
adversely affected by this approach. To illustrate, let us consider an example of geo-
metrical shapes.

Figure 6-7 is a class hierarchy of shapes. Shape is a generalized class of Circle
and Square. All shapes have a name and a measurement by which the area of the
shape is calculated.

The attribute name and method getName() are defined as properties of Shape.
Circle and Square, being subclasses of Shape, inherit these properties (highlighted in
bold in Figure 6-7).

Shape

Square

name
getName()

name
radius

getName()
calculateArea()

name
side
getName()
calculateArea()

Circle

Figure 6-7: Class hierarchy of Shape, Circle and Square.

The Shape class has the following definition:

class Shape {
 private String name;
 Shape(String aName) {name=aName;}
 public String getName() {return name;}
 public float calculateArea() {return 0.0f;}

 public static void main(String argv[]) {
 Circle c = new Circle("Circle C");
 Square s = new Square("Square S");
 Shape shapeArray[] = {c, s};
 for (int i=0; i<shapeArray.length; i++) {
 System.out.println("The area of " + shapeArray[i].getName()
 + " is " + shapeArray[i].calculateArea()+" sq. cm.\n");
 }
 }
}

Inheritance 73

Note that the attribute name is declared as private in the Shape class. To make

it known to other objects, a getName() method is defined in the Shape class to return
the value of attribute name. The keyword private is an access control specifier
which was first introduced in Chapter 3 and will be further discussed in Chapter 8.

Circle and Square extend Shape and have the following definition:

As usual, program execution begins with main() and the following output is

produced when main() is executed:

The area of Circle C is 28.26 sq. cm.
The area of Square S is 9 sq. cm.

Two objects are created in main()—a Circle object referenced by the variable c

and a Square object referenced by the variable s. The creation of a Circle object
involves a call to the Circle class constructor method via the new keyword. A name
parameter is required to activate the Circle constructor method. For Circle, the name
parameter is the string "Circle C".

A call is made to the Circle’s superclass constructor method via the statement

 super(aName);

attribute name. When the assignment is done, control returns to the Circle class’s
constructor method. Subsequently, the radius attribute of the Circle object is as-
signed the value 3 via the statement:

radius = 3;

class Circle extends Shape {
 private int radius;
 Circle(String aName) {
 super(aName);
 radius = 3;
 }

 public float calculateArea() {
 float area;
 area = (float) (3.14 * radius * radius);
 return area;
 }
}

class Square extends Shape {
 private int side;
 Square(String aName) {
 super(aName);
 side = 3;
 }

 public float calculateArea() {
 int area;
 area = side * side;
 return area;
 }
}

The call assigns the value of the parameter ("Circle C") to the Circle object’s

74 Object-Oriented Programming and Java

Likewise, the Square object is created and its attributes updated in the execu-

tion. By now, the Circle and Square objects have a state as illustrated in Figure 6-8.

Circle
Circle
Attributes
- name : Circle C
- radius : 3
Operations
- getName()
- claculateArea()

Square
Attributes
- name : Square S
- side : 3
Operations
- getName()
- claculateArea()

Figure 6-8: State of Circle and Square object.

An array shapeArray is declared in the next statement. The reference variables

c and s are assigned to the array elements. Iterating through the array (via the for-
loop), the area of the respective shape is produced by the statement

We will explain the implications of shapeArray and calculateArea() in the

next chapter when the topic of polymorphism is discussed. For now, we will focus on
the impact arising from the addition of classes to an existing class hierarchy.

Suppose we want to add to the Shape class hierarchy a new class called Trian-
gle. Listing 6-3 shows the modified code with new additions highlighted in bold.

class Shape {
 ...

 public static void main(String argv[]) {

 Shape shapeArray[] = {c, s, t};
 for (int i=0; i<shapeArray.length; i++) {

 }
 }
}

class Circle extends Shape {
...
}

class Square extends Shape {
 ...
}

class Triangle extends Shape {
 private int base, height;

 Triangle(String aName) {
 super(aName);
 base = 4; height = 5;

System.out.println("The area of " + shapeArray[i].getName()
 + " is " + shapeArray[i].calculateArea()+" sq. cm.\n");

 Circle c = new Circle("Circle C");
 Square s = new Square("Square S");
 Triangle t = new Triangle("Triangle T");

 System.out.println("The area of " + shapeArray[i].getName()
 + " is " + shapeArray[i].calculateArea()+" sq. cm.\n");

Inheritance 75

 Listing 6-3: Adding a Triangle.

To add the new Triangle class, the following is involved:

1. Add a statement to create a Triangle object in main().
2. Add a statement to include the newly created triangle into shapeArray in

main().
3. Create a new Triangle class as a subclass of Shape.

It is clear that subclassing the new Triangle class into the class hierarchy does

not affect the definition of the other three classes. Subclassing is specialization and is
thus a desired design practice in object-oriented software engineering because it has
minimal impact on software maintenance.

Thus, the deletion of subclasses that are not superclasses to other classes has a
minimal impact on software maintenance.

6.6 Accessing Inherited Properties

Inherited properties form part of the definition of subclasses, but they may not neces-
sarily be accessible by other classes. Accessibility of inherited properties can be
controlled using access control specifiers, which will be discussed in Chapter 8.

6.7 Inheritance Chain

We have so far discussed class hierarchies whose classes have only one parent or
superclass. Such hierarchies are said to exhibit single inheritance. The path of inheri-
tance over the classes is known as the inheritance chain.

A single inheritance chain can be single- or multilevel. In a single-level single
inheritance chain, there is only one level of superclass that a subclass can inherit
properties from. In contrast, in a multilevel single inheritance chain, a subclass can
inherit from more than one level of superclasses. The difference is illustrated in
Figure 6-9.

Besides single inheritance, there is also multiple inheritance. A class hierarchy
is said to exhibit multiple inheritance if a subclass in the hierarchy inherits properties
from two or more superclasses in more than one inheritance path.

 }

 public float calculateArea() {
 float area = 0.5f * base * height;
 return area;
 }
}

76 Object-Oriented Programming and Java

X

a
getA()

Y b
getB()

Single-level Single
Inheritance Chain

X
a

getA()

Y
b

getB()

Z
c

getC()

Multiple-level Single
Inheritance Chain

Figure 6-9: Single- and multiple-level single inheritance chains.

6.7.1 Multiple Inheritance

To appreciate the concept of multiple inheritance, let us consider the example of
frogs. A frog is an amphibian that takes on characteristics typical of a land animal
and a water animal. A frog can live both on land and in water. We can thus represent
frogs as instances of a Frog class and specialize it as a subclass of Land-Animal class
and Water-Animal class. The Frog class will inherit from the Land-Animal class the
ability to live on land and from the Water-Animal class the ability to survive in
water. Figure 6-10 shows the position of the Frog class in relation to its superclasses
in a class hierarchy.

Land
Animal

Water
Animal

Frog

Figure 6-10: Multiple inheritance.

By inheriting properties from more than one superclass, the Frog class is said to

exhibit multiple inheritance. All properties of the Land-Animal and Water-Animal
classes are now part of the definition of the Frog class.

Inheritance 77

6.7.2 Problems Associated with Multiple Inheritance

Consider the example of a sales manager. A sales manager can take orders from a
customer (as a salesperson would) and authorize orders (as a manager would). Thus,
a SalesManager class is a subclass of two superclasses, namely, the Manager class
and the SalesPerson class, as shown in Figure 6-11. The class diagram can be read as
“a sales manager is both a salesperson and a manager”. The SalesManager class would
inherit from the Manager class the method authorize() and from SalesPerson class
the method takeOrder().

Sales
Manager

Manager Sales
Person

authorize() takeOrder()

Figure 6-11: Class hierarchy for SalesManager.

Assuming that the concept of multiple inheritance is not available. We would

have to represent SalesManager as a subclass in a single inheritance chain as shown
in Figure 6-12.

Although the properties inherited in this hierarchy is the same as that of Figure
6-11, the class hierarchy of Figure 6-12 is semantically incorrect—a sales person is
not a manager.

Manager
authorize()

Sales
Person

takeOrder()

Sales
Manager

Figure 6-12: A SalesManager class hierarchy using single inheritance.

While it is clear from the above example that multiple inheritance is useful for a

more natural approach to modeling information about the real world, it has its prob-
lems, particularly in situations where the same attributes or methods are redefined in

78 Object-Oriented Programming and Java

the multiple inheritance paths. To illustrate, let us consider the class hierarchy of
Figure 6-13.

The attribute a and method getA() have been redefined in class X and Y.
Which copy of a should a Z object inherit from? Or, which getA() method should a
Z object use? Here, the Z object can be an X object or a Y object at some point in
time.

X Y
a
getA()

Z

a
getA()

Figure 6-13: Redefined attribute and method in multiple inheritance paths.

In like manner, we can extend the class hierarchy for sales managers to that

shown in Figure 6-14. We say that a sales manager is a manager and a salesperson. A
manager and a salesperson in turn are employees in general.

By means of inheritance, the definition of a SalesManager object would include:

• attribute name; and
• inherited methods getName(), authorize(), takeOrder() and col-

lectPayment().

Manager
Sales

Person

Employee
name
getName()

authorize()
collectPayment()

takeOrder()
collectPayment()

Sales
Manager

Figure 6-14: Extended class hierarchy for SalesManager.

Inheritance 79

Since the method collectPayment() occurs in two superclasses—Manager

and SalesPerson—it would be difficult, from a language implementation point of
view, to determine which of the collectPayment() method a SalesManager object
should inherit.

There are thus ambiguities in language implementation when multiple inheri-
tance paths redefine the same attributes or methods in multiple inheritance.

6.7.3 Contract and Implementation Parts

Basically, a method has two parts: contract and implementation. The contract part is
also known as the method signature and specifies the name of the method, its return
type and formal parameters (if any). The implementation part contains statements
that are executed when a method is called. It is through the implementation of the
method that the state of an object is changed or accessed. By changing the imple-
mentation of a method, the behavior of an object is altered, even though the contract
part remains unchanged. In Listing 6-4,

public int getA()

is the contract part, while the two statements:

a = a+1;
return a;

enclosed within the block form the implementation part of the getA()method.

 Listing 6-4: Class X and method getA().

Similarly, an attribute has a definition and an implementation: the name of an

attribute defines the attribute while its structure specifies the implementation of the
attribute.

6.7.4 Contract and Implementation Inheritance

A class inherits property definitions and the way the properties are implemented
from its superclasses in a single inheritance chain. In other words, a class in a single
inheritance chain inherits both the contract and implementation parts of the super-
classes’ properties.

The inheritance of implementation causes the ambiguities in multiple inheri-
tance. When the same attributes or methods are redefined in the multiple inheritance
paths, there is a need to determine which implementation of the redefined properties
should be used.

class X {
 int a;
 public int getA() {
 a = a+1;
 return a;
 }
}

80 Object-Oriented Programming and Java

To avoid the problems of multiple inheritance, Java does not support it explic-

itly. Instead Java supports single inheritance and provides a means by which the
effects of multiple inheritance can be realized. This contingency is exercised when
single inheritance alone may not be sufficient for representing real-world situations.

The approach in Java allows subclasses to inherit contracts but not the corre-
sponding implementation. Subclasses must provide the implementation part of
methods. Multiple inheritance is thus indirectly supported in Java with subclasses
self-implementing the appropriate behavior. The implementation to be inherited is
therefore resolved at the subclass level.

For redefined attributes in multiple inheritance paths, only constant values are
allowed in Java. By definition, constants are not modifiable.

6.8 Interface

Contract inheritance is supported in Java via the interface construct. An interface
definition is similar to a class definition except that it uses the interface keyword:

All methods in an interface are abstract methods, that is, they are declared

without the implementation part since they are to be implemented in the subclasses
that use them.

6.8.1 Multiple Inheritance Using Interface

The interface construct in Java is used with single inheritance to provide some form
of multiple inheritance. To illustrate, we will refer to the example on sales managers
introduced earlier and examine how we can resolve the problems encountered in the
single-inheritance solution.

The SalesManager class is first defined as a subclass of SalesPerson in a single
inheritance chain. SalesPerson is in turn declared as a subclass of Employee. Given
this inheritance hierarchy, a sales manager is a salesperson who in turn is an
employee in general.

In order that a sales manager has the ability to manage, we add to the Sales-
Manager class, appropriate behavior in an interface which is then inherited by the
SalesManager class. We shall call that interface Manage as follows:

Figure 6-15 shows the class hierarchy for SalesManager that is described as a

salesperson with additional ability to authorize orders.
In using the Manage interface, the subclass SalesManager must implement the

abstract methods of the interface. This is reflected in the class declaration of Sales
Manager:

interface I {
 void j();
 int k();
}

interface Manage {
 boolean authorize();
}

Inheritance 81

This indicates that a class, SalesManager, derived from the SalesPerson class

implements the Manage interface.

Employee
name
getName()

Sales
Person

Sales
Manager

takeOrder()
collectPayment()Manage

authorize()

implements

Figure 6-15: Single inheritance with interface.

The code for the classes in Figure 6-15 is illustrated in Listing 6-5. For illustra-

tion purposes, the code for takeOrder() and collectPayment() methods has been
simplified to produce output to indicate their execution. The abstract method
authorize() of the Manage interface has been implemented in the SalesManager
class has been embolden.

As expected, the following output was produced:

Order taken
Order authorized
Payment collected
SalesManager Sara took order, authorized it and collected payment.

The collectPayment() method of the SalesPerson class has been pre-

determined and used in the above solution. A sales manager is basically a salesper-
son with an additional behavior to authorize payments (via the authorize()
method).

class SalesManager extends SalesPerson implements Manage {
 ...
}

interface Manage {
 boolean authorize();
}

class Employee {
 String name;
 Employee() {}
 String getName() {return name;}
}

82 Object-Oriented Programming and Java

Listing 6-5: SalesManager class and manageable interface.

An alternative implementation would be to consider SalesManager as a subclass
of Manager taking on methods authorize() and collectPayment(), as shown in
Figure 6-16. takeOrder() is derived from implementing the CanTakeOrder inter-
face instead. Note that the implementation of collectPayment() method in this case
is different from the implementation of collectPayment() method in Figure 6-15.

Which of these two solutions is preferred is a modeling problem and can be
resolved if more information on the problem domain and requirements is provided.

Employee

name
getName()

Manager

Sales
Manager

authorize()
collectPayment() CanTakeOrder

takeOrder()

implements

Figure 6-16: Inheriting from Manager class.

class SalesPerson extends Employee {
 boolean takeOrder() {

 return true;
 }
 void collectPayment() {

 }
}

class SalesManager extends SalesPerson implements Manage {
 SalesManager(String n) {name = n;}
 public boolean authorize() {
 // authorisation by a sales manager

 return true;
 }

 public static void main(String args[]) {
 SalesManager sm = new SalesManager("Sara");
 if (sm.takeOrder())
 if (sm.authorize()) {
 sm.collectPayment();

 }

 }
}

 System.out.println("Order taken");

 System.out.println("Payment collected");

 System.out.println("Order authorized");

 System.out.println("SalesManager "+sm.getName()+
 " took order, authorized it and collected payment. ");

 " did not authorize order. No payment collected. ");
 else System.out.println("SalesManager "+sm.getName()+

Inheritance 83

6.8.2 Attributes in an Interface

Data attributes declared in an interface construct are always static and final. They
are static as there can only be one copy of the data available and final since they
are not modifiable. By declaring data attributes in an interface, constant declarations
for use in methods is possible. Constants are names for values with a specific mean-
ing.

As all data attributes are implicitly declared as static and final in an inter-
face definition, these keywords need not precede their declaration:

6.8.3 Methods in an Interface

All methods in an interface are abstract methods and any class that uses the interface
must provide an implementation for them. Like data attributes, an interface does not
have to explicitly declare its methods abstract using the keyword abstract.

Similarly, interface methods are always public, and the access modifier public
keyword is not required since it is implied in the interface declaration. However, in
contrast with data attributes in an interface, methods may not be static since static
methods, being class specific, are never abstract.

6.8.4 Abstract Class and Interface

A class implementing an interface must implement all the abstract methods declared
in an interface; otherwise, the class is considered as an abstract class and must be
declared using the abstract keyword as follows:

The class ColourTest is declared abstract since the getColour() method of

the Colourable interface is not implemented. Note that the setColour() method
has to be declared public as it is a method of the Colourable interface.

interface Colourable {
 int RED = 1;
 int GREEN = 2;
 int BLUE = 3;

 void setColour (int c);
 int getColour();
}

abstract class ColourTest implements Colourable {
 int i;
 ColourTest() {}

 public void setColour (int c) {
 i=c;
 }

 public static void main(String args[]) {
 ...
 }
}

84 Object-Oriented Programming and Java

There are some differences between an abstract class and an interface. These

differences are summarized as follows:

Abstract Class Interface
May have some methods declared abstract. Can only have abstract methods.
May have protected properties and static
methods.

Can only have public methods
with no implementation.

May have final and nonfinal data attributes. Limited to only constants.

An abstract class can enhance inheritance as some or all parts of the class can
be implemented and inherited by subclasses. An interface, on the other hand, is gen-
erally used for achieving multiple inheritance in Java.

An abstract class cannot be used to instantiate objects since it may contain parts
that are not implemented. Given a declaration of an abstract class LandVehicle be-
low,

the following statement will be considered as invalid:

LandVehicle l = new LandVehicle();

6.8.5 Extending Interface

Does a subclass of a class that implements an interface also inherit the methods of
the interface? Consider the code in Listing 6-6:

Listing 6-6: Extending Interface to Subclasses

public abstract class LandVehicle {
 int doors;
 LandVehicle() { doors = 4; }
 void drive();
}

interface I {
 void x();
}

class A implements I {

}

class B extends A {
 void z() {
 x();
 y();
 }

 public static void main(String args[]) {
 A aa = new A();
 B bb = new B();
 bb.z();
 }
}

 public void x() { System.out.println("in A.x"); }
 public void y() { System.out.println("in A.y"); }

Inheritance 85

The following output

in A.x
in A.y

suggests that the methods x() and y() of class A have been invoked. Class B, being
the subclass of class A, inherited not only method y() but also method x() which is a
method of the interface I.

6.8.6 Limitations of Interface for Multiple Inheritance

Although the interface feature in Java provides an alternative solution to achieving
multiple inheritance in class hierarchies, it has its limitations:

(a) No Inheritance Conflict

Consider the situation in Figure 6-17 where there is no inheritance conflict in

attributes or methods.

X
a

getA()
b
getB()

Z

Y

Figure 6-17: No inheritance conflict.

A Z object has attributes a and b together with methods getA() and getB().

Without the support of multiple inheritance in Java, such class hierarchy cannot be
realized.

(b) No Code Reuse

Let us, as examples, consider land vehicles such as motor cars and trucks. A

class hierarchy showing Motor Car and Truck as subclasses of LandVehicle is given
in Figure 6-18.

in situations where there is no inheritance conflict.
a. An interface does not provide a natural means of realizing multiple inheritance

b. While the principal reason for inheritance is code reusability, the interface
facility does not encourage code reuse since duplication of code is inevitable.

86 Object-Oriented Programming and Java

Motor Car and Truck have been declared as subclasses to distinguish the differ-

ent brake system used. By means of inheritance, data attributes regnNumber and
numberOfPassenger of LandVehicle are inherited by Motor Car and Truck as part
of their properties.

Let us extend this example in our discussion of the issue—no code reuse and
further extend the class hierarchy to include information that distinguishes the drive
system between the land vehicles. We will consider three alternative representations.

 Land
Vehicle

regnNumber
numberOfPassenger

Motor
Car Truck

brake()brake()

Figure 6-18: Motor car and truck.

In the first representation, the front-drive feature of a vehicle is defined as a super-

class in Figure 6-19. The implementation of drive() method for the vehicles is
indicated by the two statements:

frontWheelSys.engage();
this.accelerate();

The Front-Wheel-Drive class is an abstract class with a drive() method. This

suggests that all motorcars and trucks are front-wheel-drive vehicles. This is incor-
rect as some motorcars and trucks may be back-wheel-drive vehicles. The class hier-
archy in Figure 6-19 is therefore inappropriate for representing motor cars and
trucks.

 Land
Vehicle

regnNumber
numberOfPassenger

Motor
Car Truck

brake() brake()

Front-Wheel
Drive

drive()
 frontWheelSys.engage()
 this.accelerate()

Figure 6-19: “Front-Wheel Drive Class as Superclass” Representation Scheme

Inheritance 87

Front-Wheel
Drive Car

drive() drive()Front-Wheel
Drive Truck

Land
Vehicle

regnNumber
numberOfPassenger

Motor
Car

Truck
brake()brake()

Figure 6-20: Front-Wheel Drive class as subclasses: representation scheme.

In the second representation, the front-drive feature is contained within a sub-

class, Front-Wheel-Drive Car or Front-Wheel-Drive Truck in Figure 6-20. While this
is semantically correct in satisfying the requirement, it does not take full advantage
of inheritance – the drive() method is duplicated in Front-Wheel-Drive Car and
Front-Wheel-Drive Truck class.

In the last representation, the drive() method is abstracted into a separate super-
class and inherited by Front-Wheel-Drive Car and Front-Wheel-Drive Truck through
a multiple inheritance chain in Figure 6-21.

drive() Front-Wheel
Drive Truck

Front-Wheel
Drive Car

Land
Vehicle

regnNumber
numberOfPassenger

Motor
Car

Truck
brake()brake()

drive()

Front-Wheel
Drive

Figure 6-21: “Multiple inheritance” representation scheme.

This hierarchy is obviously desirable but implementing the solution with the in-

terface construct would result in the definition of drive() method as an abstract
method of a Front-Wheel-Drive interface and implemented in the Front-Wheel-Drive
Car and Front-Wheel-Drive Truck classes. The effect is the same as that for the

88 Object-Oriented Programming and Java

“Front-Wheel Drive as Subclasses” representation scheme where the implementation
of the drive() method was duplicated in the two subclasses.

Truck

Front-Wh
Drive Car

Front-Wh
Dr Truck

Back-Wh
Dr Truck

Back-Wh
Drive Car

Front-Wh
Drive

Motor
Car

Land
Vehicle

regnNumber
numberOfPassenger

brake() brake()

Back-Wh
Drive

drive()
 backWheelSys.engage()
 this.accelerate()

drive()
 frontWheelSys.engage()
 this.accelerate()

Figure 6-22: Front-Wheel and Back-Wheel Drive vehicles.

The problem with the interface solution is further amplified when we consider

the need to implement the drive() method for Back-Wheel-Drive vehicles as well
(see Figure 6-22). Using the interface solution, we need to implement the drive()
method in Front-Wheel-Drive Car, Back-Wheel-Drive Car, Front-Wheel-Drive
Truck, and Back-Wheel-Drive Truck. This approach can be error-prone.

From the above example, it is clear that the interface construct does not encour-
age code reuse and duplication of method implementation is inevitable. If multiple
inheritance had been available in Java, implementing the drive() method would be
easier.

6.9 Summary

The following points were discussed in this chapter:

• A class can take on the properties of a superclass via the inheritance

mechanism.
• Inheritance is the ability of a subclass to take on the general properties of

classes higher up in a class hierarchy.
• Properties can only be propagated downward from a superclass to a sub-

class.
• Inheritance enables code reuse.
• Inheritance enhances software maintainability.
• Inheritance enables class extension through subclassing.
• A class that takes on properties from only one superclass is said to exhibit

single inheritance.

Inheritance 89

• A class that takes on properties from two or more superclasses is said to

exhibit multiple inheritance.
• Multiple inheritance is not implemented in Java, hence, the interface con-

struct implemented via the interface keyword is an alternative solution to
achieve multiple inheritance. However, this solution has its limitations.

6.10 Exercises

The following points were discussed in this chapter:

1. Define and distinguish the terms single inheritance and multiple inheri-
tance.

2. Give an example of multiple inheritance in a real-life situation.
3. A and B are two classes. A inherits properties from B, so A is a

___________ class of B and B is a __________ class of A.
If A has attributes a1 and a2, methods getA1() and getA2(), and B has

attributes b1 and b2, methods getB1() and getB2(), then by means of inheri-
tance, the actual definition of A and B would be:

class A {
Attributes:

Methods:

class B {
Attributes:

Methods:

4. Given the following information on classes A and B, declare A and B in

Java:

• attributes a1, b1 are integers;
• attributes a2, b2 are strings;
• method getA1(), getA2(), getB1(), getB2() returns a1, a2, b1, and

b2, respectively.

5. How does inheritance contribute to software reusability?
6. Given the following class hierarchy diagram,

which class’s printLine() method would be used for each of the messages
below (assuming z is an object instantiated from class F):

90 Object-Oriented Programming and Java

A
printLine(int x, String y)

printLine(String x, y)

printLine(String x, y) printLine(String x)

printLine(int x) printLine(String x)

printLine(int x)
CB

ED

GF

a) z.printLine(1)

d)

7. What can you say about the method printLine(String x) of class G in
Question 6?

8. Distinguish between contract inheritance and implementation inheritance.
9. Discuss the problem associated with multiple inheritance. How does Java

overcome it and what feature is provided in Java to achieve multiple in-
heritance? Discuss the limitation of this feature.

10. An abstract class contains one or more ____________ methods. (Fill in
the blank.)Distinguish between an abstract class and an interface. Which is
better and why?

11. What is the expected output for the code in Listing 6-7.

interface I {
 void x();
 void y();
}

class A implements I {
 A() {}

}

class B extends A {
 B() {}

 public void y() {

 }

b) z.printLine(2, "Object-Oriented Programming")

c) z.printLine("Java")

z.printLine("Object-Oriented Programming", "Java")

e) z.printLine("Object-Oriented Programming", 3)

 public void w() {System.out.println("in A.w");}
 public void x() {System.out.println("in A.x");}
 public void y() {System.out.println("in A.y");}

 System.out.println("in B.y");

Inheritance 91

 void z() {
 w();
 x();
 }

 static public void main(String args[]) {
 A aa = new A();
 B bb = new B();
 bb.z();
 bb.y();
 }
}

 Listing 6-7

7
Polymorphism

Up till now we have been assuming all code is bound during compilation. Such
binding is known as static binding. Binding can also take place at run-time and this
form of binding is known as dynamic binding.

Static binding is limited and may lead to difficulty in software maintenance.
Dynamic binding, on the other hand, provides design flexibility and may enhance
software maintainability.

In this chapter, we will discuss static binding and dynamic binding. We will
also examine how dynamic binding contributes to polymorphism—the ability of
objects to respond to the same message with the appropriate method based on their
class definition.

7.1 Static Binding

In Chapter 6, we introduced an example on shapes. Let us now examine how the
conventional procedural programming approach handles the code for the Shape
example.

In Listing 7-1, we list the pseudo-code for the Shape example using procedural
declaration. Two shapes, a circle and a square, in the form of a record structure have
been declared in the data section. Each shape has a shape name. The shape name for
circle c is “circle C” and the shape name for square s is “square S.” Circle C has a
variable radius while square S has a variable side. In addition, an array, shapeAr-
ray, has been declared to contain up to five characters, each character referencing a
shape.

94 Object-Oriented Programming and Java

Listing 7-1: Procedural declaration of Shape example.

In the main code section, the circle and square have been initialized with some
parameters. Iterating through the array, the area of circle C and square S is produced
and printed.

Data Section
Type
 Circle = Record
 String name;
 int radius;
 End
 Square = Record
 String name;
 int side;
 End
Variable
 shapeArray : Array [1..5] of char;
 c : Circle;
 s : Square;
Main Code Section
 c.name = "Circle C";
 c.radius = 2;
 s.name = "Square S";
 s.side = 3;
 A[1] = 'c';
 A[2] = 's';
 For int i = 1 to 2 do {
 Switch shapeArray[i]
 'c' : calculateCircleArea();
 's' : calculateSquareArea();
 'n' : do nothing;
 End (Case)
 }

Routine Section
calculateCircleArea() {
 float area = 3.14 * c.radius * c.radius;
 writeln ("The area of ", c.name, " is ", area, " sq. cm.");
}

calculateSquareArea() {
 float area = s.side * s.side;
 writeln ("The area of ", s.name, " is ", area, " sq. cm.");
}

Data Section
Type
 ...
 Triangle = Record
 String name;
 int base, height;
 End
Variable
 ...
 t : Triangle;

Main Code Section

Polymorphism 95

Listing 7-2: Static binding: adding a triangle.

Since each array element may reference a circle, a square, or something else
(we do not really care which one), a case statement for determining which of the
shape’s calculate area routine to execute given a choice has to be coded in the
program and bound at compile time. For example, a calculateCircleArea() rou-
tine has to be called for a circle and a calculateSquareArea() routine has to be
called for a square, and so on.

Two distinct calculate area routines are required because the method for
calculating the area of a circle is different from that for a square. Also, most proce-
dural programming languages do not allow two routines to have the same name.
Different routine names therefore have to be devised.

We say that the variable shapeArray[i] (or the choices) is statically bound to
the routine calculateCircleArea() in the case when the value of shapeArray[i]
is “c” and calculateSquareArea() when the value of shapeArray[i] is “s.”

With static binding, problems may arise in code maintenance. To illustrate, let
us now add another shape, Triangle, to the code. Listing 7-2 shows the solution with
changes highlighted in bold. Note that changes were made at the following points:

• in the data section where a triangle is defined;
• in the main code section where the detection of a triangle and the appropri-

ate routine call have to be included in the switch statement; and
• in the routine section where the specific routine for calculating the area of

the triangle has to be included.

 ...
 t.name = "Trianlge T";
 t.base = 4; t.height = 5;
 ...
 A[3] = 't';
 For int i = 1 to 3 do {
 Switch shapeArray[i]
 'c' : calculateCircleArea();
 's' : calculateSquareArea();
 't' : calculateTriangleArea();
 'n' : do nothing;
 End (Case)
 }

Routine Section
calculateCircleArea() {
 ...
}

calculateSquareArea() {
 ...
}

calculateTriangleArea() {
 float area = 0.5f * t.base * t.height;
 writeln ("The area of ", t.name, " is ", area, " sq. cm.");
}

96 Object-Oriented Programming and Java

Multiple places are affected as a result of extending shape types, and this is er-

ror prone.

7.2 Dynamic Binding

An alternative approach to static binding is dynamic binding. Here, the binding of
variables to routines (or methods in object-oriented programming terms) is done at
run time. In Listing 7-3, an object-oriented version of the previous Shape example is
produced. The code here resembles the one used in Chapter 6.

Listing 7-3: Dynamic binding—Shape, Circle and Square classes.

class Shape {
 private String name;
 Shape(String aName) {name=aName;}
 public String getName() {return name;}
 public float calculateArea() {return 0.0f;}

 public static void main(String argv[]) {
 Circle c = new Circle(”Circle C”);
 Square s = new Square(”Square S”);
 Shape shapeArray[] = {c, s};
 for (int i=0; i<shapeArray.length; i++) {

 }
 }
}

class Circle extends Shape {
 private int radius;
 Circle(String aName) {
 super(aName);
 radius = 3;
 }

 public float calculateArea() {
 float area;
 area = (float) (3.14 * radius * radius);
 return area;
 }
}

class Square extends Shape {
 private int side;
 Square(String aName) {
 super(aName);
 side = 3;
 }

 public float calculateArea() {
 int area;
 area = side * side;
 return area;
 }
}

 System.out.println("The area of " + shapeArray[i].getName()
 + " is " + shapeArray[i].calculateArea()+" sq. cm.\n");

Polymorphism 97

Two objects, a circle and a square, are created by the first two statements of

While the actual routine for the choice of shape in the array elements has to be

pre-determined via a switch statement in static binding, switch statement is not
required with dynamic binding.

Based on the output from the code, it is clear that the appropriate method for
responding to the choice in shapeArray has been used:

The area of Circle C is 28.26 sq. cm.
The area of Square S is 9 sq. cm.

The method has been selected based on the class of the shape referenced in

shapeArray at run-time. This is only possible in programming languages that sup-
port dynamic binding. With dynamic binding, the variable shapeArray[i] is bound
to an object method at run time when the class definition of the shape referenced is
known.

7.3 Operation Overloading

Circle and Square have similar calculateArea() method in their class definition.
Although both methods have the same method signature, they have different method
implementation, since the formula for calculating area of each is not the same.

While it is impossible in conventional imperative programming languages to
have two routines having the same name, it is allowed in object-oriented program-
ming. The ability to use the same name for two or more methods in a class is known
as operation overloading in object-oriented terms (see also Section 3.6).

7.3.1 Same Method Signature

Two methods are said to have the same method signature if:

• the name of the methods are the same; and
• the number and type of formal parameters are the same.

The calculateArea() method of the Shape, Circle and Square classes, in

Listing 7-3, is said to have the same method signature.

,

printed by the statement:
and iterating through the array, the area of the respective object is produced and
main(). Object variables for the circle and square are kept in the array, shapeArray

System.out.println("The area of " + shapeArray[i].getName()
 + " is " + shapeArray[i].calculateArea()+" sq. cm.\n");

98 Object-Oriented Programming and Java

7.3.2 Overloading Method Names

Methods having the same method signature may pose problems in the compilation
process depending on where they are used in the program. In this section, we will
consider various situations and report on the validity of overloaded method names.

In the code fragment below, method A() is overloaded by A(int x), A(int
x, int y), and A(String s). These four methods are distinguished in the compi-
lation process by the number and type of parameters present in the method call.

Indicated below are the actual methods called given the message on the left:

A thisA = new A(); A()

A thisA = new A(3); A(int x)

A thisA = new A(4, 5); A(int x, int y)

A thisA = new A(”hello”); A(String x)

In the code fragment below, the definition of method a1() is reported as a

duplicate method declaration by the compiler since the two methods have been
declared in the same class. It is thus considered to be invalid.

class A {
 A() {}
 public void a1() {}
 public void a1() {}
}

The return type of a method does not distinguish overloaded methods from one

another as the following example shows. Method a1() is flagged as invalid by the
compiler as both of them are considered similar.

However, declaring methods of the same signature in different classes are con-

sidered as valid in object-oriented programming:

class A {
 ...
 A() { ... }
 A(int x) { ... }
 A(int x, int y) { ... }
 A(String x) { ... }
 ...
}

class A {
 A() {}
 public void a1() {}
 public void a1() {}
}

Polymorphism 99

Finally, consider the following code fragment:

Although method c1() is defined in two different classes, the situation is dif-

ferent from the previous case. In this case, method c1() is defined in subclass D and
superclass C. The declaration of method c1() in this case is considered valid as in
the previous case. However, the code produces the following output when it is run:

C.c1()
D.d1()

Method c1() in subclass D is said to redefine (or override) method c1() of

superclass C. For a method to redefine a superclass’s method, the method signature
of the two methods must be the same; otherwise, they are considered as two different
methods as shown by the output from the code below:

class A {
 A() {}
 public void a1() {}

 public static void main(String args[]) {
 }
}

class B {

 B() {}
 public void a1() {}
 public void b1() {}
}

class C {
 C() {}

}

 }
 public void d1() {}

 public static void main(String args[]) {
 D thisD = new D();
 thisD.c1();
 }
}

 public void c1() {System.out.println("C.c1()");}

 D() {}
class D extends C {

 public void c1() {

 System.out.println("D.c1()");
 super.c1();

100 Object-Oriented Programming and Java

Output

C.c1()
C.c1()
D.c1()

7.4 Polymorphism

We noted earlier in Section 7.2 that we can achieve code binding at run-time with
dynamic binding. Also, appropriate method call can be made without making any
direct reference to it in the message. As is evident in the output of the code, the ap-
propriate calculateArea() method for the respective object was selected.

It is apparent that the message (calculateArea()) from the sender (main())
has been interpreted appropriately by the receiver. A circle receiving the message has
used its own method calculateArea() to calculate the area and a square receiving
the same message has done the same with its own calculateArea() method. The
ability of different objects to perform the appropriate method in response to the same
message is known as polymorphism in object-oriented programming.

7.4.1 Selection of Method

In polymorphism, the interpretation of a message is not affected by a sender. What a
sender knows is that an object can respond to a message but it does not know which
class the object belongs to or how it will respond to the message. For example, the
message shapeArray[i].calculateArea() of main() (see Listing 7-3) is sent to a
Shape object (a circle or a square). The sender (main()) does not know which of the
Shape objects will respond to the message, let alone how it will perform the method.

The selection of the appropriate method depends on the class the object belongs
to. For a circle object, the calculateArea() method of the Circle class will be

class C {
 C() {}

}

 }
 public void d1() {}

 public static void main(String args[]) {
 D thisD = new D();
 thisD.c1();
 thisD.c1(3);
 }
}

 System.out.println("D.c1()");
 super.c1();
 public void c1(int i) {
 D() {}
class D extends C {

 public void c1() {System.out.println("C.c1()");}

Polymorphism 101

called and for a square object, the calculateArea() method of the Square class will
be called. Since the first element in shapeArray is a circle, the calculateArea()
method of the Circle class is executed producing an area of 28.26 cm2. Similarly, the
calculateArea() method of the Square class is performed for the second element
of shapeArray, resulting in the value 9 cm2. The calculateArea() method of the
Circle and Square class is thus said to be polymorphic.

7.4.2 Incremental Development

Polymorphism is facilitated by dynamic binding and the ability to use the same name
for similar methods across class definitions. It would not be possible to achieve
polymorphism if a programming language does not support these facilities.

Polymorphism encourages programmers to specify what method should happen
rather than how it should happen. This approach allows flexibility in code design and
promotes incremental program development. To illustrate, we will consider adding a
new Triangle object type into the code of Listing 7-3. Listing 7-4 is the modified
code with additional code highlighted in bold.

Note that minimal changes were made to the original code of Listing 7-3. The
main changes occur in the following areas:

• A new Triangle class was added. The addition of the class does not affect

the other parts of the program.
• A statement was added in main() to create the Triangle object.
• A statement was added in main() to include the newly created triangle

into the shapeArray.

No change was made in the println statement in main(). No switch state-

ment is required to determine which method to use. This example shows that adding
a new object type is made easy with polymorphism, and there is greater scope for
incremental development.

class Shape {
 ...
 public static void main(String argv[]) {

 Triangle t = new Triangle("Triangle T");
 Shape shapeArray[] = {c, s, t};
 for (int i=0; i<shapeArray.length; i++) {

 }
 }
}
class Circle extends Shape {
...
}
class Square extends Shape {
 ...
}

 Circle c = new Circle("Circle C");
 Square s = new Square("Square S");

 System.out.println("The area of " + shapeArray[i].getName()
 + " is " + shapeArray[i].calculateArea()+" sq. cm.\n");

102 Object-Oriented Programming and Java

 Listing 7-4: Dynamic binding—adding a triangle.

7.4.3 Increased Code Readability

Polymorphism also increases code readability since the same message is used to call
different objects to perform the appropriate behavior. The code for calling methods is
greatly simplified as much of the work in determining which class’s method to call is
now handled implicitly by the language. The simplicity of the code is evident in the
println() statement of Listing 7-3.

7.5 Summary

In this chapter, we discussed:

• Static binding—the binding of variables to operations at compile time;
• Dynamic binding—the binding of variables to operations at run time;
• Operation overloading—the ability to use the same name for two or more

methods in a class; and
• Polymorphism—the ability of different objects to perform the appropriate

method in response to the same message.

7.6 Exercises

1.

2. How does polymorphism contribute to software maintainability?
3. Contrast between “method redefinition” and “operation overloading.”

class Triangle extends Shape {
 private int base, height;

 Triangle(String aName) {
 super(aName);
 base = 4; height = 5;
 }

 public float calculateArea() {
 float area = 0.5f * base * height;
 return area;
 }
}

Discuss the two facilities required in programming languages for support-
ing polymorphism.

8
Modularity

We have so far discussed the basic facilities for creating objects through Java class
definitions and code reuse by inheriting properties of similar but more general
classes.

In this chapter, we look at the important issue of modularity and the related
mechanisms available in Java.

8.1 Methods and Classes as Program Units

A method is comprised of statement sequences and is often viewed as the smallest
program unit to be considered as a subprogram. It is self-contained and designed for
a particular task which represents an object behavior.

Together with data, a coordinated set of methods completes the specification of
objects. As we have seen, data and methods are the constituents of a class definition.
Compared to a method, a class definition is the next bigger unit under design.

Properties defined in a class can be distinguished into object and class proper-
ties. Object properties are definitions that are specific to objects and apply to all
objects from the same class. Class properties, on the other hand, apply only to the
class even though the structure and behavior of objects of a class is defined by the
class.

8.2 Object and Class Properties

In this section, we will examine the distinction between object and class properties.

104 Object-Oriented Programming and Java

8.2.1 Counting Instances

Listing 8-1 contains the code for an example that counts the number of objects
instantiated from the SalesPerson class.

Listing 8-1: Counting instances.

The code begins with the declaration of a variable count. This variable is used
to continually create the number of SalesPerson objects. For each creation of a
SalesPerson object, count is incremented via the statement:

count = count+1;

This statement is executed twice since two SalesPerson objects were instanti-

ated. Finally, the code prints out the number of SalesPerson objects instantiated via
the statement

The output:

suggests that two SalesPerson objects were created, and this is clearly correct.

While the solution is correct, it is cumbersome since for each new instantiation
of SalesPerson object, a fresh

count = count+1;

statement has to be added into main().

An alternate class organisation is given in Listing 8-2, where count is incre-
mented within the constructor method of the SalesPerson class. This strategy sup-
ports abstraction and is advantageous because the user does not have to bother with
operations on count.

class SalesPerson {
 String employeeId;

 SalesPerson(String aEmployeeId) {
 employeeId = aEmployeeId;
 }

 public static void main(String arg[]) {
 int count = 0;

 count = count+1;

 count = count+1;

 }
}

 SalesPerson s1 = new SalesPerson("12345S");

 SalesPerson s2 = new SalesPerson("33221K");

 System.out.println(count + " salespersons have been created");

System.out.println(count + " salespersons have been created");

 "2 salespersons have been created"

Modularity 105

 Listing 8-2: Alternative solution to counting instances.

It is clear from the output:

”1 salespersons have been created”

that the result is incorrect.1

The variable count in the alternative solution is declared as an object attribute
rather than a local variable of the static method main() as was the case for the previ-
ous solution. As an object attribute, count can now be incremented in the constructor
method of the SalesPerson class. However, with each instantiation of a SalesPerson
object, the count variable of each newly created object is incremented. Since two
instances of SalesPerson object were created, two independent copies of count, each
having the value 1, were present. Figure 8-1 shows the state of the two created
SalesPerson objects.

SalesPerson s1
Attributes
- employeeNumber : 12345S
- count : 1
Operations
- getCount()

SalesPerson s2
Attributes
- employeeNumber : 33221K
- count : 1
Operations
- getCount()

Figure 8-1: State of SalesPerson objects.

1Even if s1.getCount() has been substituted with s2.getCount() in the println() method,
the result will still be incorrect.

class SalesPerson {
 String employeeId;
 int count = 0;
 SalesPerson(String aEmployeeId) {
 employeeId = aEmployeeId;
 count = count + 1;
 }
 int getCount() { return count; }
 public static void main(String argv[]) {
 SalesPerson s1 = new SalesPerson(”12345S”);
 SalesPerson s2 = new SalesPerson(”33221K”);
 System.out.println(s1.getCount() +
 ” salespersons have been created”);
 }
}

106 Object-Oriented Programming and Java

Although only one copy of count is required, it is unclear which copy of the

two instances should be used.

8.2.2 Shared Attributes

Another solution can be found in Listing 8-3 whereby count is declared as static.
Declaring count as static allows the variable count to be shared among all in-
stances of the SalesPerson class. Thus, s1.count refers to the same memory location
as s2.count. The statement:

count = count+1;

in the constructor method therefore increments the same shared copy of count as
shown in Figure 8-2. The output from the code:

”2 salespersons have been created”

is correct.

Listing 8-3: Shared attributes.

SalesPerson s1
Attributes
- employeeNumber : 12345S

Operations
- getCount()

SalesPerson
Attributes
- count : 2

SalesPerson s2
Attributes
- employeeNumber : 33221K

Operations
- getCount()

Figure 8-2: Shared variable count.

class SalesPerson {
 String employeeId;
 static int count = 0;
 SalesPerson(String aEmployeeId) {
 employeeId = aEmployeeId;
 count = count + 1;
 }
 int getCount() { return count; }
 public static void main(String argv[]) {

 System.out.println(s1.getCount() +

 }
}

 SalesPerson s1 = new SalesPerson("12345S");
 SalesPerson s2 = new SalesPerson("33221K");

 " salespersons have been created");

Modularity 107

8.2.3 Class Attributes

The static variable count is also known as a class attribute. While a class defini-
tion specifies the structure and behavior of objects within, it may have its own attri-
bute and method definitions.

An attribute definition that is preceded with the keyword static is a class
attribute. While we previously viewed the static variable count as shared amongst
all instances, its association with the class is consistent. As a class attribute, it is also
accessible to instances of the class.

8.2.4 Class Methods

In another change in Listing 8-4, we make getCount() a class method by prefixing
it with the static keyword. The results from the code is the same as that of Listing
8-3 with just static count.

Listing 8-4: Class methods.

SalesPerson s1
Attributes
- employeeNumber : 12345S

SalesPerson
Attributes
- count : 2
Operations
- getCount()

SalesPerson s2
Attributes
- employeeNumber : 33221K

Figure 8-3: Class Method getCount()

class SalesPerson {
 String employeeId;
 static int count = 0;
 SalesPerson(String aEmployeeId) {
 employeeId = aEmployeeId;
 count = count + 1;
 }
 static int getCount() { return count; }
 public static void main(String argv[]) {
 SalesPerson s1 = new SalesPerson("12345S");
 SalesPerson s2 = new SalesPerson("33221K");
 System.out.println(s1.getCount() +
 " salespersons have been created");
 }
}

Note the difference in representation between the getCount() method of Figure
8-3 for Listing 8-4 and Figure 8-2 for Listing 8-3. In Figure 8-3, both SalesPerson

to the SalesPerson class as represented by the outermost bubble surrounding instances
s1 and s2.

objects s1 and s2 do not own the getCount() method since the method belongs

108 Object-Oriented Programming and Java

8.2.5 Name Aliases

(where there may be several getCount() methods in other class definitions), quali-
fication by the class name as in SalesPerson.getCount() is the only way to access
the method. Thus, within static void main(), the println() method could have
been:

8.3 Controlling Visibility

Except for the discussion on “Representational Independence” in Section 3.5, we
have mostly ignored the issue of visibility of attributes and methods. Any discussion
on modularity is not complete without discussing visibility issues.

First, while modules should be as independent as possible with minimal cou-
pling, no module can be totally isolated from other code since it is unusual for a
module to work in isolation. Thus, there must be entities on an object that are acces-
sible externally.

On the other hand, objects should reveal as little as possible of their internal
workings so that there will be minimal dependence on such details. Ideally, objects
will reveal information on a need-to-know basis.

We have earlier seen the use of the visibility specifiers private and public in
Section 3.5. They precede attribute and method definitions. Both access control
specifiers function at the extreme ends of the visibility spectrum. The private speci-
fier makes entities that follow it hidden from code fragments external to the class.
The public specifier makes entities that follow it fully visible from all other Java
code.

We modify our SalesPerson class in Listing 8-5 so that count has the private
access specifier, while employeeId and getCount() are declared as public. This
means that the variable count is not visible by any code outside the class definition.
As such, any part of the program outside the class definition of SalesPerson cannot
directly access the count variable.

Private variables are either used within the class definition, or a public acces-
sor method is implemented to provide the access required outside the class defini-

System.out.println(getCount() +

all aliases that reference the static method getCount(). getCount() is typically
the most convenient usage within the class construct. Outside of the class definition

Within the class definition of SalesPerson in Listing 8-4, the method names
getCount(), s1.getCount(), s2.getCount() and SalesPerson.getCount() are

"salespersons have been created");

getCount() to return the value of count.
tion. We assume the latter to be the case and provided a publicly accessible

Modularity 109

Listing 8-5: Restricted access of count.

Between the public and private extremes, Java also allows for two more
categories: protected and the default visibility of “friendly.”

protected default
(friendly)

private public

While the public and private specifiers allow for all-or-nothing access out-

side of the class definition, the protected keyword makes entities that follow it
accessible to code fragments with its immediate subclass. For entities with no access
specifier, friendly access is assumed. Here, access is given to code fragments within
the same package. Table 8-1 summarizes accessibility rules from most restrictive to
least restrictive.

Table 8-1: Access specifiers.

Keyword Visibility
private Access to a private variable or method is only allowed within the

code fragments of a class.
pro-
tected

Access to a protected variable or method is only allowed within the
code fragments of a class and its subclass.

(friendly) Access to a friendly variable or method (with no access specifier) is
only allowed within the code fragments of a class and any other class
in the same package.

public Access to a public variable or method is unrestricted. It may be
accessed from the code fragments of any class.

class SalesPerson {
 public String employeeId;
 private static int count = 0;
 SalesPerson(String aEmployeeId) {
 employeeId = aEmployeeId;
 count = count + 1;
 }
 public static int getCount() { return count; }
 public static void main(String argv[]) {
 SalesPerson s1 = new SalesPerson("12345S");
 SalesPerson s2 = new SalesPerson("33221K");
 System.out.println(s1.getCount() +

 }
}

 " salespersons have been created");

110 Object-Oriented Programming and Java

8.4 Packages

While class definitions are practical modular units, the Java programming language
has another mechanism that facilitates programming teams and reusable software
units. The package facility allows for appropriate classes to be grouped into pack-
ages. As with standard design rationale for objects where relevant methods are
placed in the same class definition, packages in Java form the next level of software
containment for classes with logically related functionality.

Packaging also partitions the name space to avoid name clashes. Computations
in Java are reliant on objects, and the result of system design is a set of class defini-
tions. Where teams of programmers work independently with the intention of the
results to be subsequently integrated, there is a chance that they may choose the same
name for their classes. Packaging thus allows for the names of classes to be confined
to the originating package.

8.4.1 The package Keyword

Package hierarchy is specified via the package keyword preceding a class definition
as shown below. Here, class XYZ belongs within package A. Its complete qualified
name is thus A.XYZ.

It follows that a “package B.C” prefix before “class RST” definition makes

class RST belong to the C package that is in the B package.

Thus far, we have been using class definitions but without any package prefix.

Such classes belong to the top-level anonymous package. As for locating and loading
code files, the Java virtual machine maps the package hierarchy onto its directory
structure. As such, code for A.XYZ will be at XYZ.class in directory A, or more
succinctly, the pathname A/XYZ.class. Similarly, B.C.RST will be found at
B/C/RST.class.

8.4.2 The import Keyword

The import keyword provides the complement function of the package facility.
While the package keyword places succeeding class definitions in a separate name
space of the said package, the import keyword makes package constituents visible.

package A;
class XYZ {
 int h;
 void j() { ... }
}

package B.C;
class RST {
 int y;
 void z() { ... }
}

Modularity 111

Continuing from our earlier RST example, any client code outside of package

B.C must either refer to it in its qualified form:

or, import the complete name space of the B.C package

or import just the single class

Since the class RST is now used outside its package, RST must be a public

class.

8.5 Encapsulation

Another concept in object-oriented programming closely associated with modularity
is encapsulation. Simply, encapsulation means the bringing together of a set of at-
tributes and methods into an object definition and hiding their implementational
structure from the object's users. Therefore, how an object structures and implements
its attributes and methods is not visible to other objects using it. Direct access to an
object's attributes is not permitted and any changes to the object's data can only be
effected indirectly via a set of publicly available methods.

Analogically speaking, encapsulation can be compared to the way an egg is
formed. Within an egg is a yolk that is surrounded by the white. To get to the yolk,
one has to traverse through the white. Thought of in this way, the data of an object is
like the yolk and the methods are like the white. Data is thus protected by methods—
that is, access to the data is only permissible via the methods.

Access control specifiers introduced in Section 8.3 facilitate encapsulation by
controlling the visibility of data and methods by other objects.

class another {
 B.C.RST x = new B.C.RST();
 ...
}

import B.C.*;
class another {
 RST x = new RST();
 ...
}

import B.C.RST;
class another {
 RST x = new RST();
 ...
}

package B.C;
public class RST {
 int y;
 void z() { ... }
}

112 Object-Oriented Programming and Java

8.5.1 Bundling and Information Hiding

Encapsulation is supported by two subordinate concepts: bundling and information
hiding. Bundling is the act of associating a set of methods with a set of data as the
only means of affecting the values of the data. Related data and methods are there-
fore brought together in bundling, thus increasing the cohesiveness of object defini-
tion.

Information hiding refers to the hiding of internal representation of data and
methods from the users of these data and methods. By exercising information hiding,
data access on an object is limited to a set of publicly available methods. While the
client is aware of the existence of the methods, it does not know how the methods are
internally structured. In this way, information hiding enables the separation of the
what from the how of object definition. What specifies what behavior an object is
capable of and how specifies how the data and methods of an object are imple-
mented.

8.5.2 Enhanced Software Maintainability

By separating what from how, a client’s access to an object is not affected by changes
in the internal implementation of the object. This enhances software maintainability.

To illustrate, let us consider an example using stack, which is a software con-
struct with operations such as push(), pop(), empty(), full() and size(). The
operation push() adds an item into a data structure in the stack. The operation pop()
removes the most recently pushed item. The operation empty() returns true if the
stack is empty and full() returns true if the data structure has reached its limit. The
operation size() returns the current number of items pushed into the stack.

There are two possible ways of implementing the stack—using array or linked
list to store items pushed into the stack. The array implementation is shown in List-
ing 8-6.

 Stack() { contents = new int[size]; top = -1; }

class Stack {
 private int contents[];
 private int top, size=10;

 public int pop() {
 int x = 0;

 else x = contents[top--];
 return(x);
 }
 public void push(int x) {
 if (full()) System.err.println(stack overflow);
 else {contents[++top] = x;
 System.out.println(Pushed +x+ into Stack);}
 }
 public int size() { return(top+1); }
 public boolean empty() { return(size() == 0); }
 public boolean full() { return(size() == contents.length); }

 if (empty()) System.err.println("stack underflow");

" "

""""

Modularity 113

 Listing 8-6: Stack using an array implementation.

In this implementation, a number indicating the number of items for the array is
entered via the main prompt and converted into an integer via the statement:

numberOfItem = Integer.parseInt(argv[0]);

numberOfItem is later used in a for loop

for (i = 0; i<numberOfItem; i++) s.push(i);

to push integers into a stack created by the statement:

Stack s = new Stack();

The push() method first checks if the stack is already full; if not, the item

pushed is inserted into the array contents. An error message indicating “stack over-
flow” is displayed if the stack is already full. Finally, the pushed items are popped
via the for statement:

To test the program, a value 5 is entered:

$ java Stack 5

The output is as follows:

Pushed 0 into Stack
Pushed 1 into Stack
Pushed 2 into Stack
Pushed 3 into Stack
Pushed 4 into Stack

Details of Stack :
Item popped = 4
Item popped = 3
Item popped = 2
Item popped = 1
Item popped = 0

It indicates that the implementation is correct with an input value 5. However,

when an input value 12 is entered, the weakness of the array implementation is
reflected in the output:

 public static void main(String argv[]) {
 int i, numberOfItem;
 numberOfItem=Integer.parseInt(argv[0]) ;
 Stack s = new Stack();
 for (i = 0; i<numberOfItem; i++)
 s.push(i);
 System.out.println(\nDetails of Stack :);
 for (i = numberOfItem; i>0; i--)

 }
}

for (i = numberOfItem; i>0; i--)
 System.out.println(Item popped = +s.pop());

""

""

 System.out.println("Item popped = "+s.pop());

114 Object-Oriented Programming and Java

Pushed 0 into Stack
Pushed 1 into Stack
Pushed 2 into Stack
Pushed 3 into Stack
Pushed 4 into Stack
Pushed 5 into Stack
Pushed 6 into Stack
Pushed 7 into Stack
Pushed 8 into Stack
Pushed 9 into Stack
stack overflow
stack overflow

Details of Stack :
Item popped = 9
Item popped = 8
Item popped = 7
Item popped = 6
Item popped = 5
Item popped = 4
Item popped = 3
Item popped = 2
Item popped = 1
Item popped = 0
stack underflow
Item popped = 0
stack underflow
Item popped = 0

The problem with the above implementation lies in the size of the declared

array: 12 items cannot be pushed into an array with a size of 10. The extra two items
resulted in a “stack overflow” during the push operation and “stack underflow”
during the pop operation.

In the second implementation, the internal structure keeping the items is
changed from an array to a linked-list. Listing 8-7 is the code for the second imple-
mentation. A separate StackItem class is needed in this solution to create space for
storing integers pushed into the stack. As before, the solution works well with an
input value 5, but unlike the previous implementation, no “stack overflow” or “stack
underflow” messages were reported with an input value of 12:

Pushed 0 into Stack
Pushed 1 into Stack
Pushed 2 into Stack
Pushed 3 into Stack
Pushed 4 into Stack
Pushed 5 into Stack
Pushed 6 into Stack
Pushed 7 into Stack
Pushed 8 into Stack
Pushed 9 into Stack
Pushed 10 into
Stack
Pushed 11 into
Stack

Details of Stack :
Item popped = 11
Item popped = 10
Item popped = 9
Item popped = 8
Item popped = 7
Item popped = 6
Item popped = 5
Item popped = 4
Item popped = 3
Item popped = 2
Item popped = 1
Item popped = 0

Note that when the internal implementation of the stack was changed from an

array to a linked-list representation, no change was required in main(), the client or
user of the stack. Any change to the stack definition had been carried out on the
implementation part, without a change to the contract part, of the stack. We say that
the design of the Stack class exhibits information hiding by hiding the internal repre-
sentation of the stack from its client, main().

Modularity 115

8.5.3 Trade-Off

Encapsulation enhances software maintainability by limiting the ripple effects,
resulting from a change in object definition, from affecting other objects. This is
done by:

• increasing the cohesiveness of data and methods through bundling; and
• reducing the strength of coupling between software components by hiding

implementation details of objects from their users.

Enhanced software maintainability comes with a price. The trade-off to soft-
ware maintainability using encapsulation is performance since access to data is car-
ried out indirectly via the methods, and their execution would involve the execution
of additional statements resulting in reduced performance efficiency.

class Stack {
 private StackItem top, temp;
 private int size;

 public int pop() {
 int x = 0;

 else {x = top.getItem(); top=top.getPrevious();size=size-1;}
 return(x);
 }
 public void push(int x) {
 if (full()) System.err.println("stack overflow");
 else {temp=top; top=new StackItem();
 top.setPrevious(temp); top.setItem(x);
 size=size+1;

 }
 public int size() { return(size); }
 public boolean empty() { return(size() == 0); }
 public boolean full() { return(false); }

 Stack() {
 top = null;
 size = 0;
 }

 public static void main(String argv[]) {
 int i, numberOfItem;
 numberOfItem=Integer.parseInt(argv[0]) ;
 Stack s = new Stack();
 for (i = 0; i<numberOfItem; i++)
 s.push(i);

 for (i = numberOfItem; i>0; i--)

 }
}

class StackItem {
 private int item=0;

 if (empty()) System.err.println("stack underflow");

 System.out.println("Pushed "+x+" into Stack");}

 System.out.println("\nDetails of Stack : ");

 System.out.println("Item popped = "+s.pop());

116 Object-Oriented Programming and Java

Listing 8-7: Stack using a linked-list implementation.

8.6 Summary

The issues of modularity were discussed in this chapter. In particular, we noted that:

• A method is the smallest program unit to be considered as a whole. A class

is the next bigger unit.
• Attribute and method definitions are distinguished into object attributes

and methods; and class attributes and methods.
• Class attributes and methods are denoted in Java using the static key-

word.
• The visibility of attributes and methods to code fragments external to a

class can be controlled using access control specifiers—private, public,
friendly and protected.

• The private specifier makes entities that follow it hidden from code
fragments external to the class. The public specifier makes entities that
follow it visible from all other Java code. The protected specifier makes
entities that follow it accessible to code fragments of its subclass.

• For entities with no access specifier, the default specifier friendly is
assumed. The friendly specifier makes entities that follow it accessible to
code fragments within the same package.

• Appropriate classes with logically related functionality can be grouped to-
gether using the package facility. Package hierarchy is specified via the
package keyword preceding a class definition.

• The import keyword provides the complement function of the package
facility. The import keyword makes package constituents visible in pro-
gram code.

• Encapsulation is the bringing together of a set of attributes and methods
into an object definition and hiding their implementational structure from
the object’s users.

• Encapsulation is supported by two subordinate concepts: Bundling and In-
formation hiding. Bundling is the act of associating a set of methods with a
set of data as the only means of affecting the values of the data. Informa-
tion hiding refers to the hiding of internal representation of data and meth-
ods from the users of these data and methods.

 private StackItem previous;
 public int getItem() {return item;}
 public void setItem(int x) {item=x;}
 public StackItem getPrevious() {return previous;}
 public void setPrevious(StackItem p) {previous=p;}
 StackItem() {previous=null;}
}

Modularity 117

• Encapsulation enhances software maintainability by limiting the ripple

effects, resulting from a change in object definition, from affecting other
objects.

8.7 Exercises

1. What is encapsulation? How does encapsulation contribute to software
maintainability?

2. How does the code in Listing 8-8 measure up to the principle of encapsula-
tion? Comment.

3. How would you enhance the code in Listing 8-8 to achieve the desired
effect of encapsulation? What is the trade-off of your enhancement? What
are its advantages?

 Listing 8-8: time.java.

class time {
 int hour;
 int minute;

 time() {};

 public static void main (String arg[]) {
 time t = new time();
 t.hour = 3;
 t.minute = 25;

 }
}

 System.out.println("The time now is "+t.hour+":"+t.minute);

9
Exception Handling

We have so far discussed the concept of object-oriented programming involving
class definitions, object instantiation, the use of instance variables and methods, and
the practice of code reusability via inheritance from superclasses.

This practice has given rise to payoffs in terms of the software engineering
ideas of abstraction and modularity. The former allows a programmer to focus his
thoughts on issues that are crucial and relevant, and delay decisions on other less
pressing concerns. The latter characteristic ensures a degree of decoupling amongst
software components, which leads to better maintainability.

This chapter examines the exception handling mechanism in Java. The fact that
software modules should be robust enough to work under every situation, yet be
flexible enough to work under any condition and even those not yet conceived, is
indeed a tall order. The exception handling mechanism is key to achieving this goal.

9.1 Using Exceptions

The ideas of modularity and packaging promote software engineering, but there is a
subtle conflict of requirements. While the advantages of modularity stem from reus-
ability of well-tested and proven code, this is only achieved if class definitions are
never modified once they are committed into the code repository.

While it may be true that the bulk of code may not typically require modifica-
tions, a single (or sometimes simple) modification is all it takes to introduce unin-
tended side-effects. Yet, code modules typically require minor modifications before
they are used in a different scenario or project.

In general, generic portions of code, say searching or sorting an array, often re-
quire no modifications even across different applications. However, it is in the con-
tingency plans—say an empty array, a missing target during searching, or popping
an empty stack—that requirements change and different measures are necessary.

120 Object-Oriented Programming and Java

A traditional solution to using generic status code in the face of different con-

tingencies, as in this situation, relies on status codes via parameter passing. This
approach is unfortunately clumsy, and in some situations there is a need for constant
polling.

The exception mechanism in Java allows for contingency situations to be an-
ticipated or identified within the class construct, but its handling of that condition is
implemented elsewhere. It solves the dilemma we just discussed so that only generic
code and the detection of contingencies are within the class construct, but handling
of these contingencies is located at application specific modules.

Many API libraries such as input/output and networking rely on exception han-
dling for flexible error handling. This mechanism is thus a key feature in reusable
software development using Java.

9.2 Exception Terminology

Using the exception handling mechanism in Java involves:

• identifying exception conditions relevant to the application;
• locating exception handlers to respond to potential conditions; and
• monitoring when such conditions occur.

As with all representations in Java, exception conditions are denoted by objects.

Similar with all objects, exceptions are also defined by class constructs, but inherit-
ing attributes from the Exception superclass. While exception objects may be identi-
fied by object tags, additional attributes may be included for custom manipulation.

try-
block. Within it, normal facilities and rules for blocks apply but control-flow within
may be transferred to associated exception handlers. An appropriate statement block
prefixed by a catch-clause is then executed when the associated exception condition
occurs.

The occurrence of an exception condition is indicated by a throw-statement. It
allows for an exception object to be dynamically propagated to the most recent ex-
ception handler. Flow-control does not return following a throw-statement. Instead,
execution control proceeds at the statement following the try-block that handles the
exception.

9.3 Constructs and Exception Semantics in Java

We now consider the language primitives for realizing the exception handling
framework in Java. As seen,

• exception objects are defined via class constructs that inherit from the

Exception class;

Exception handling is dynamically enabled for statement blocks within a

Exception Handling 121

• exception handling is enabled within a try-block, with handlers indicated

by catch clauses; and
• an exception condition is identified by a throw statement. (Some prede-

fined exception conditions are thrown implicitly by the Java Virtual Ma-
chine.)

9.3.1 Defining Exception Objects

The smallest exception object in Java merely extends from the Exception superclass,
as outlined in the class definition for TransmissionError below:

class TransmissionError extends Exception {
}

Logically, its objects have the same structure as objects of the Exception parent

class which implements the basic functionality of exception objects. However, sub-
class objects are appropriately tagged (as part of Java semantics), so that objects may
be subsequently distinguished. It is often more productive to define a richer structure
so that such exception objects may be accurately identified as well as easily manipu-
lated.

Encapsulating exception conditions in objects allow for rich representations and

functionality (via instance variables and methods, respectively). An appropriate
design for such objects would reduce any overheads of coupling between conditions
and handlers.

9.3.2 Defining Exception Handlers

Exception handlers are introduced by the catch-clause within a try-block prefix, of
which the following code fragment is representative.

class TransmissionError extends Exception {
 int errorKind;
 TransmissionError() { errorKind = 0; }
 TransmissionError(int x) { errorKind = x; }

 errorKind); }
}

class X {
 ...
 T m() {
 ...
 try {
 Y b = new Y();
 b.performOperation();
 ...
 } catch (TransmissionError t) {
 errorRecovery();
 ...

 String toString() { return("Transmission Error: " +

122 Object-Oriented Programming and Java

Code within the try-block, as well as code dynamically invoked from there,
are regions where exception handling is enabled. In the representative class defini-
tion for X above, this region includes the statements within the try-block and other
blocks within methods invoked from there such as performOperation().

Exception objects thrown from a try-block may be potentially caught by a
catch-block exception handler as long as the type of the former matches that ex-
pected for the latter as indicated by its formal parameter. In our previous example,
the first handler catches TransmissionError exception objects, while the second
handler catches IOException exception objects. Since objects of a subclass share the
characteristics and are also considered objects of the base class, the said handlers
will also cater to subclasses of TransmissionError and IOException objects,
respectively.

The placement order of catch-blocks is significant. Due to the inheritance
mechanism, catch-blocks work in a sieve-like manner, and handlers for subclasses
should appear before handlers for superclasses. When exception objects are caught,
control-flow is transferred to the exception handler concerned. Control-flow then
resumes at the statement following the try-block; in our example, this is method n().

9.3.3 Raising Exceptions

An exception condition is ultimately represented by an exception object derived from
the predefined Exception class.1 A condition is made known by throwing an appropri-
ate object via a throw statement, to be subsequently caught by an associated handler.

1 Actually, objects that can be thrown by the throw statement must be derived from the
Throwable superclass. However, in addition to the Exception class, Throwable also includes
the Error class which indicates serious problems that a reasonable application should not try
to catch. As such, we will continue to work from the Exception class.

 } catch (IOException e) {
 errorReport();
 ...
 }
 n();
 }
}

Exception Handling 123

In the event that the thrown exception object does not match what is expected

by event handlers, it is further propagated to the caller of the method which contains
the try-block. This caller chain (which forms a back-trace) proceeds until the
static void main() method is encountered. The predefined environment supplies a
default exception handler that aborts program execution with a execution back-trace
from the run-time stack, and an appropriate error message.

TransmissionError is the typical case of a programmer-defined exception
condition. The Java API also contains various exception classes which are used
within the API, for example, MalformedURL and thrown from methods such as per-
formOperation(). These are accessible via the normal mechanisms. There is also a
unique set of exceptions that is thrown directly from the Java Virtual Machine. For
example, integer division is translated into an operator for the Java Virtual Machine.
Thus, if a 0 divisor is encountered in an expression, a DivideByZero exception is
raised from the Java Virtual Machine without any corresponding throw-statement
from the application code.

9.4 A Simple Example

We will now piece together the various Java constructs described in the previous
section to provide the context for their usage. As a working example, we consider a
stack object that allows for items to be placed, but removed in the reverse of place-
ment order. Like a stack of plates, it allows for pushing and popping items from the
“top.”

Two situations may be anticipated during stack usage: when the stack is empty
and no items are available for retrieval, and when the stack is full and cannot ac-
commodate further items. The exception mechanism is ideal in that exceptions may
be raised independently of how clients using a stack object may want to respond to
such contingencies. This framework physically separates server code from client
code, but yet provides for conceptual association so that contingencies in the server
may be easily propagated and handled by the client.

To begin, the two stack conditions may be defined as follows:

class EmptyStack extends Exception {
}

class FullStack extends Exception {
}

class Y {
 ...
 void performOperation() {
 ...
 if (F)
 throw new TransmissionError();
 }
}

124 Object-Oriented Programming and Java

A stack object may be implemented using an array to hold items pushed to it.

By default, stacks will hold a maximum of 10 items, unless otherwise specified via
its constructor.

Note the throws suffix in the method signature forewarns callers of the possi-

bility of an exception. Consistent with secure programming practice, Java would
insist that coding within the client either sets up an appropriate exception handler, or
appends the throws suffix in the caller method so that the stack exception is propa-
gated.

The programming style in class Stack allows it to be used in varied situations
without the concern for acceptable or “correct” responses to stack errors. As usage of
Stack is available to various client classes, the code fragments may implement ap-
propriate handlers for each application.

We first consider a scenario involving a parser for arithmetic expressions. A
full stack arising from a deeply nested expression might cause parsing to be aborted
with an appropriate message.

class Stack {

 int height;
 Object items[];
 void push(Object x) throws FullStack {
 if (items.length == height)
 throw new FullStack();
 items[height++] = x;
 }
 Object pop() throws EmptyStack {
 if (height == 0)
 throw new EmptyStack();
 return(items[--height]);
 }
 void init(int s) {
 height = 0;
 item = new Object[s];
 }
 Stack (int s) { init(s); }
 Stack() { init(10); }
}

class Parser {
 ...
 void Expression() {
 Stack s = new Stack();
 try {
 ...
 s.push(x);
 ...
 } catch (FullStack e) { // respond to full stack condition

 abort();
 } catch ... // other possible exceptions
 }
 ...
}

 error("expression nesting exceeds implementation limit");

Exception Handling 125

In a situation where an error may not be fatal, a value from the stack can be

substituted with another by the exception handler so that processing may continue.
Such recovery processing is strategically focused.

9.5 Paradigms for Exception Handling

We have seen exception handling in Java as being comprised of exception definition
via a class definition, exception handlers via try- and catch-blocks, and raising
exception incidents by throwing appropriate objects.

A general framework for exception handling has been outlined in the previous
section. Ideally, the framework should be extended to fit various scenarios, which
leads us to present various usage patterns.

9.5.1 Multiple Handlers

To facilitate monitoring more than one exception condition, a try-block allows for
multiple catch-clauses. Without the exception handling mechanisms of Java, error
handling code would be untidy, and especially so for operations where a sequence of
erroneous situations can occur. For example, when sending email to a user
happy@xyz.com, an email client program must: initiate a socket connection to the
host machine xyz.com; specify the recipient; and send the contents of the mail message.

Complications arise when xyz.com is not a valid email host, happy is not a le-
gitimate user on the host, or premature closure of the socket connection.

class Evaluator {
 Stack s = new Stack();
 ...
 void operand() {
 Integer value;
 ...
 try {
 value = (Integer) s.pop();
 } catch (EmptyStack e) { // respond to empty stack condition
 value = new Integer(0);
 }
 ...
 }
}

class EMail {
 ...
 void send(String address) {
 errorCode = 0;
 makeHostConnection(emailHostOf(address));
 if (connectionError) {

 errorCode = 1;
 } else {
 verifyUser(emailUserof(address));
 if (noUserReply {

 errorMessage("host does not exist");

126 Object-Oriented Programming and Java

The above skeletal code for email processing may be structurally improved and

made more transparent by using exception handling mechanisms. It is also useful
from the maintenance point of view to separate processing logic from error process-
ing. The code fragment below which uses multiple exception handlers is tidier if the
appropriate exception objects are thrown by the methods makeHostConnection(),
verifyUser() and sendContent().

The resultant structure is clearer—normal processing logic in the try-block,
and error handling in catch-clauses.

 errorCode = 2;
 } else {
 while ((!endofInputBuffer()) && errorCode != -1) {
 line = readInputBuffer();
 sendContent(line);
 }
 if (networkError) {

 errorCode = 3;
 }
 }
 }
 ...
}

class EMail {
 ...
 void send(String address) {
 try {
 errorCode = 0;
 makeHostConnection(emailHostOf(address));
 verifyUser(emailUserof(address));
 while (!endofInputBuffer()) {
 line = readInputBuffer();
 sendContent(line);
 }
 } catch (SocketException s) {

 errorCode = 1;
 } catch (NoUserReply n) {

 errorCode = 2;
 } catch (WriteError) {

 errorCode = 3;
 }
 }
 ...
}

 errorMessage("user is not valid");

 errorMessage("connection error occurred");

 errorMessage("user is not valid");

 errorMessage("host does not exist");

 errorMessage("connection error occurred");

Exception Handling 127

9.5.2 Regular Exception Handling

Where there are multiple code fragments with similar error handling logic, a global
exception handler would again be neater.

In the code above, a transaction from an email client involves writing a mes-

sage to the server and then reading if it receives an appropriate response. However,
each message to the server might be unsuccessful due to a network error such as the
termination of the connection.

With the exception handling mechanism in Java, generic errors may be handled
by a common network error handler,for example, an IOException exception han-
dler, so that such errors need not be constantly monitored.

class EMail {
 ...
 void makeHostConnection(String host) {
 openSocket(host);
 if (!IOerror()) {
 checkResponse();
 giveGreetings();
 }
 }
 void giveGreetings() {

 if (IOerror())
 errorCode = 9;
 else
 checkResponse();
 }

 void verifyUser(String user) {

 if (IOerror())
 errorCode = 9;
 else
 checkResponse();
 }
 ...
}

class EMail {
 ...
 void send(String address) {
 try {
 errorCode = 0;
 makeHostConnection(emailHostOf(address));
 verifyUser(emailUserof(address));
 ...
 } catch (IOException x) {
 // network error detected
 }
 }
 void makeHostConnection(String host) {
 openSocket(host);
 checkResponse();

 writeMessage("HELO " + hostname);

 writeMessage("VERIFY " + user);

128 Object-Oriented Programming and Java

9.5.3 Accessing Exception Objects

So far, we have discussed how a catch-block responds to exceptions specified in its
parameter type T, but without reference to the parameter name e.

The fact that the parameter name of a catch-block is bound to the current

exception object thrown allows for the means of transferring information to the
exception handler.

9.5.4 Subconditions

We have seen that exception conditions are represented by objects that are described
via class constructs. Since objects are dynamically distinguished from one another by
their built-in class tags, this is a viable and productive method for representing dif-
ferent conditions.

As with other classes, a new exception condition may also be subclassed from
an existing class to indicate a more specific condition. Incorporating the inheritance
mechanism to exception handling allows for logical classification and code reusabil-
ity in both condition detection and handler implementation. CommError and Proto-
colError in the skeletal fragment below are typical examples of rich representations
using inheritance.

 giveGreetings();
 }
 void giveGreetings() {

 checkResponse();
 }
 void verifyUser(String user) {

 checkResponse();
 }
}

 try {
 ...
 throw new X();
 } catch (X e) {
 ... // e refers to exception object thrown earlier
 }

class CommError extends Exception {
 int errorKind;
 Date when;
 CommError(int a) ...
}
class ProtocolError extends CommError {
 int errorSource;
 ProtocolError(int a, int b) ...
}

 writeMessage("HELO " + hostname);

 writeMessage("VERIFY " + user);

Exception Handling 129

The language mechanism that allows exception conditions and subsequently

flow of control to propagate to an appropriate handler provides for powerful and
flexible processing.

Due to inheritance rules, the exception handlers of the above try-block are

ordered so that specific (subclass) exceptions are caught first. If generic (superclass)
exceptions were caught first, the handler for the specific exceptions would never be
used.

Note that while the exception object thrown is caught within the same try-
block in the above, in practice, a throw-statement may also be deeply nested within
methods invoked from the try-block.

9.5.5 Nested Exception Handlers

Since an exception handler comprises mainly of a statement block, the sequence of
statements within it may also contain other try-blocks with associated nested catch-
blocks.

As illustrated above, the scenario occurs when exceptions are anticipated within

exception handlers.

 try {
 ...
 throw new CommError(errorCode);
 ...
 throw new ProtocolError(errorCode, extraInformation);
 ...
 } catch (ProtocolError e) {
 ... // handle ProtocolError by inspecting e appropriately
 } catch (CommError f) {
 ... // handle CommError by inspecting f appropriately
 }

 try {
 ...
 throw new X(errorCode);
 ...
 } catch (X f) {
 ...
 try {
 ...
 throw new Y(errorCode, m);
 ...
 } catch (Y e) {
 ...
 }
 }

130 Object-Oriented Programming and Java

9.5.6 Layered Condition Handling

Just as catch-blocks may be nested, we consider a related situation where a more
specific exception handling is required. This can occur when the current handlers are
not sufficient, and the new try-block is nested within another to override it.

There are two applicable exception handling paradigms here: the nested handler

may perform all necessary processing so that the enclosing handler does not realize
that an exception has occurred; or the nested handler may perform processing rele-
vant to its conceptual level and leave the remaining processing to the outer handler.

The former has been illustrated in the previous fragment, while the latter has
been outlined in the framework below, where the nested handler throws the same
exception after sufficient local processing.

9.6 Code Finalization and Cleaning Up

The model for control-flow mechanisms involving statement sequences, conditional
branching and iteration are unchanged for the Java programming language. The
exception handling facilities in Java may be considered an advanced control-flow
facility, which allows control to be dynamically transferred out of well-tested code
modules. We continue to examine two more features relating to control-flow.

 try {
 ...
 throw new X(errorCode);
 try {
 ...
 throw new X(errorCode);
 ...
 } catch (X e) {
 ...
 }
 } catch (X f) {
 ...
 }

 try {
 ...
 try {
 ...
 throw new X(errorCode);
 ...
 } catch (X e) {
 ...
 throw e;
 }
 ...
 } catch (X f) {
 ...
 }

Exception Handling 131

9.6.1 Object Finalization

The role of constructor methods was discussed in Chapter 3 when providing the
necessary initialization for all newly created objects. This language feature imposes
an invariant for all objects of the class. The default constructor with no parameters is
the simplest and typically provides baseline initialization. Other constructors provide
the means of initialization by various input parameters.

The complement of the constructor mechanism is a destructor facility. Its main
purpose is to undo at the onset of object disposal, what was performed during ini-
tialization. If storage had been allocated during object initialization, the appropriate
destructor behavior should dispose of such storage for subsequent use.

Such language mechanisms are typically in place for modular languages, and
more so, object-oriented languages. However, destructor methods in Java are less
necessary due to the automatic garbage collection scheme at run-time. Any storage
areas that may have been allocated, but are nonaccessible, are reclaimed for subse-
quent reuse.

This technique is indeed useful when storage recycling is not always clear to
the programmer, but instead is assured that unusable memory fragments will be
ultimately recovered by the language run-time system. Thus, the Java programmer
may allocate storage at will, and is not obliged to keep track of usage, nor required to
de-allocate them.

De-allocating memory (which is no longer needed) is only one aspect of house-
keeping for objects. Managing memory and variables happens to be an issue that is
internal to a program, but can be handled automatically by the Java Virtual Machine.

There are other aspects of housekeeping that are external to a program, for
example, releasing unused file descriptors or relinquishing a network socket con-
nection. As such resources are also external to the Java Virtual Machine, automatic
de-allocation is not practical.

In place of destructor methods, Java allows for finalization methods. Each class
definition may include a parameterless method called finalize(). The run-time
system ensures that this method will be invoked before the object is reclaimed by the
garbage collector.

9.6.2 Block Finalization

As described in the previous section, a finalize() method performs the last wishes
for data before it is destroyed. Java also provides a similar mechanism for code
blocks. A finally clause may optionally follow a try block. It guarantees that its

class Email {
 Email() {
 // open network connection
 }
 ... other methods
 void finalize() {
 // close network connection
 }
}

132 Object-Oriented Programming and Java

code will be executed regardless of whether an exception was thrown in the try
block, and if thrown, whether it was caught by an associated handler.

This mechanism allows for a neat program structure, for example, when there

are mandatory code fragments in both normal processing and exception handling. In
elaborating our transmission example below, normal processing may involve open-
ing the transmission channel, performing all the required transmission, and then
terminating transmission by closing the channel. In the unfortunate event of a trans-
mission error, we initiate contingency processing before closing the transmission
channel. Maintenance is error prone due to the repetition of channel.close() in
both the try- and catch-blocks.

9.7 Summary

In this chapter, we discussed advanced control-flow facilities. The most significant
of these is exception handling since it allows for flexible integration of modular
code. The language primitives allow for:

try {
 // processing
} catch (TransmissionError t) {
 // handle TransmissionError exception
} finally {
 // perform clean up before leaving this block
}

try {
 channel = openTransmissionChannel();
 channel.transmit();
 channel.close();
} catch (TransmissionError t) {
 hasError = true;
 channel.close();
} catch (NoReplyError x) {
 toRepeat = true;
 channel.close();
}

try {
 channel = openTransmissionChannel();
 channel.transmit();
} catch (TransmissionError x) {
 hasError = true;
} catch (NoReplyError x) {
 toRepeat = true;
} finally {
 channel.close();
}

The improved style using a finally-block avoids repetition of channel.close().

Exception Handling 133

• the definition of exception conditions;
• raising of exceptions within the virtual machine, as well as via the throw

statement; and
• catching of exception objects via try- and catch-blocks.

Other control-flow facilities for neater program structures include finalization

for objects and code blocks.

• A finalize() method is invoked before an object is destroyed so that it

can complement the actions of a constructor.
• A finally block allows for fail-safe code execution before leaving a

try-block, and is independent of exceptions or exception handlers.

9.8 Exercises

1. Consider the CalculateEngine and CalculatorFrame classes to im-
plement the calculator in Chapter 4. Suggest how the framework can
take advantage of the exception handling facility in Java so as to main-
tain modular boundaries and provide better error messages.

2. Implement a Symbol table class so that each symbol is associated with a
numeric value. The two main methods are set() and get():

void set(String sym, int value);
int get(String sym);

The set() method associates the int value with the symbol sym,

while the get() method performs the complement of retrieving the int
value previously associated with sym.

Define appropriate exceptions so that clients of the Symbol table
may respond to conditions appropriately. For example, when they re-
trieve the value of a nonexistent symbol, clients can either stop execu-
tion and display an error message or use a default value of 0.

3. Incorporate the Symbol table object into the calculator so that intermedi-
ate results may be associated with user-defined symbols.

10
Input and Output Operations

We have covered all the basic mechanisms of Java, but not much has been said about
input and output operations such as reading from and writing to files. In fact, the
Java programming language excludes any description of performing such operations.
Instead, this critical functionality is implemented by standard libraries.

In Java, many practical features are not built into the language proper. This
functionality is included in libraries known as the Java Application Programming
Interface (API)—mostly standard across Java platforms. In this chapter, we will
briefly view the Java API and its relevance to reading from and writing to files and
other generic devices.

10.1 An Introduction to the Java API

Java is an object-oriented programming language. This facilitates the creation of
objects and message passing amongst such objects. We have seen too that objects are
created from class definitions, and as such, all code written in Java exists within
class definitions.

Since the Java API library is merely reusable code, they exist in class defini-
tions too. The Java API is thus a large set of classes to make the task of program-
ming development more productive. Often, our programs need not implement the
data-structures it needs. Instead, code within the API may be used, or reused by
specialization through inheritance to meet the needs of our custom applications.

The API is used in various generic ways:

• The simplest means of using the API is to create an instance of an API class;

for example, to read from a file, we create an instance of FileInputStream.
The read() method is used on the resultant object to read file contents,

136 Object-Oriented Programming and Java

• A new class may be defined based on an API class by inheritance. This
facilitates reuse of generic code; for example, to create new threads for
specific multithreaded applications, we define a new class based on the
Thread class, but with new definitions relevant to our application.

• Often, class variables of API classes may be used directly without explicit
initialization, that is, out is a public class variable in the System class and
may be used directly for the purpose of printing to the standard output
stream. This was how System.out.println() was used in Chapter 4.

As there are a large number of classes in the Java API, it is fruitful to organize

and group them according to their functionality. In JDK 1.5, the basic Java API is
organized into six packages among others: java.lang, java.io, java.util,
java.net, java.awt and java.applet.

• The java.lang package consists of Java classes that are essential to the

execution of Java programs; for example, the Thread and System classes
belong to the java.lang package.

• The java.io package consists of Java classes that are used for input and
output facilities; for example, the FileInputStream class mentioned ear-
lier belong to the java.io package.

• The java.net package consists of Java classes that are relevant to net-
working; for example, the Socket class belongs to the java.net package
and is used for network connections to hosts on other machines.

• The java.util package consists of Java classes for generic functionality
such as list collections, date representation; for example, the Vector and
Date classes belong to the java.util package.

• The java.awt package consists of Java classes that implement the Ab-
stract Windowing Toolkit. These classes are used for creating graphical
interfaces for a Windows-based environment.

• The java.applet package consists of Java classes that are used to sup-
port applet execution within the context of a Web browser.

10.2 Reading the Java API Documentation

The Java API is described in the Java API documentation, available in printed books,
PostScript, or HTML. The HTML form is typically preferred in an online environ-
ment since it allows for convenient navigation.

From a standard distribution site, the zip or tar file should be downloaded, and
the contents then extracted. Viewing local pages using a Web browser is straightfor-
ward. By default, the document is displayed using HTML frames (see Figure 10-1).
There are two navigation frames on the left-hand side. In the top left frame you can
either select “All Classes” to display all classes in the bottom left frame, or you can

and similarly close() will perform necessary clean-up to system resources
like file descriptors for reuse.

Input and Output Operations 137

select a specific package to display classes in the specific package in the bottom left
frame. The class names in the bottom left frame are displayed in alphabetical order.
In the bottom left frame you can then select a specific class to display the details
(methods, fields, etc.) of a specific class in the main frame. The following screen
snapshot in Figure 10-2 shows the details of the class BufferedReader in java.io
package.

 Figure 10-1: Viewing API overview.

Figure 10-1: Viewing API overview.

Figure 10-2: Viewing class API documentation.

138 Object-Oriented Programming and Java

After selecting the “Index” on the navigation bar at the top of the main frame,

the names of all variables and methods that have been indexed can be viewed, as
seen in Figure 10-3. Links for these entities ultimately refer back to their class defini-
tions.

For each class, the API documentation includes also a brief overview that is
hyperlinked to more detailed descriptions.

Figure 10-3: Viewing API documentation by sorted names.

10.3 Basic Input and Output

stdin, stdout, and stderr, respectively, in UNIX, being bound to the standard
input, standard output and standard error streams. Typically for interactive processes,
these streams correspond to the keyboard and screen. (While standard output and
standard error are bound to the same device, they are logically different and very
useful with stream redirection.)

The System class belongs to the java.lang package, but due to heavy use of
this package, it is implicitly imported in every Java program unit. The commands in,
out and err are class variables of the System class, and they have been pre-
initialized with streams for input and output, respectively. All this may sound ex-
ceedingly strange, but it is fruitful to get the concepts clear at this stage as we begin
to probe and use the Java API.

The simplest start to input and output are pre-initialized objects System.in,
System.out, and System.err. These correspond to the three standard file descriptors

Input and Output Operations 139

Field Summary

static PrintStream err The “standard” error output stream.

static InputStream in The “standard” input stream.

static PrintStream out The “standard” output stream.

If we look up the System class documentation, out is documented as:

public static final PrintStream out;

Looking up the PrintStream class documentation will reveal (not exclusive)

the following methods for PrintStream instances:

print(boolean)
print(char)
print(char[])
print(double)
print(float)
print(int)
print(long)
print(Object)
print(String)

Thus, the following statements are legitimate:

System.out.print(’g’);
System.out.print(3.142);
System.out.print(45);
System.out.print(”hello there”);
System.out.println(23);
System.out.println(3.32123);
System.out.println(234567654);
System.out.println();
System.out.println(System.out);

In addition, the println() method may also accept similar parameters as print()
and with similar behavior, except that a carriage return is also printed after the value.

boolean, char, char array, double, float, int, long, Object and String values.
This shows that a PrintStream instance (e.g., System.out) can print out

140 Object-Oriented Programming and Java

The command println() without any parameters will just print a carriage return.

Note that Object instances are also legitimate parameters to print() and
println(). Since all classes are (directly or indirectly) derived from Object,
println() will print out any object. In practice, the actual value displayed depends
on whether appropriate code is present to provide a suitable textual representation of
the object concerned.1

Since System.err is also a static variable initialized as a PrintStream in-
stance, it has the same behavior as System.out. It even prints to the same device,
that is, the screen, but may be redirected to another via operating system facilities.

The System.in stream is quite different because its use is for input. Again, the
documentation for the System class will reveal that it is a static variable that is ini-
tialized to an InputStream object.

public static final InputStream in;

Upon further checking of the documentation for the InputStream class, the

principal statement of interest is revealed to be reading a byte from the stream.

System.in.read()

As this method returns the internal representation of the character itself, we

typically typecast it to a char type by using the () typecast operator.

char c = (char) System.in.read();

Two significant points are noted from the detailed documentation: first, read()

potentially throws an IOException object to indicate an error in the input operation.
As such, it is expected that clients using this method must catch the exception within
a try-block. Next, the method returns an integer value of –1 after it encounters the
last character to be read. Clients must also anticipate against reading past this point.

Putting it all together, we can write a program that reads its input and copies the
contents to the output. We put all this code into the static void main() function.

1 The print() method relies on the toString() method to provide a textual representation of
an object. Since toString() is defined in the Object class and cannot anticipate properties
of future class definitions, it only performs generic text conversion. Of course subclasses
are free to override toString() with a more appropriate definition to provide more com-
prehensive details of the object.

Input and Output Operations 141

The code shows the following points:

• A try-block anticipates the IOException object from read(), as fore-

warned in the signature for read() or its equivalent API documentation.
• A while-statement is used to iteratively read all characters until the end-

of-stream as indicated by the –1 sentinel.
• The local variable x is initialized to 0, and is incremented each time in the

loop to count the number of bytes read (and written).
• Output is written into two logical streams. The output stream contains

that which was read from the input stream, while the error stream is for
diagnostic messages of byte count, or errors. (If any stream is redirected,
the other proceeds with the original device binding.)

10.4 File Manipulation

Input and output using the predefined streams has given a preview of how other
input and output operations will be performed—via methods such as print() and
read().

Input and output involving the standard streams is simple because they have
been pre-initialized, and no finalization code is required. This consistently reflects
the situation where input and output streams are available when typical programs
begin execution and may read from the keyboard or write to the screen, and always
remain available.

The situation is different for reading and writing to files that must be opened
before use, and subsequently closed when operations are complete. This reflects the
dynamic nature of file representation. There may be an instance of a particular file on
disk, but it may be at different stages of being read by many other programs. This
file representation is encapsulated within a stream object comprising of suitable data-
structure to represent how much has been read or written.

import java.io.*;
class CopyInputToOutput {
 public static void main(String args[]) {
 int x=0, c;
 try {
 while ((c = System.in.read()) != -1) {
 System.out.print((char) c);
 x++;
 }
 System.err.print(x);
 System.err.println(” bytes read”);
 } catch (IOException e) {
 System.err.println(”I/O Error Exception has occurred”);
 }
 }
}

142 Object-Oriented Programming and Java

10.4.1 File Input

The state of file input, as to how much of the file has been read, is represented by a
FileInputStream object. After the file has been opened, reading proceeds similarly
with the predefined standard input stream. Finally, the FileInputStream object is
closed after use so as to reclaim system resources.

The TestInput code fragment in Listing 10-1 is adapted from the previous one
for reading from the standard input stream. In reading from a file, modifications
include the instantiation and closing of a FileInputStream object, and catching the
FileNotFoundException.

The FileInputStream, FileNotFoundException and IOException classes
belong to the java.io package. Due to separate name spaces, we bring the class into
scope via the import statement. Instead of just importing specific classes, we can
import the whole package instead.

The documentation of FileInputStream will reveal two important characteris-
tics of TestInput:

•

method.
• The documentation for FileInputStream describes the constructor as po-

tentially throwing a FileNotFoundException object. This explains the
extra exception handler.

Listing 10-1: TestInput class.

import java.io.*;
class TestInput {
 public static void main(String args[]) {
 int x=0, c;
 FileInputStream f;
 try {
 f = new FileInputStream("input.txt");
 while ((c = f.read()) != -1) {
 System.out.print((char) c);
 x++;
 }
 System.err.print(x);
 System.err.println(" bytes read");
 f.close();
 } catch (FileNotFoundException n) {
 System.err.println("File not found");
 } catch (IOException e) {
 System.err.println("I/O Error Exception has occurred");
 }
 }
}

InputStream, that is, it includes the behavior of the InputStream class.
This explains why the two code fragments look similar in using the read()

In other words, instances of FileInputStream are also instances of
The FileInputStream class is derived from the InputStream class.

Input and Output Operations 143

10.4.2 File Output

The mechanism for file output is intuitively similar to that for file input. Based on
the code fragment in TestInput, we can make minor modifications to try out file

The complement of FileInputStream is FileOutputStream. To write to a file,
we merely create a FileOutputStream instance by giving an appropriate file name
to the constructor. As with previous files, the close() method is used to signal the
end of file manipulation.

The most significant change in this code fragment is that the print() method,
used previously with System.out, is not used with FileOutputStream. The reason
is clear on checking the documentation for FileOutputStream.

 Listing 10-2: TestCopy class.

class TestCopy {
 public static void main(String args[]) {
 int x=0, c;
 FileInputStream f;
 FileOutputStream g;
 try {
 f = new FileInputStream("input.txt");
 g = new FileOutputStream("output.txt");
 while ((c = f.read()) != -1) {
 g.write(c);
 x++;
 }
 System.err.print(x);
 System.err.println(" bytes read");
 f.close();
 g.close();
 } catch (FileNotFoundException n) {
 System.err.println("File not found");
 } catch (IOException e) {
 System.err.println("I/O Error Exception has occurred");
 }
 }
}

import java.io.*;
class AnotherCopy {
 public static void main(String args[]) {
 int x=0, c;
 try {
 FileInputStream f = new FileInputStream("input.txt");
 FileOutputStream g = new FileOutputStream("output.txt");
 PrintStream p = new PrintStream(g);
 while ((c = f.read()) != -1) {
 p.print((char) c);
 x++;
 }
 System.err.print(x);
 System.err.println(" bytes read");

import java.io.*;

output, as in

144 Object-Oriented Programming and Java

Listing 10-2: TestCopy class.

The documentation shows that the write() method is available, but print()
method is not. Remember that System.out is an instance of PrintStream, but
FileOutputStream is not related to PrintStream. This mystery is cleared in the next
section—as to how the print() method may be used with FileOutputStream
objects.

10.4.3 Printing Using PrintStream

The following two points explain how a PrintStream object may be obtained from an
FileOutputStream instance, thereby allowing println() to be used in file output.

• The FileOutputStream class is derived from OutputStream.
• The documentation for the PrintStream class reveals that its instance is

created from an OutputStream object.

It follows that a FileOutputStream instance may be used (as an OutputStream
object) to instantiate a PrintStream class, as indicated in the code example in List-
ing 10-3.

Listing 10-3: AnotherCopy class.

 f.close();
 p.close();
 } catch (FileNotFoundException n) {
 System.err.println("File not found");
 } catch (IOException e) {
 System.err.println("I/O Error Exception has occurred");
 }
 }
}

import java.io.*;
class AnotherCopy {
 public static void main(String args[]) {
 int x=0, c;
 try {
 FileInputStream f = new FileInputStream("input.txt");
 FileOutputStream g = new FileOutputStream("output.txt");
 PrintStream p = new PrintStream(g);
 while ((c = f.read()) != -1) {
 p.print((char) c);
 x++;
 }
 System.err.print(x);
 System.err.println(" bytes read");
 f.close();
 p.close();
 } catch (FileNotFoundException n) {
 System.err.println("File not found");
 } catch (IOException e) {
 System.err.println("I/O Error Exception has occurred");
 }
 }
}

Input and Output Operations 145

While the previous example shows how a PrintStream object may be ob-

tained, its impact is minimal since the result is a mere change from using write() to
using print(). A more significant advantage is that it allows the varied operations
of PrintStream to be available.

10.5 Framework for Code Reuse

The use of PrintStream methods for System.out and an instance of FileOutput-
Stream in the previous example shows the paradigm of code reusability in an object-
oriented environment.

The following class hierarchy diagram clarifies the scenario that we just ob-
served—that code in the OutputStream class is reused for FileOutputStream ob-
jects. A more subtle reuse paradigm is that a PrintStream object may be instantiated
from an OutputStream object.

OutputStream
FilterOutputStream

ByteArrayOutputStream

FileOutputStream

PipedOutputStream

PrintStream

DataOutputStream

BufferedOutputStream

It can be seen that PipedOutputStream and ByteArrayOutputStream, like
FileOutputStream, are specializations of OutputStream. They all have the same
model in that they allow write() operations, but whose contents are diverted to a
file, which is a pipe or a byte array.

In the same way, buffered file output may be achieved by first creating a
FileOutputStream and using it for creating a BufferedOutputStream object.
Again, it (a superclass of FilterOutputStream) has added functionality to a
FileOutputStream object (a superclass of OutputStream):

We now move to the bigger picture of the java.io package and code
reusability. First, besides FileOutputStream, the other classes, for example,
PipedOutputStream and ByteArrayOutputStream also benefit from deriving
behavior from the OutputStream class. This is the typical scenario of reusing code
via inheritance as discussed in Chapter 6.

Note that the ability to create a PrintStream instance comes from
FilterOutputStream. The latter provides the framework for adding functionality
to an existing OutputStream. In the case of PrintStream, the additional functional-
ity is higher-level output for values of different types, for example, int, float,
char, char array, for the existing OutputStream instance used to create it.

146 Object-Oriented Programming and Java

BufferedOutputStream buf = new BufferedOutputStream(f);

The combinations are, however, limitless since BufferedOutputStream is de-

rived from OutputStream. As such, a buffered PrintStream can be obtained using
the technique below.

BufferedOutputStream buf = new BufferedOutputStream(f);
PrintStream p = new PrintStream(buf);
...
p.println(...);

The same reuse framework is used for InputStreams, as shown in the class hi-

erarchy diagram below:

InputStream
FilterInputStream

ByteArrayInputStream

FileInputStream

PipedInputStream

LineNumberInputStream

DataInputStream

BufferedInputStream

SequenceInputStream

StringBufferInputStream

PushbackInputStream

Similar to the output case, buffered file input may be achieved by first creating
a FileInputStream and using it for creating a BufferedInputStream object:

BufferedInputStream buf = new BufferedInputStream(f);

Again, the combinations are limitless since the BufferedInputStream class is

derived from InputStream.

The basic means of file input is via FileInputStream. Just as writing may
be diverted, the input stream in this case comes from a file. Similarly, using
PipedInputStream, ByteArrayInputStream, or StringBufferInputStream,
input can be read from a pipe, byte array, or string.

FileOutputStream f = new FileOutputStream("myOutput); "

FileOutputStream f = new FileOutputStream("myOutput");

FileInputStream f = new FileInputStream("myInput");

Input and Output Operations 147

10.6 DataInputStream and DataOutputStream Byte Stream
Class

A DataInputStream is useful when binary data needs to be read. A buffered
DataInputStream can be obtained using the same technique as obtaining the
BufferedInputStream. Shown below in Listing 10-4, is reading a file and extracting
the binary data such as toy name (String), toy price (double) and number of toys
(int).

Listing 10-4: DataIn class.

Similarly, the DataOutputStream class can be used to write binary data into
files. The following methods among others are available in DataOutputStream
among others:

import java.io.*;
public class DataIn {
 static final String dataFile = "toydata";
 public static void main(String[] args) {
 String inNames;
 double inPrices;
 int inUnits;
 try {
 DataInputStream in = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream(dataFile)));
 while (true) {
 inNames = in.readUTF();
 inPrices = in.readDouble();
 inUnits = in.readInt();
 System.out.println (inNames + " " + inPrices + " " +
 inUnits + "\n");
 }
 } catch (EOFException e) {
 System.out.println ("End");
 } catch (IOException e) {
 System.out.println(e.getMessage());
 }
 }
}

void writeByte(int v)
void writeChar(int v)
void writeChars(String s)
void writeDouble(double v)
void writeFloat(float v)
void writeInt(int v)
void writeLong(long v)
void writeShort(int v)
void writeUTF(String str)

148 Object-Oriented Programming and Java

10.7 Character Stream Classes

The new character stream classes have been designed to parallel the byte
stream equivalents in JDK 1.0. For example, the abstract input and output byte-
stream classes InputStream and OutputStream, together with their subclasses, have
new equivalent classes Reader and Writer with correspondingly similar functional-
ity and usage paradigm.

JDK 1.0 byte-stream classes JDK 1.1 (and beyond) character-stream classes

InputStream Reader
BufferedInputStream BufferedReader
LineNumberInputStream LineNumberReader
ByteArrayInputStream CharArrayReader
FileInputStream FileReader
FilterInputStream FilterReader
PushbackInputStream PushbackReader
PipedInputStream PipedReader
StringBufferInputStream StringReader
OutputStream Writer
BufferedOutputStream BufferedWriter
ByteArrayOutputStream CharArrayWriter
FilterOutputStream FilterWriter
PrintStream PrintWriter
PipedOutputStream PipedWriter

The InputStreamReader and OutputStreamWriter classes form the bridge be-

tween byte and character streams through translation.

Writer

FilterWriter

StringWriter

OutputStreamWriter

PipedWriter

PrintWriter

CharArrayWriter

FileWriter

The standard input/output facilities available via the InputStream and
OutputStream classes merely support 8-bit byte streams. The enhancement in JDK
1.1 (and beyond) relating to input and output provides support for character streams
that allow for 16-bit Unicode characters. The advantage of character streams is that
programs can now be independent of specific character encoding, which to some
extent simplifies ongoing internationalization efforts.

Input and Output Operations 149

Reader

FilterReader

StringReader

InputStreamReader

PipedReader

CharArrayReader

BufferedReader

FileReader

PushbackReader

LineNumberReader

The copy program shown in Listing 10-3 can be translated using the Character

Input-Output classes as shown in Listing 10-5.

Listing 10-5: CharacterCopy class.

Most often, programs would like to read character files in a line-by-line fash-
ion. A line is defined as being terminated by a newline character (‘\n’). Using one of
the subclasses of the Reader, BufferedReader Class, we are able to read character
files line-by-line. Listing 10-6 shows how this can be done.

import java.io.*;
class CharacterCopy {
 public static void main(String args[]) {
 int x=0, c;
 try {
 FileReader f = new FileReader("input.txt");
 FileWriter g = new FileWriter("output.txt");
 PrintWriter p = new PrintWriter(g);
 while ((c = f.read()) != -1) {
 p.print((char) c);
 x++;
 }
 System.err.print(x);
 System.err.println(" characters read");
 f.close();
 p.close();
 } catch (FileNotFoundException n) {
 System.err.println("File not found");
 } catch (IOException e) {
 System.err.println("I/O Error Exception has occurred");
 }
 }
}

import java.io.*;
class LineReader {
 public static void main(String args[]) {
 int x=0;
 String line = null;

150 Object-Oriented Programming and Java

Listing 10-6: LineReader class.

stream classes. These classes read/write a chunk of data from/to the OS and keep it
in a buffer. Each read/write operation then reads/writes from/to this buffer, and the
next OS call is made only when the buffer is empty/full.

10.8 Tokenizing the Input Using the Scanner Class

Input data is usually processed by breaking the input into tokens that are delimited
by whitespaces (space, \n, \t) or by any other delimited (e.g., comma). Listing 10-7
shows the use of the Scanner class in the java.util package.

 FileReader f= null;
 FileWriter g = null;
 try {
 f = new FileReader("input.txt");
 BufferedReader b = new BufferedReader (f);

 g = new FileWriter("output.txt");
 PrintWriter p = new PrintWriter(g);

 while ((line = b.readLine()) != null) {
 p.println(line);
 x++;
 }
 System.err.print(x);
 System.err.println(" lines read");
 f.close();
 p.close();
 } catch (FileNotFoundException n) {
 System.err.println("File not found");
 } catch (IOException e) {
 System.err.println(
 "I/O Error Exception has occurred");
 } finally {

 try {
 if (f != null) f.close();
 if (g != null) g.close();
 } catch (IOException e) {

 System.err.println("I/O Error Exception has occurred");
 }
 }
 }
}

import java.io.*;
import java.util.Scanner;
public class TokenizeInput {
 public static void main(String[] args){
 Scanner s = null;
 try {
 s = new Scanner(new BufferedReader
 (new FileReader("statement.txt")));
 while (s.hasNext()) {

Buffered input and output streams are more efficient than the nonbuffered

Input and Output Operations 151

Listing 10-7: TokenizeInput class.

The Scanner class has methods to read the input and automatically convert the
input to primitive types like int, float, double, and so on. The following state-
ments read input, convert it to a double number, and add it to a total.

10.9 Formatting the Output Using the Format String

Output streams such as PrintStream and PrintWriter are capable of outputting
formatted data. In order to do that, one needs to use the format method. The following
snippet of code illustrates the formatting of data in integer and double precision formats:

The output looks like this:

Integer 10 and Double 20.456107

In general, the following characters, among others, if followed after a “%” in the

format string, will produce the corresponding format of the output.

Formatting Character Resultant format

Unicode character
d Decimal integer
o Octal integer
x , X Hexadecimal integer
e , E Decimal number in scientific notation
f Decimal number with decimal point

 System.out.println(s.next());
 }
 } catch (IOException e) {
 System.err.println ("IO Exception has occured");
 } finally {
 if (s != null) {
 s.close();
 }
 }
 }
}

double s = 0;
while (s.hasNext()) {
 if (s.hasNextDouble()) {
 sum += s.nextDouble();
 } else {
 s.next();
 }
}

int i = 10;
double d = 20.456107;
System.out.format ("Integer %d and Double %f", i,d);

""
""

""" "
""""

""

"c", "C"

152 Object-Oriented Programming and Java

10.10 The File Class

classes to manipulate files for reading and writing data. But many times, there is a
need to manipulate the properties of the file. Using File objects to open a file would
also make programs truly portable across platforms. For example, a file name is
represented differently in Windows as compared to Unix.

The following statements illustrate the kind of operations that you can perform
using the File class:

10.11 Random Access File Operations

Opening a file using the RandomAccessFile class would enable nonsequential access

is specified in the constructor method. Common read/write methods found in
DataInput and DataOutput classes can be used with random access files. The no-
tion of a File Pointer that points to the current position is supported by these files.
When the file is opened, the file pointer is positioned at the beginning of the file,
indicated by location 0. As the file is read or written, the file pointer moves depend-
ing on the number of bytes read or written.

Files can be opened for random access by either specifying a file name or the
File object in the constructor. The read/write mode is also specified in the construc-
tor as follows:

Some of the useful methods are illustrated below:

 File myFile = new File ("test.txt");
 System.out.println ("Is Directory = " +
 myFile.isDirectory());
 System.out.println ("Is File = "+ myFile.isFile());
 System.out.println ("Last Modified = " +
 myFile.lastModified());
 System.out.println ("Absolute Path = " +
 myFile.getAbsolutePath());

int read(byte[] b, int off, int len)
byte readByte()
char readChar()
double readDouble()
float readFloat()
int readInt()
String readLine()
String readUTF()

It may be sufficient to represent file names as Strings and use the Input-Output

of a file. A RandomAccessFile can be opened in read, write, or both modes. This

RandomAccessFile fileR = new RandomAccessFile("data","r");
RandomAccessFile FileRW = new RandomAccessFile("test", "rw");

Input and Output Operations 153

Methods commonly used to manipulate the File Pointer are shown below:

10.12 Summary

This chapter has introduced the Java Application Programmer Interface (API). It
provides the means by which programmers may code productively by reusing code.
The Java API possesses the key success criteria for reusability in that it has a neat
reuse framework and is adequately documented.

Code that judiciously uses the Java API is shorter and simpler to develop since
it effectively builds on the work of others. There is a big user community and it is
likely that any bugs discovered will be promptly fixed in future releases.

The java.io package is representative of the useful functionalities provided by
the Java API. Our discussion has shown:

•

•

The next usage level of the java.io package involves:

• subclasses of OutputStream and InputStream that implement actual I/O

operations on a suitable medium such as files or pipes via classes
FileInputStream and FileOutputStream;

•

subclasses;
• the corresponding relationship with Reader and Writer classes in JDK

1.1 (and beyond) supporting internationalization for character representa-
tion; and

•

10.13 Exercises

1. Review the HTML-based API documentation to find more details on the
following:

int skipBytes(int n)
void seek(long n)
long getFilePointer()

System.err, and System.in; and

OutputStream and InputStream.
the generic input and output interfaces used in the abstract classes

the basic input/output functionality may be used via System.out,

FilterInputStream and FilterOutputStream classes and corresponding
incorporation of general I/O formats and options as implemented by

• Data from files can be read using the Scanner object in a tokenized fash-
ion and formatted data can be output into PrintStream and PrintWriter
streams using the format method.

random access files for nonsequential access of files:

154 Object-Oriented Programming and Java

• operations allowable on Strings;
• constant value of PI;
• method to return the arc cosine of an angle.

2. Write a program to read file names specified in the command-line and
copy their contents to the standard output.

3. Implement a method to read the contents of the file and write it out to the
standard output stream, with all lowercase characters converted to upper-
case.

4. Suggest how exception handlers may be installed so that input/output er-
rors are reported and files appropriately closed after use.

5. Consider the similar code fragments for the solution to Questions 2 and 3,
and suggest how object-oriented technology may be used to maximize
reusability and maintainability

11
Networking and Multithreading

In Chapter 10, we previewed the Java API for input and output facilities, especially
those associated with files requiring different formatting. The framework used to
maximize code reusability was also discussed.

In this chapter, we will go beyond the local machine by looking at networking
facilities in the Java API. Since the abstraction for networking primitives turns out to
be byte streams, there is indeed much reuse of the classes seen in the previous chapter.

11.1 The Network Model

The networking facility available in Java using TCP/IP involves socket connections.
This allows a host to link up with another so that a byte stream that is sent on one
machine is received by the partner. A socket connection is symmetric and thus a host
also receives what is sent by the partner.

server

client

client
server is ready to

accept connections

clients may connect
serially to server

Figure 11-1: Server and clients.

156 Object-Oriented Programming and Java

In this model, as illustrated in Figure 11-1, machines may be asymmetrically

classified as clients and servers. A client is one that initiates a network connection by
naming the corresponding server. A server is one that is ready to receive a connec-
tion from a client.

A server host may provide more than one service, and thus a port number is re-
quired to distinguish between services. On the Internet, there are well-defined port
numbers for the standard services. By UNIX convention, the first 1023 ports are
reserved for system privileged services; thereafter other user programs may use the
ports on a first-come-first-serve basis.

The following table gives some standard services and their corresponding port
numbers:

Service Port number
telnet 23
ftp 21
mail 25
finger 79
Web (httpd) 80

A socket connection is said to be established when a client successfully con-

nects to a server machine. From this point, as illustrated in Figure 11-2, communica-
tion between both parties is symmetric. As such, writing at either end will cause the
corresponding partner to receive the contents.

server client
bidirectional transmission

Figure 11-2: Bidirectional socket connection.

11.2 Sockets in Java

The implementation details of TCP/IP socket connections in Java are encapsulated in
the Socket class which exists in the java.net package. As before, the Socket class
must be brought into scope via an import java.net.Socket statement. A socket
connection to a server involves instantiating a Socket object with the appropriate
connection parameters.

In the typical scenario, we specify the host name of the server and the service
port at which the server is listening to. A socket connection to the Web server (run-
ning at the default port 80) at www.javasoft.com would be made as such:

Socket soc = new Socket(”www.javasoft.com”, 80);

Note that the class documentation reveals that this constructor may throw two

exceptions. An UnknownHostException is thrown if the hostname is not a valid
domain name, while an IOException is thrown if a socket connection with a valid

Networking and Multithreading 157

host name cannot be established. This would be so if the server was not running
during the connection attempt, or simply that the network was not operating.

If a socket object is successfully created, communication may commence by
writing to and reading from the other party. These procedures are analogous to what
was done in the previous chapter for file input and output. As expected, the streams
model is used, as with InputStream and OutputStream.

At this point, we introduce the two methods that are relevant to socket objects.
The getInputStream() and getOutputStream() methods return the InputStream
and OutputStream objects associated with a socket. The former allows for reading
from, while the latter allows for writing to the other party at the other end of the
socket connection.

InputStream instream = soc.getInputStream();
OutputStream outstream = soc.getOutputStream();

Therefore, the necessary operations and paradigms in Chapter 10 on file input

and output apply.

11.2.1 Example Client: Web Page Retriever

In this section, we consider how the Socket class may be used to retrieve content
from Web servers. The generic framework for this client is also applicable to many
other clients connected to a well-known host for services. (However, different appli-
cations may have their own application protocol to request the server for services.)

Section 11.2 gives the basics of how generic clients may connect with their cor-
responding servers. By following the methods laid out in Chapter 10 on file input
and output, information exchange may proceed over the socket connection. The
skeleton of the WebRetriever class is revealed in Listing 11-1:

While this has laid the groundwork for clients and the server to “talk” over a

network, nothing has been discussed about a common language as to what is ex-
changed. This is also known as the application protocol. In implementing a Web
page retriever, we next consider how a Web client works in relation to a Web server.

 Listing 11-1: WebRetriever skeleton.

import java.io.*;
import java.net.*;

class WebRetriever {

 Socket soc;
 OutputStream os; InputStream is;

 WebRetriever(String server, int port)
 throws IOException, UnknownHostException {
 soc = new Socket(server, port);
 os = soc.getOutputStream();
 is = soc.getInputStream();
 }
}

158 Object-Oriented Programming and Java

Web
server client

returns HTML page

HTTP request via URL

Figure 11-3: Web client/server communication

A Uniform Resource Locator (URL) is the abstraction of a resource available at

a server. (While it is typically a Web server, it is not restricted to Web servers and
may include FTP and news servers.) A highlighted anchor in a Web client browser
has an underlying URL. Thus, when selecting a HTTP URL, such as
http://www.nus.edu.sg:80/NUSinfo/UG/ug.html, the framework of a request
issued by the client may be broken into four portions:

http resource is to be retrieved by using the HTTP protocol
www.nus.edu.sg hostname of the server
80 port number where service is offered
/NUSinfo/UG/ug.html exact pathname on host root where resource is found

The following table enumerates the interaction between client and server, for

the former to obtain a response from the latter.

State Client Action
A Web server is generally happy to serve out pages to any
client, and thus waits for a prospective client.

(Server is ready)

Clicking a link on a Web client browser will cause it to initi-
ate a socket connection to the server, and then request the
server for a particular page.

Create new
socket

Client requests the server for a particular page. Write HTTP
GET request

On receiving a legitimate request in the form of a URL path,
the server would return the contents of the corresponding file.

Read response
from server

While there is an Internet RFC document that comprehensively describes the

HyperText Transmission Protocol (HTTP), we only need to be aware of two details
for the purpose of our example client:

• The GET path command requests that the server sends the resource at

path.
• An empty text line indicates the end of client request to the server.

This basic HTTP request is handled by the request() method which packages
the requested pathname into a GET command and sends it down the socket:

Networking and Multithreading 159

Following an HTTP request, a response from the server is anticipated. The

streams paradigm allows for a familiar code pattern via a while-statement in the
getResponse() method.

Tidying after a request is necessary to relinquish networking resources. This is

easily achieved by closing the streams.

Finally, the static void main() method pulls all the work together to imple-

ment the retriever.

 void request(String path) {
 try {
 String message = ”GET ” + path + ”\n\n”;
 os.write(message.getBytes());
 os.flush();
 } catch (IOException e) {
 System.err.println("Error in HTTP request");
 }
 }

 void getResponse() {
 int c;
 try {
 while ((c = is.read()) != -1)
 System.out.print((char) c);
 } catch (IOException e) {
 System.err.println(”IOException in reading from Web server”);
 }
}

 public void close() {
 try {
 is.close();
 os.close();
 soc.close();
 } catch (IOException e) {
 System.err.println("IOException in closing connection");
 }
 }

 public static void main(String[] args) {
 try {
 WebRetriever w = new WebRetriever("www.nus.edu.sg", 80);
 w.request("/NUSinfo/UG/ug.html");
 w.getResponse();
 w.close();
 } catch (UnknownHostException h) {
 System.err.println("Hostname Unknown");
 } catch (IOException i) {
 System.err.println("IOException in connecting to Host");
 }
 }

160 Object-Oriented Programming and Java

Note that where the resource from a server is an HTML file, a typical Web

browser will render it according to the semantics of HTML. This functionality is not
considered here. The complete WebRetriever class is shown in Listing 11-2.

 Listing 11-2: WebRetriever class.

import java.io.*;
import java.net.*;

class WebRetriever {
 Socket soc; OutputStream os; InputStream is;

 WebRetriever(String server, int port)
 throws IOException, UnknownHostException {
 soc = new Socket(server, port);
 os = soc.getOutputStream();
 is = soc.getInputStream();
 }
 void request(String path) {
 try {
 String message = "GET " + path + "\n\n";
 os.write(message.getBytes());
 os.flush();
 } catch (IOException e) {
 System.err.println("Error in HTTP request");
 }
 }
 void getResponse() {
 int c;
 try {
 while ((c = is.read()) != -1)
 System.out.print((char) c) ;
 } catch (IOException e) {
 System.err.println("IOException in reading from " +
 "Web server");
 }
 }
 public void close() {
 try {
 is.close(); os.close(); soc.close();
 } catch (IOException e) {
 System.err.println("IOException in closing connection");
 }
 }
 public static void main(String[] args) {
 try {
 WebRetriever w = new WebRetriever("www.nus.edu.sg", 80);
 w.request("/NUSinfo/UG/ug.html");
 w.getResponse();
 w.close();
 } catch (UnknownHostException h) {
 System.err.println("Hostname Unknown");
 } catch (IOException i) {
 System.err.println(”IOException in connecting to Host”);
 }
 }
}

Networking and Multithreading 161

11.3 Listener Sockets in Java

So far, we have considered Java code to initiate a socket connection to a server. It is
time to consider how a server might be implemented in Java to be of service to other
clients (which may or may not be implemented in Java). As pointed out earlier in the
chapter, the asymmetric nature of clients and servers only occurs initially during
matchmaking. Following that, communication over a socket is symmetric.

In the Java networking model, the additional functionality of listening out for
prospective clients is handled by the ServerSocket class. Unlike the Socket class
which requires a port number and the host machine which is providing service during
object instantiation, a ServerSocket merely needs a port number since it is inviting
requests from any machine.

The creation of a ServerSocket reserves a port number for use, and prevents
other prospective servers on the host from offering services at the same port:

ServerSocket s = new ServerSocket(8080);

The accept() method waits for the arrival a client. As such, execution of the

server suspends until some client arrives, at which time, a socket connection is suc-
cessfully established. In resuming execution, the accept() method also returns a
suitable Socket instance to communicate with its client.

Socket soc = s.accept();

Assuming Java implementations of a server and corresponding client, the fol-

lowing chart illustrates relative progress.

Server Progress Client Progress
ServerSocket s =

 new ServerSocket(8080);

// Port reserved
Socket soc1 = s.accept();
// Waiting for prospective client

// Server execution suspended

 Socket soc2 =
 new Socket(server,7070);

// Arrival of client
// Server execution resumed

written at the other, and vice versa.

11.3.1 Example Server: Simple Web Server

We now proceed to implement a simple Web server using the new functionality of
the ServerSocket class. In comparison, it complements the Web retriever client
developed earlier. The similar framework of socket communication for the Web

progress of
execution

soc1 and soc2 are complementary sockets, where one may read the contents

162 Object-Oriented Programming and Java

client and server has resulted in a very similar structure in the class skeleton in List-
ing 11-3.

 Listing 11-3: WebServe skeleton.

The rationales for changes with respect to the client implement are elaborated

below:

• The instantiation of the ServerSocket object is done in main() so that a

WebServe object still contains Socket and Stream objects. It not only
preserves the structure, but a more significant reason will be elaborated
on later in the chapter.

• The input stream is a DataInputStream object so that HTTP request
may be easily read on a per-line basis. Previously, the retriever client
read data from the server and line structure was not considered.

• While the retriever client sends a request and then waits for a response
from the server (via request() and getResponse()), the server per-
forms the complement of receiving a request and then sending a response
back to the client (via getRequest() and returnResponse() in
main()).

As seen previously, a Web client makes a request for a resource via a HTTP

GET command. However, in a typical Web client, this command is interspersed in a
block of other HTTP request, such as:

import java.io.*;
import java.net.*;

class WebServe {

 Socket soc;
 OutputStream os; DataInputStream is;

 public static void main(String args[]) {
 try {
 ServerSocket s = new ServerSocket(8080);
 WebServe w = new WebServe(s.accept());
 w.getRequest();
 w.returnResponse();
 } catch (IOException i) {
 System.err.println("IOException in Server");
 }
 }
 WebServe(Socket s) throws IOException {
 soc = s;
 os = soc.getOutputStream();
 is = new DataInputStream(soc.getInputStream());
 }
}

Networking and Multithreading 163

GET /public_html/quick.html HTTP/1.0
Referer: http://sununx.iscs.nus.sg:8080/public_html/ic365/index.html
Connection: Keep-Alive
User-Agent: Mozilla/4.0 [en] (Win95; I)
Host: sununx.iscs.nus.sg:8080
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

Thus, while the getRequest() method scans the command block for a GET

command, all other commands are ignored. Where a GET word is found it scans for
the subsequent pathname of the requested resource. Processing terminates when the
end of the block indicated by an empty line is detected.

The getRequest() method relies on the StringTokenizer class to strip away

unwanted whitespaces to return raw symbols. On instantiating a StringTokenizer
with the input string, tokens are returned on each call to nextToken().

It would also be apparent that we need a new instance variable to hold the path-
name of the resource requested. The returnResponse() method may then use this
as a file name to return its contents.

Note that “.” has been added to the pathname of the resource as the Web server

is expected to return contents of the current directory. Since the finalize() method

 void getRequest() {
 try {
 String message;

 while ((message = is.readLine()) != null) {
 if (message.equals(""))
 break; // end of command block
 System.err.println(message);
 StringTokenizer t = new StringTokenizer(message);
 String token = t.nextToken(); // get first token
 if (token.equals("GET")) // if token is ”GET”
 resource = t.nextToken(); // get second token
 }
 } catch (IOException e) {
 System.err.println("Error receiving Web request");
 }
 }

 void returnResponse() {
 int c;
 try {
 FileInputStream f = new FileInputStream("."+resource);
 while ((c = f.read()) != -1)
 os.write(c) ;
 f.close();
 } catch (IOException e) {
 System.err.println("IOException in reading in Web server");
 }
 }

164 Object-Oriented Programming and Java

is unchanged, we have presented all the necessary code for our Web server. Again,
the clean-up is implicit when the WebServe instance is not accessible.

The complete mini-WebServer is shown in Listing 11-4.

11.3.2 Running the Web Server

We have discussed the workings of Web client and Web server programs written in
Java. While the former allows the retrieval of resources across the Internet, the latter
can be tested in various scenarios.

• Where networking facilities are available, the Web server can be exe-

cuted on one machine, and the Web client on another to make requests to
the server.

• Where networking facilities are not available, both the Web server and
client may be executed on different sessions of the same machine. The
client may refer to the server host as the standard name “localhost”.

In the same way that the Web client can access another server not written in

Java, a typical Web client (such as FireFox or Internet Explorer) may be used to
access our Java server.

import java.io.*;
import java.net.*;
class WebServe {
 Socket soc; OutputStream os; DataInputStream is;
 void getRequest() {
 try {
 String message;

 while ((message = is.readLine()) != null) {
 if (message.equals(""))
 break; // end of command block
 System.err.println(message);
 StringTokenizer t = new StringTokenizer(message);
 String token = t.nextToken(); // get first token
 if (token.equals("GET")) // if token is ”GET”
 resource = t.nextToken(); // get second token
 }
 } catch (IOException e) {
 System.err.println("Error receiving Web request");
 }
 }
 void returnResponse() {
 int c;
 try {
 FileInputStream f = new FileInputStream("."+resource);
 while ((c = f.read()) != -1)
 os.write(c);
 f.close();
 } catch (IOException e) {
 System.err.println("IOException in reading in Web " +

Networking and Multithreading 165

Listing 11-4: WebServe class.

In practice, the scenario implemented is not practical because the server termi-
nates after serving one resource. Most Web servers continue to run until the machine
is rebooted or switched-off. This improvement may be effected by instantiating mul-
tiple WebServe objects by using an infinite for-loop. Note that old WebServe
instances are garbage collected away. This minor change allows WebServe to work
as a more practical Web server, and suitable with standard Web browsers.

11.4 Considering Multiple Threads of Execution

Many applications that require networking and graphical user interfaces have fairly
complicated internal workings due to complex tasking schedules. For example, while

 "server");
 }
 }
 public static void main(String args[]) {
 try {
 ServerSocket s = new ServerSocket(8080);
 WebServe w = new WebServe(s.accept());
 w.getRequest();
 w.returnResponse();
 } catch (IOException i) {
 System.err.println("IOException in Server");
 }
 }

 public void close() {
 try {
 is.close(); os.close(); soc.close();
 } catch (IOException e) {
 System.err.println("IOException in closing connection");
 }
 }
 WebServe(Socket s) throws IOException {
 soc = s;
 os = soc.getOutputStream();
 is = new DataInputStream(soc.getInputStream());
 }
}

public static void main(String args[]) {
 try {
 ServerSocket s = new ServerSocket(8080);
 for (;;) {
 WebServe w = new WebServe(s.accept());
 w.getRequest();
 w.returnResponse();
 w.close();
 }
 } catch (IOException i) {
 System.err.println("IOException in Server");
 }
}

166 Object-Oriented Programming and Java

Webserve is processing the bulk of HTTP requests from a Web browser, it cannot
perform other tasks such as servicing another Web client. In fact, Webserve currently
allows only one socket connection at any time because instructions are executed
sequentially. As such, it can only handle retrieval requests serially.

A graphical user interface typically has many concerns. For example, it needs
to monitor mouse activity (in particular, if it has moved over hot areas); monitor
keyboard activity (if keys have been depressed or special combinations of keys have
been used); update screen areas with modified views; or even play an audio clip. If
all these activities were to be merged into a sequence of serial instructions, it would
be untidy and complex, and possibly error-prone.

Ideally, it would be simpler and neater if concurrent but independent activities
were specified separately, yet easily executed concurrently. However, this is impos-
sible with Java mechanisms because of strict sequential execution, which ultimately
implies that one set of instructions is serially executed. This is also known as a single
thread of execution.

Operating systems such as UNIX provide primitives like fork() to enable the
creation of multiple processes to run multiple jobs. Unfortunately, processes tend to
be expensive due to the need to maintain separate address spaces for each instance.

Threads have recently been promoted as a reasonable means for parallel execu-
tion, but without the high execution overheads since they share the same address
space.

11.5 Creating Multiple Threads of Execution

So far, our code has been executed as a single thread. In this section, we consider the
abstraction used in Java programs to initiate multithreaded execution. There are two
specific ways to create threads: using the Thread class or using the Runnable inter-
face.

11.5.1 Thread Creation Using the Thread Class

As we have seen with other mechanisms, the thread abstraction in Java is also encap-
sulated in an object. The basic functionality of threads is implemented by the Thread
class in the java.lang package.

The following three properties about this Thread class allow for easy creation
and execution of threads in Java:

 (i) A new thread of execution may be created by instantiating a Thread

object.
(ii) A newly created thread does not begin execution explicitly. Execution

starts by invoking the method start().
(iii) Execution of a thread involves invoking the run() method. An applica-

tion-specific thread would typically be a class that extends from the
Thread class, and then overrides the run() method to run application-
specific code.

Networking and Multithreading 167

The following class definition in Listing 11-5 exploits the three properties and

provides an extra thread for concurrent execution of the run() method.

 Listing 11-5: Multithread using the thread class.

A fragment from the execution of AddAndPrint in Listing 11-6 shows output
from main() and run() interspersed. This indicates that execution of the two blocks
is appropriately scheduled and proceeds conceptually in parallel.

...
main() 14
main() 15
main() 16
main() 17
main() 18
main() 19
main() 20
main() 21
main() 22
run() 253
run() 252
run() 251
run() 250
run() 249
main() 23
main() 24
main() 25
main() 26
main() 27
main() 28
main() 29
run() 248
run() 247
run() 246
run() 245
run() 244

 Listing 11-6: Sample output.

class AddAndPrint extends Thread {

 private static final int TIMES = 30;
 private int val;

 AddAndPrint(int x) { val = x; }

 public void run() { // overrides default run()
 for (int i=val+TIMES; i>val; i--)
 System.err.println("run() : " + i);
 }
 public static void main(String arg[]) {
 AddAndPrint a = new AddAndPrint(243); // create thread
 a.start(); // start thread run
 for (int i=0; i<TIMES; i++) // proceed with code
 System.err.println("main() " + i);
 }
}

168 Object-Oriented Programming and Java

11.5.2 Thread Creation Using the Runnable Interface

The class derivation method in the previous section has demonstrated a convenient
means to creating new threads of execution, but it assumes that such classes must
always be derived from the class Thread. This is a limitation for single inheritance
languages such as Java, where very often a class should be derived from another
class.

Fortunately, there is a second method of creating threads within classes that are
not derived from the Thread class. Here, thread functionality involves implementing
the Runnable interface, as illustrated in Listing 11-7.

While this method may initially seem different from the previous method, it
does have some similarities:

(i) The side-effect of a thread is still encoded within the run() method

which becomes mandatory for classes that implement Runnable.
(ii) Thread creation is still effected via a thread object. This time, however,

an instance of the class that implements the Runnable interface (with a
specific run()) method is passed as a parameter to the constructor.

 (iii) The start() method begins thread execution.

Listing 11-7: Multithreading using the runnable interface.

11.6 Improvement of Web Server Example

As noted earlier, the simple Web server developed earlier processes requests from
Web clients serially. As such, unless an HTTP request is processed and the specified
resource is chosen to be returned to the Web client, the next request cannot even be
accepted.

The brief modifications shown in Listing 11-8 improves the Web server so that
instead of proceeding with getRequest() and returnResponse(), a thread object is

class Special extends X implements Runnable {

 private final int TIMES = 30;
 private int val;

 AddAndPrint(int x) { val = x; }

 public void run() { // necessary for Runnable
 for (int i=val+TIMES; i>val; i--)
 System.err.println("AddAndPrint value: " + i);
 }
 public static void main(String arg[]) {
 Special a = new Special(243); // create non-thread object
 Thread thr = new Thread(a); // create thread
 thr.start(); // start thread execution
 for (int i=0; i<TIMES; i++) // proceed with code
 System.err.println("main() " + i);
 }
}

Networking and Multithreading 169

created to execute these methods within the run() method. In effect, while the new
thread executes these methods, control in static void main() continues with
another loop iteration to accept any new clients.

 Listing 11-8: Multithreading in WebServe.

The fact that other methods in the class definition remains unchanged shows

how unobtrusively multithreading can be introduced into Java code.

11.7 Thread Synchronization and Shared Resources

Concurrent execution in the form of multiple threads of execution can allow for
simpler code structures, but can also lead to intricate situations where resource shar-
ing must be carefully considered. An example of a shared resource is a common
variable.

While the relative progress of independent threads have no bearing to the end
result (e.g., threads in our Web server are independent as they proceed on their own
and do not depend on each other for more inputs), concurrent threads that interact
(i.e., dependent) must be appropriately synchronized. The objective of synchroniza-
tion ensures that the end result is deterministic, and does not vary depending on the
relative execution speeds of each thread.

We first consider the issue of concurrent access/updates on shared variables.
For simple expressions involving atomic variables, unexpected interactions will give
nondeterministic results.

class WebServe implements Runnable {

 public void run() {
 getRequest();
 returnResponse();
 close();
 }
 public static void main(String args[]) {
 try {
 ServerSocket s = new ServerSocket(8080);
 for (;;) {
 WebServe w = new WebServe(s.accept());
 Thread thr = new Thread(w);
 thr.start();
 }
 } catch (IOException i) {
 System.err.println("IOException in Server");
 }
 }
}

170 Object-Oriented Programming and Java

Listing 11-9: Dependent threads.

The objective of JustAdd in Listing 11-9 is to create a thread to increment val
(via run()) while the original thread increments val (via operate()). Depending on
the Java implementation, the result printed may not be 200,000. That was the
expected value since val would have been incremented 2*N times, N being 100,000.

Now, consider the circumstance where the execution of the assignment state-
ments val = val+1 in both threads is interleaved. Overwriting results if both expres-
sions val+1 are evaluated before val is reassigned. This scenario is possible if after
evaluating val+1, the thread’s time-slice runs out, thus allowing the other thread to
evaluate using the “old” value of val. Here, the expected result of 200,000 will not
be obtained.

Java provides the language keyword synchronized to demarcate code and data
such that access of these regions by concurrent threads is serialized. This restriction
allows shared data to be updated in mutual exclusion, and removes the possibility of
interleaved execution.

Each Java object has an associated use lock, and a synchronized statement
must acquire that lock before execution of its body. In the code fragment below, the
lock associated with g is first obtained before h.carefully() is executed. Similarly,
the lock is implicitly released on leaving the block.

An instance method may also be specified as synchronized—such as workA-

lone() below. It is equivalent to its whole statement block being synchronized with
respect to the current object as indicated by this. As such, the synchronized
method workAlone():

class JustAdd extends Thread {

 private final int N = 100000;
 private int val;

 JustAdd() { val = 0; }
 int value() { return val; }
 public void operate() {
 for (int i=0; i<N; i++) val = val+1;
 }
 public void run() {
 for (int i=0; i<N; i++) val = val+1;
 }
 public static void main(String arg[]) {
 JustAdd a = new JustAdd(); // create thread
 a.start(); // start run()
 a.operate(); // add using operate()
 System.out.println(a.value());
 }
}

synchronized (g) {
 h.carefully();
}

Networking and Multithreading 171

is equivalent to

To enable consistent increments, the JustAdd class could be modified as in

Listing 11-10.
We next consider the traditional consumer–producer synchronization problem

by taking the example of two threads: an input thread that reads file contents into a
buffer, and its partner output thread that writes buffer contents to the printer. The
progress of each thread is dictated by the other: if the output thread proceeds faster, it
must ultimately suspend when the buffer is empty. Similarly, if the input thread
proceeds faster, it must ultimately suspend when the buffer is full.

 Listing 11-10: Synchronized threads.

class X {
 ...
 synchronized void workAlone() {
 p();
 q();
 }
}

class X {
 ...
 void workAlone() {
 synchronized (this) {
 p();
 q();
 }
 }
}

class JustAdd extends Thread {

 private final int N = 100000;
 private int val;

 JustAdd() { val = 0; }
 int value() { return val; }

 synchronized void increment () { val = val+1; }
 public void operate() {
 for (int i=0; i<N; i++) increment();
 }
 public void run() {
 for (int i=0; i<N; i++) increment();
 }
 public static void main(String arg[]) {
 JustAdd a = new JustAdd(); // create thread
 a.start(); // start run()
 a.operate(); // add using operate()
 System.out.println(a.value());
 }
}

172 Object-Oriented Programming and Java

The buffer is jointly used by both input and output threads, and is referred to as

a shared resource. While it is accessible to both threads, but for correct operation, a
thread must be delayed if it is progressing too fast. Such longer-term synchronization
involving resource scheduling may be effected by using an object’s lock as a monitor
and the following methods for waiting and notification:

wait() The wait() method causes the thread that holds the lock to

wait indefinitely (so that it makes no progress in its execution)
until notified by another about a change in the lock condition.

notify() The notify() method wakes up a thread from amongst those
waiting on the object’s lock.

Let us consider a Writer thread that adds items to a buffer, and a partner Reader

thread rhat removes items from the same. To simplify item generation in the Writer
class (as illustrated in Listing 11-11), it will add the contents of a file.

 Listing 11-11: Writer thread.

Similarly, the Reader class will read from the buffer and confirm the contents
by writing to the standard output stream, as shown below in Listing 11-12.

class Writer extends Thread {
 Buffer b;
 FileInputStream fs;
 public void run() {
 int x;
 try {
 while ((x = fs.read()) != -1)
 b.put((char) x);
 b.put('\032');
 } catch (Exception e) {
 System.err.println("Cannot read");
 System.exit(1);
 }
 }
 Writer(String fname, Buffer b) {
 this.b = b;
 try {
 fs = new FileInputStream(fname);
 } catch (Exception e) {
 fs = null;
 System.err.println("Cannot open "+fname);
 System.exit(1);
 }
 }
}

Networking and Multithreading 173

Listing 11-12: Reader thread,

The following are some points concerning the Writer and Reader classes:

• The Buffer object is shared between the Reader object which reads

from it, and the Writer object which writes to it. It must be accessible to
both objects, and is achieved via passing it through the constructor
method.

• Unless the Reader object is notified about the end of stream, it will wait
indefinitely when no more items from the Writer object is forthcoming.
To avoid this situation, the Writer thread puts out the character ^Z to
signal the end of the stream. As such, the Reader terminates on receiving
this item.

We now consider how the Buffer class, with put() and get() methods may

be implemented to work consistently despite concurrent accesses and different rates
of thread execution.

Firstly, the basic requirement of a buffer is to keep items placed by put() in its
internal state until they are retrieved by get(). This is illustrated in Listing 11-13.
To ensure smooth execution of Reader and Writer threads, we allow the buffer to
hold more than one item via a circular queue indicated by front and rear indexes.

Note that front and rear moves down the array and wraps around from the
last item to the first via the remainder operation %. The distance between the two
indexes indicates the number of buffered items.

class Reader extends Thread {
 Buffer b;
 public void run() {
 char x;
 while ((x = b.get()) != '\032')
 System.out.print(x);
 }
 Reader(Buffer b) {
 this.b = b;
 }
}

class Buffer {

 final int MAXSIZE = 512;
 char keep[];
 int count, front, rear;

 public char get() {
 char x = keep[rear];
 rear = (rear+1) % MAXSIZE;
 count--;
 return x;
 }

174 Object-Oriented Programming and Java

Listing 11-13: Shared buffer.

Secondly, concurrent access of the Buffer object from Writer and Reader
threads dictate that calls to get() and put() should not overlap so that the integrity
of the internal state is preserved during updates. This may be achieved by tagging
these methods as synchronized, so that access to Buffer instances must be implic-
itly preceded by acquiring the access lock. Subsequently, the access lock is released
following access.

Thirdly, the get() method should cause the calling thread to wait when the
Buffer object is already empty. Correspondingly, the put() method should notify a
thread waiting to access the Buffer object that an item is available. However, the
put() method should also cause the calling thread to wait when the Buffer object is
already full. Similarly, the get() method must notify a thread waiting to access the
Buffer object that a slot is now available for an item. This is illustrated in the
improved Buffer class in Listing 11-14.

 public void put(char x) {
 keep[front] = x;
 front = (front+1) % MAXSIZE;
 count++;
 }
 Buffer() {
 keep[] = new char [MAXSIZE];
 count = 0;
 front = rear = 0;
 }
}

class Buffer {

 final int MAXSIZE = 512;
 char keep[];
 int count, front, rear;

 public synchronized char get() {
 while (count == 0)
 wait();
 char x = keep[rear];
 rear = (rear+1) % MAXSIZE;
 count--;
 notify(); // that a space is now available
 return x;
 }
 public synchronized void put(char x) {
 while (count == MAXSIZE)
 wait();
 keep[front] = x;
 front = (front+1) % MAXSIZE;
 count++;
 notify(); // that an item is now available
 }

Networking and Multithreading 175

 Listing 11-14: Synchronized buffer.

To summarize, the additional code for thread synchronization includes the syn-

chronized tag together with wait() and notify() method calls. The former in-
volves object access locks for short-term synchronization to solve the problem of
concurrent access to object attributes. The latter concerns long-term synchronization
to solve the problem of resource allocation.

Note that our Java buffer solution is slightly different from other languages.
Firstly, waiting for a resource (either for an item in the buffer to retrieve or a slot in
the buffer to receive a new item) involves repeated testing of the condition in a
while-loop, for example:

Secondly, the method call to notify() does not specify explicitly which thread

should be alerted. In fact, this seems more dubious when we consider that there are
two conditions for which threads look out for—an empty buffer and a full buffer.

To explain these observations, we recall the nature of the wait() and notify()
methods. The notify() method awakens one of the threads waiting on the object’s
lock queue. This thread may be waiting for a buffer item or an empty buffer slot.
Since the notify() method does not allow the specification of a condition, awaking
from a wait() call does not guarantee that the condition for it is fulfilled. As such,
the while-loop ensures that an anticipated condition be confirmed when waking up
from wait(). Therefore, the thread continues to wait if the condition is not yet ful-
filled.

11.8 Summary

This chapter has discussed the basics of two important areas in Java programming:
networking and multithreading. While implementing these functionalities in other
languages may be nontrivial, Java has the advantage in that these functionalities are
well-encapsulated into objects, and supplied with appropriate APIs. Any additional
functionality is thus well-integrated into the language framework.

Network socket connections in Java depend on:

• Socket; and
• ServerSocket classes

 Buffer() {
 keep[] = new char [MAXSIZE];
 count = 0;
 front = rear = 0;
 }
}

while (count == 0)
 wait();

if (count == 0)
 wait();

instead of

176 Object-Oriented Programming and Java

as found in the java.net package. The Socket class enables Java applications to
initiate client connections to other machines with a listening server. The complemen-
tary role of implementing a listening server is provided by the ServerSocket class.
Successful connections return InputStream and OutputStream objects (via the
getInputStream() and getOutputStream() methods), with subsequent operations
similar to that seen for input/output operations on streams and files.

Multiple socket connections (involving multiple hosts) provide a real example
when multithreading is very useful in easing processing logic. Without this means of
specifying parallel tasks, these tasks must be serialized, or additional logic may be
used to multiplex multiple tasks into a single subroutine via state save/restore opera-
tions. However, this is error-prone and an additional chore that many programmers
would gladly avoid.

The Java API facilitates thread creation and execution via:

• Thread class; and
• Runnable interface.

Both are almost identical in that thread execution is initiated by the start()

method, which causes the user-defined run() method to execute but does not wait
for its termination.

11.9 Exercises

1. A telnet client may be used to simulate a finger request to obtain user
information from a finger server (which typically listens to port 79). The
user name is entered after connection to the finger server is established:

Simplify the procedure by implementing a finger client in Java that will

obtain the user name and server from the command-line, and print out details
obtained from the finger server via a socket connection.
2. Implement a reverse server in Java. It works by listening for clients on port

1488. For each client socket connection, it reads the first line and returns
the reversed string to the client.

3. Many sites with a firewall implement a proxy server as a legitimate means
to go through the network barrier. The Web proxy thus sits between server

$ telnet leonis.nus.edu.sg 79
Trying 137.132.1.18...
Connected to leonis.nus.edu.sg.
Escape character is '^]'.
isckbk
Login name: isckbk In real life: Kiong Beng Kee
Directory: /staff/isckbk Shell: /usr/bin/ksh
Last login Fri Feb 13 14:56 on ttym4 from dkiong.iscs.nus.
No Plan.
Connection closed by foreign host.

Networking and Multithreading 177

and clients. It forwards a client’s request to the server, and thereafter re-
lays the server’s reply to the original client.

Web
server Client

Returns HTML page

HTTP request via URL

Compared with the proxyless framework shown above, the proxy applica-
tion has two socket connections. It listens for clients at one end, and then
launches the request to the server proper via the other, as shown graphically.

Web
server Proxy

Returns HTML page to client

Forwards HTTP request from
client browser

Client

Implement a proxy application to eavesdrop on how a standard Web
browser requests for HTML pages as well as submit forms.
4. Suggest a suitable representation for matrices. Discuss sequential and

threaded solutions for matrix multiplication.

12
Generics and Collections Framework

Prior to Java version 1.5, a Java class could only be written with its attribute and
parameter types in mind. One could never translate a type-independent concept into a
class. With the introduction of Java Generics in Java 2 version 1.5, we can define a

specified when the class is instantiated.
In this chapter you will learn how to use this feature of Java. You will also

learn about the Java Collections framework that has a predefined set of generic
classes and algorithms that can be used to store and manipulate a collection of
objects.

12.1 Introduction

In Java 5 (i.e., J2SE 1.5), many new features are introduced. One of the significant
features is the concept of generic programming. This feature had been debated for
many years before it was introduced in Java. C++ programmers will be very familiar
with the concept of generic programming, as in C++ templates. Though “Java
generics” is quite similar to templates, there are also many significant differences
between the two implementations. We will first discuss the Java generics and then
elaborate on the Collections Framework that contains many useful generic interfaces,
methods and classes.

12.2 Rationale Behind Generics

Before understanding the concept of generics, it is important that we are familiar
with the problems and issues in using the Java language without generics. This will
lead us to the motivation behind Java generics.

class without specifying the type for certain attributes and/or parameters. The type is

180 Object-Oriented Programming and Java

12.2.1 The Problem

Let us consider some generic concepts such as the data structure Stack or the
algorithm to sort an array. When we start to code classes or methods relating to such
concepts, we have to consider the type of elements that we are dealing with. Take a
look at the code for the slightly modified Stack class in Listing 12-1.

Listing 12-1: Stack implementation for storing integer objects.

Using this Stack class you are only able to store elements of the type

Integer. What if you want to store elements of the type String? You will have
to rewrite the Stack class by substituting the type Integer to type String,
although most of the logic behind the code is the same. The only changes you will
need to make are in the type of contents array and the type information in all the

class StackItem {
 private Integer item = 0;
 private StackItem previous;
 public Integer getItem() { return item;}
 public void setItem(Integer x) { item = x; }
 public StackItem getPrevious() { return previous; }
 public void setPrevious(StackItem p) { previous = p; }
 public StackItem() { previous = null; }
}

class Stack {
 private StackItem top, temp;
 private int size=10;
 public Integer pop() {
 Integer x = 0;
 if (empty()) System.err.println("stack underflow");
 else {
 x = top.getItem();
 top = top.getPrevious();
 size--;
 }
 return x;
 }
 public void push(Integer x) {
 if (full()) System.err.println("stack overflow");
 else {
 temp = top;
 top = new StackItem();
 top.setPrevious (temp);
 top.setItem(x);
 size++;
 System.out.println("pushed " + x + "into stack");
 }
 }
 public int size() {return (size); }
 public boolean empty() { return (size() == 0); }
 public boolean full() { return false;}
 public Stack() {
 top = null; size = 0;
 }
}

Generics and Collections Framework 181

methods that manipulate the contents. This poses a reuse problem. How do we reuse
the common code and let the type alone vary?

We actually have a solution in Java to deal with the above reuse problem. Now
consider the code for another version of the Stack class (created by substituting the
Integer type to Object type) in Listing 12-2.

Listing 12-2: Stack implementation for storing any type of objects.

class StackItem {
 private Object item = 0;
 private StackItem previous;

 public Object getItem() { return item;}
 public void setItem(Object x) { item = x; }
 public StackItem getPrevious() { return previous; }
 public void setPrevious(StackItem p) { previous = p; }
 public StackItem() { previous = null; }
}

class Stack {
 private StackItem top, temp;
 private int size=10;

 public Object pop() {
 Object x = 0;
 if (empty()) System.err.println("stack underflow");
 else {
 x = top.getItem();
 top = top.getPrevious();
 size = size - 1;
 }
 return x;
 }
 public void push(Object x) {
 if (full()) System.err.println("stack overflow");
 else {
 temp = top;
 top = new StackItem();
 top.setPrevious (temp);
 top.setItem(x);
 size = size + 1;
 System.out.println("pushed " + x + " into stack");
 }
 }
 public int size() {return (size); }
 public boolean empty() {
 return (size() == 0);
 }
 public boolean full() { return false;}

 public Stack() {
 top = null;
 size = 0;
 }
}

182 Object-Oriented Programming and Java

As we know, in Java, the class called Object is the superclass of all classes.

We have changed the type of contents and the type information in all the methods
that manipulate the contents to Object type. We can reuse this Stack class as a
Stack that can hold Integer objects or any other type of objects. Now take a look at
the code that makes use of this Stack class in Listing 12-3.

Listing 12-3: Usage of the Stack class for storing different type of objects.

12.2.2 Run-time Type Identification (RTTI)

While the above solution seems to solve the problem of reuse, that is, reuse of the

Take a look at the usage of Stack class in Listing 12-4.

Listing 12-4: Using the same Stack object to store different type of objects.

You can detect the type of object before pushing an element into the Stack

object and prevent this from happening by using the run-time-type identification
(RTTI) facility of Java. This can be done by using the keyword instanceof as shown
in Listing 12-5.

class StackApp {
 public static void main(String args[]) {
 int numberOfItems;
 numberOfItems = Integer.parseInt(args[0]);
 Stack sInt = new Stack();

 Stack sStr = new Stack();
 String str1 = "Testing ";

 }
}

class StackApp {
 public static void main(String args[]) {
 int numberOfItems;
 numberOfItems = Integer.parseInt(args[0]);

 Stack s = new Stack();
 for (int i = 0; i < numberOfItems; i++)
 s.push(new Integer(i));

 String str1 = "Testing ";
 for (int i = 0; i < numberOfItems; i++)
 s.push(str1 + i);
 }
}

 sInt.push(new Integer(i));
 for (int i = 0; i < numberOfItems; i++)

 for (int i = 0; i < numberOfItems; i++)
 sStr.push(str1 + i);

In Listing 12-4, you will notice that the same Stack object called s is used to

to store Integer objects as well as String objects.

same class Stack to store different types of objects, it poses yet another problem.

You notice in the highlighted statements that we are able to use the Stack class

store not only Integer objects but also String objects. This is often undesirable.

Generics and Collections Framework 183

Listing 12-5: Run-time-type identification in Java.

The output is as follows:

pushed 0 into stack
pushed 1 into stack
pushed 2 into stack
pushed 3 into stack
WrongType pushed

This solution also does not seem elegant. Besides being clumsy, this solution

relies on programmers’ diligence in performing the run-time-type identification, and
is therefore error prone. Also, such errors are not detectable during compile time.
These arguments have led to the introduction of the concept of generics in the Java
language.

12.3 Java Generics

“Generics” is also known as parameterized types, where the types can be specified as
parameters to a class or a method. This feature allows us to express some generic
concepts without having to specify type for some variables.

12.3.1 Generic Class

class InvalidTypeException extends Exception {}

class StackApp {
 private Stack s = new Stack();

 void pushInteger(Object o)
 throws InvalidTypeException {
 if (o instanceof Integer) s.push(o);
 else throw new InvalidTypeException();
 }

 public static void main(String args[]) {
 int numberOfItems;
 numberOfItems = Integer.parseInt(args[0]);
 StackApp sapp = new StackApp();
 try {
 for (int i = 0; i < numberOfItems; i++)
 sapp.pushInteger(new Integer(i));
 String str1 = "Testing ";
 sapp.pushInteger(str1 + 0);
 } catch (InvalidTypeException e) {
 System.out.println("WrongType pushed");
 }
 }
}

Let us rewrite the Stack class, where we parameterize the type of objects that can
be stored in the Stack. See Listing 12-6.

184 Object-Oriented Programming and Java

With all the “pointy” brackets introduced, the syntax needs a little bit of getting

used to. “E” is the type that can be parameterized. It can be specified using any
character such as E, X, and so on. The convention is to use a single capital letter. A
class that needs a parameter type is declared with an addition of <E>, as seen in the
declaration of class StackItem<E> and class Stack<E>. A class can also have more
than one parameterized types, specified by a comma-separated list. For example,
class Map<K,V>.

class StackItem<E>{
 private E item = null;
 private StackItem<E> previous;
 public E getItem() { return item;}
 public void setItem(E x) { item = x; }
 public StackItem<E> getPrevious() { return previous; }
 public void setPrevious(StackItem<E> p) { previous = p; }
 StackItem() { previous = null; }
}
class Stack<E>{
 private StackItem<E> top, temp;
 private int size=10;
 public E pop() {
 E x = null;
 if (empty()) System.err.println("stack underflow");
 else {
 x = top.getItem();
 top = top.getPrevious();
 size = size - 1;
 }
 return x;
 }
 public void push(E x) {
 if (full()) System.err.println("stack overflow");
 else {
 temp = top;
 top = new StackItem<E>();
 top.setPrevious (temp);
 top.setItem(x);
 size = size + 1;
 System.out.println("pushed " + x + " into stack");
 }
 }
 public int size() {return (size); }
 public boolean empty() { return (size() == 0); }
 public boolean full() { return false;}

 public Stack() {
 top = null;
 size = 0;
 }
}

class StackApp {
 public static void main(String args[]) {
 int numberOfItems;
 numberOfItems = Integer.parseInt(args[0]);

Generics and Collections Framework 185

Listing 12-6: Stack class and usage using Java generics.

So, we have managed to write a Generic class that can be parameterized using
any type! The actual type is specified when we instantiate the class, as can be seen in
the following lines extracted from the StackApp class:

The first object sInt is an instance of a Stack that can hold objects of the type
Integer. The compiler will flag a compile-time error if objects of any other type are
pushed into sInt.

Similarly, the second object sStr is an instance of a Stack that can hold
objects of the type String. Note that generics do not work with primitive types (e.g.,
int, char, etc.).

12.3.2 Generic Method

In the previous section, we learnt how to write and use a generic class. Individual
methods in a class similarly can be declared as a generic method. Here is an example
in Listing 12-7. We can declare a method to be generic by placing the <T> in front of
the method, where T is the parameterized type. There is no change in the way generic
methods are invoked. By declaring a method as a generic method, we are able to
reuse the printarray method for any type of array.

Listing 12-7: A generic method example.

 Stack<Integer> sInt = new Stack<Integer>();
 for (int i = 0; i < numberOfItems; i++)
 sInt.push(new Integer(i));

 Stack<String> sStr = new Stack<String>();
 String str1 = "Testing with Generics ";
 for (int i = 0; i < numberOfItems; i++)
 sStr.push(str1 + i);
 }
}

Stack<Integer> sInt = new Stack<Integer>();
Stack<String> sStr = new Stack<String>();

public class GenApp {
 private static <T> void printarray(T[] a) {
 for (Object o : a)
 System.out.println (o);
 }
 public static void main(String args[]) {
 Integer iarr[] = new Integer[3];
 iarr[0] = new Integer(10);
 iarr[1] = new Integer(20);
 iarr[2] = new Integer(30);
 printarray(iarr);

 Float farr[] = new Float[3];
 farr[0] = new Float(48.0);
 farr[1] = new Float(59.0);
 farr[2] = new Float(67.0);
 printarray(farr);
 }
}

186 Object-Oriented Programming and Java

Does the for loop inside the printarray look strange? Well, this is another

new feature of Java 5. This form of for loop is called “for-each” construct. The
following two for loop constructs are equivalent:

for (Object o : a)
 System.out.println (o);

for (int i = 0; i < a.length; i++)
 System.out.println(a[i]);

The expression (Object o: a) stands for all objects in the array a, referred to

using the variable o.

12.4 Collections Framework

We are familiar with an array that is used to store a set of objects. For example a set
of String objects can be stored in an array as follows:

String strArray[] = new String[10];
strArray[0] = “first”;
strArray[1] = “second”;
strArray[2] = null;

The problem with arrays is that we need to know the length of the array right

upfront when we create it. In situations where we are not sure about the number of
objects that we would need to store, an array is not very convenient to use. In Java 5,
some predefined classes and interfaces that help us store and manipulate a collection
of objects, are available in the Collections Framework.

12.4.1 Collections Interface

The framework consists of a few core interfaces known as the Collection Interfaces
as shown in Figure 12-1.

Some of the commonly used concrete implementation classes included in the
Collections Framework are listed below in Figure 12-2.

• List: This is a data structure that can contain a collection of objects, similar to

an array, without having to specify the size. The list can grow or shrink
according to the number of objects. Example: List of items in a shopping cart.

• Set: This is a data structure that can contain a collection of objects without any
duplicates. Example: A set of courses registered by a student.

• Map: A data structure that allows storage objects that have a <key, value>
pair. Example: Student mark list, the key being the student matriculation
number and the value being the mark obtained. This data structure allows us to
retrieve a value for a given key. Example: We are able to obtain the mark
obtained by a student with a specific matriculation number.

Generics and Collections Framework 187

Figure 12-1: Java Collections Framework’s core interfaces.

Many of these interfaces, classes, and methods are coded using the Java

generics facility.

Figure 12-2: Commonly used Collection classes.

12.4.2 ArrayList Class

ArrayList is an implementation class provided in the Collection Framework that
implements the List interface. We can make use of this class to store objects,
retrieve and manipulate them as a collection.

12.4.2.1 Declaring and Using ArrayList Class

Listing 12-8 shows a typical declaration, instantiation and use of an ArrayList that
can hold a collection of String objects. You can similarly declare, instantiate and
use ArrayLists of other types of objects.

Set

HashSet

List

ArrayList

Map

HashMap

<interface>

<class>

Collection

List SortedMap

Map

Set

SortedSet

188 Object-Oriented Programming and Java

Listing 12-8: Illustration of instantiation and use of ArrayList.

In the above code, it is important to include the import statement in the
beginning of the program.

 import java.util.*;

This statement ensures that the predefined classes from the Collection

Framework, such as ArrayList, are included during compilation.
The following statement creates an ArrayList instance. The ArrayList is a

generic class for which we need to specify the type of objects that it can hold. In this

 ArrayList<String> strList =
 new ArrayList<String>();

Objects can be added to the ArrayList using the add() method. The available

methods for an ArrayList are shown in Table 12-1.

 String s1 = "first";
 strList.add (s1);

Elements can be added to an ArrayList from yet another collection. For

example:

 ArrayList<String> strList2 = new ArrayList<String>();
 strList2.addAll(strList);

import java.util.*;
public class ArrayListEx {
 public static void main(String[] args) {
 ArrayList<String> strList = new ArrayList<String>();
 String s1 = "first";
 String s2 = "second";
 String s3 = "third";
 strList.add(s1);
 strList.add(s2);

}
 strList.add(s3);

example, the ArrayList object called strList is defined to hold objects of the type
String.

Generics and Collections Framework 189

12.4.2.2 Traversing an ArrayList

Traversing through the elements of an ArrayList, or for that matter many of the
Collection Framework classes, can be done either by using the for-each construct

Table 12-1: Methods available for ArrayList.

Collection Interface
Query
Operations

Modification
Operations

Bulk
Operations

Comparison and
Hashing

int size() boolean
add(E o)

boolean
containsAll
Collection<?> c)

boolean
equals
(Object o)

boolean
isEmpty()

boolean
remove
(Object o)

boolean addAll
(Collection
<? extends E> c)

int
hashCode()

boolean
contains
(Object o)

 boolean
removeAll
(Collection<?> c)

Iterator
<E>
iterator()

 boolean
retainAll
(Collection<?> c)

Object[]
toArray()

 void clear()

<T> T[]toArray
(T[] a)

List Interface
Query
Operations

Search
Operations

Bulk
Operations

Positional
Access

ListIterator
<E> listIterator
(int index)

int indexOf
(Object o)

boolean addAll
(int index,
Collection
<? extends E> c)

E get
(int index)

int lastIndexOf
(Object o)

int
lastIndexOf
(Object o)

 E set
(int index,
 E element)

List<E> subList
(int fromIndex,
 int toIndex)

 void add
(int index,
E element)

 E remove
(int index)

ArrayList Class
Constructors & Creational Operations Other Operations
ArrayList() ensureCapacity

(int minCapacity)
ArrayList(Collection<? extends E> c) trimToSize()
ArrayList(int initialCapacity)) removeRange(int fromIndex,

int toIndex)
clone()

190 Object-Oriented Programming and Java

The code below shows iteration of an ArrayList using an Iterator:

 Iterator<String> iter = strList.iterator();
 while(iter.hasNext())
 System.out.println(iter.next());

An Iterator has the following method:

 boolean hasNext()
 E next()
 void remove()

Alternatively, you can also use a ListIterator. A ListIterator has the

following methods:

12.4.3 HashSet Class

HashSet is an implementation class provided in the Collection framework that
implements the Set interface. We can make use of this class to store objects, retrieve
and manipulate them as a collection, without having duplicates.

12.4.3.1 Declaring and Using a HashSet Class

We can use HashSet to store unique objects in a Collection. Listing 12-9 shows a
typical declaration, instantiation and use of an HashSet that stores objects of the type
String.

Listing 12-9: Illustration of instantiation and use of HashSet.

import java.util.*;
public class HashSetEx {
 public static void main(String[] args) {
 HashSet<String> hashList = new HashSet<String>();
 String s1 = "John";
 String s2 = "Elliot";
 System.out.println("Added = "+ hashList.add(s1));
 System.out.println("Added = "+ hashList.add(s2));
 System.out.println("Added = "+ hashList.add(s2));
 }
}

 boolean hasNext();
void add(E o) ;

 boolean hasPrevious();
E next();

 int nextIndex();
 E previous();
 int previousIndex();
 void remove();

void set(E o);

or by using an Iterator. The code below shows iteration of an ArrayList using a
for-each construct:

 for (String s : strList)
 System.out.println(s);

Generics and Collections Framework 191

The execution of this program would result in the following output. As you can

see in the last statement, a HashSet does not allow duplicates to be added.

Added = true
Added = true
Added = false

You can detect duplicates by checking the return value of the add() method as

illustrated in Listing 12-10.

Listing 12-10: Detecting duplicates in HashSet.

The execution of this program would result in the following output. As you can
see that a HashSet does not allow duplicates to be added.

Added: John
Added: Francis
Added: Elliot
Duplicate found: Francis
Added: Mary
Duplicate found: John

12.4.3.2 Subset, Union, Intersection and Complement

If every member of the Set B is also contained in Set A, then B is said to be a subset
of A.

import java.util.*;
public class HashSetEx {
 public static void main(String[] args) {
 HashSet<String> hashList = new HashSet<String>();
 String sArray[] = new String[6];
 sArray[0] = "John";
 sArray[1] = "Francis";
 sArray[2] = "Elliot";
 sArray[3] = "Francis";
 sArray[4] = "Mary";
 sArray[5] = "John";
 for (int i = 0; i < 5; i++){
 if (hashList.add(sArray[i])== false)
 System.out.println("Duplicate found: " + sArray[i]);
 else System.out.println ("Added: " + sArray[i]);
 }
 }
}

192 Object-Oriented Programming and Java

You can determine whether a HashSet is a Subset of another HashSet by using

the containsAll() method as follows:

The Union of Set A and Set B is defined as the set of all elements that can be

found either in Set A or in Set B.

The Union of two HashSets can be derived by using the addAll() method as

follows:

 Set<String> unionSet = new HashSet<String>(firstSet);
 unionSet.addAll(secondSet);

The Intersection of Set A and Set B is defined as the set of all elements found

in both Set A and Set B.

The Intersection of two HashSets can be derived by using retainAll()

method as follows:

Set<String> intersectionSet = new HashSet<String>(firstSet);
intersectionSet.retainAll(secondSet);

The Complement of Set B in Set A is defined as the set of all elements in Set A

that are not found in Set B.

A B

A U B

A B

A ∩ B

if (firstSet.containsAll(secondSet) == true)
 System.out.println(“secondSet is a subset of firstSet”);
else
 System.out.println(“secondSet is not a subset of firstSet”);

Generics and Collections Framework 193

The Complement of two HashSets can be derived by using removeAll()

method as follows:

Set<String> differenceSet = new HashSet<String>(firstSet);
differenceSet.removeAll(secondSet);

The available methods for a HashSet are shown in Table 12-2.

Table 12-2: Methods available for HashSet.

A - B

B A

Collection
Interface/Set Class
Query
Operations

Modification
Operations

Bulk
Operations

Comparison and
Hashing

int size() boolean
add(E o)

boolean containsAll
(Collection<?> c)

boolean
equals
(Object o)

boolean
isEmpty()

boolean
remove
(Object o)

boolean addAll
(Collection
<? extends E> c)

int
hashCode()

boolean
contains
(Object o)

 boolean removeAll
(Collection<?> c)

Iterator<E>
iterator()

 boolean retainAll
(Collection<?> c)

Object[]
toArray()

 void clear()

<T> T[]
toArray(T[] a)

Constructors and Creational Operations
HashSet()
HashSet(Collection<? extends E> c)
HashSet(int initialCapacity))
HashSet(int initialCapacity, float loadFactor)
clone()

HashSet Class

194 Object-Oriented Programming and Java

12.4.4 HashMap Class

HashMap is an implementation class provided in the Collection framework that
implements the Map interface. A HashMap is used to hold elements with
<key,value> associations. A key is associated with a value and stored in a HashMap.
Values can then be retrieved for a given key. By definition, HashMaps are not
allowed to contain duplicates. This class does not guarantee the order in which the
<key, value> pairs are stored.

12.4.4.1 Declaring and Using HashMap Class

The program in Listing 12-11 illustrates the declaration, instantiation and use of a
HashMap that contains objects of the type Student. The key for each student is his/her
matriculation number which is of the type Integer.

Listing 12-11: Illustration of instantiation and use of HashMap.

On executing the program, the following output will be produced:

Student with key = 1 is called Tan Puay Hwee
Student with key = 2 is called David Brown
Student with key = 3 is called Satish Gupta

import java.util.*;
import java.lang.Integer;
class Student {
 int matricNumber;
 String name;
 public Student(int matricNumber, String name){
 this.matricNumber = matricNumber;
 this.name = name;
 }
 int getMatricNumber() { return matricNumber; }
 String getName() { return name; }
}
public class HashMapEx {
 public static void main(String[] args) {
 HashMap<Integer, Student> studentMap =
 new HashMap<Integer, Student>();
 Student s1 = new Student (1,"Tan Puay Hwee");
 Student s2 = new Student (2,"David Brown");
 Student s3 = new Student (3,"Satish Gupta");
 studentMap.put(new Integer(s1.getMatricNumber()), s1);
 studentMap.put(new Integer(s2.getMatricNumber()), s2);
 studentMap.put(new Integer(s3.getMatricNumber()), s3);

 Student retStudent = null;
 for (int i = 1; i < 4; i++){
 Integer key = new Integer(i);
 retStudent = studentMap.get(key);
 System.out.println("Student with key = " +
 key + " is called " + retStudent.getName());
 }
 }
}

Generics and Collections Framework 195

A HashMap is declared by specifying the two parameterized types, the first

being the key type and the second being the value type. In our example the HashMap
called studentMap is declared and instantiated as shown below. The key type is
Integer (matriculation number) and the value type is Student (a Student object).

HashMap<Integer, Student> studentMap =
 new HashMap<Integer, Student>();

Entries can be added to the HashMap using the put() method as shown below:

Student s1 = new Student (1,"Tan Puay Hwee");
studentMap.put(new Integer(s1.getMatricNumber()), s1);

An Integer object is created using the matriculation number (1) of the student

(s1).
Student objects can be retrieved by using the get() method with the

matriculation number of the student as shown below:

 Integer key = new Integer(i);
 retStudent = studentMap.get(key);

The available methods for a HashMap are shown in Table 12-3.

Table 12-3: Methods available for HashMap.

AbstractMap Class
Query Operations Modification

Operations
Alternative Views

boolean
containsKey
(Object key)

void clear() Set<Map.Entry<K,V>> entrySet()

Boolean
containsValue
(Object value)

V put(K key,
 V value)

Set<K> keySet()

V get (Object key) void putAll(
Map<? extends K,
 ? extends V>
 m)

Collection<V> values()

boolean isEmpty() V remove
(Object key)

int size()

HashMap Class
Constructors & Creational Operations
HashMap()
HashMap(int initialCapacity)
HashMap(int initialCapacity, float loadFactor)
HashMap(Map<? extends K,? extends V> m)
clone()

196 Object-Oriented Programming and Java

12.5 Sorting Collections

JDK1.5 has yet another class called java.utils.Collections. This class contains
many general purpose algorithms that work with the various Collection classes such
as ArrayList.

12.5.1 Sort Algorithm

An ArrayList namesList may be sorted in the ascending order using the sort
method in the Collections class as follows:

Collections.sort(nameList);

Note that the name of this class is called Collections—with an “s.” A sample

program illustrating the use of sort algorithm is shown in Listing 12-12:

Listing 12-12: Illustration of Collections.sort method.

When the above program is executed, you will see the following output:

Before Sorting
One
Two
Three

After Sorting
One
Three
Two

By default the ArrayList is sorted in the Lexicographic order. Lists consisting

of different types of objects will be sorted in different order. The default sorting
order for lists containing various types of objects is shown in Table 12-4.

All these classes implement the Comparable interface, which provides a natural
ordering for a class.

import java.util.*;
public class SortExampleApp {
 public static void main(String[] args){
 ArrayList<String> nameList = new ArrayList<String>();
 nameList.add("One");
 nameList.add("Two");
 nameList.add("Three");
 System.out.println ("Before Sorting");
 for (String s : nameList) System.out.println(s);
 Collections.sort (nameList);
 System.out.println ("\nAfter Sorting");
 for (String s : nameList) System.out.println(s);
 }
}

Generics and Collections Framework 197

public interface Comparable<T> {
 public int comparedTo(T o);
}

Table 12-4: Default ordering used by Collections.sort algorithm.

12.5.2 Comparator Interface

If you want to sort a list in an order other than the natural order, you will need to
provide a Comparator. A comparator is a class that implements the Comparator
interface shown below:

For example, if you want to sort the ArrayList called namesList in the

descending order, you will write a Comparator. The compare method in the
Comparator class will return objects in descending order as shown in Listing 12-13:

public interface Comparator<T> {
 public int compare(T o1, T o2);
 public Boolean equals(Object o);
}

import java.util.*;
class DescendComparator implements Comparator<String> {
 public int compare(String s1, String s2) {
 return (s2.compareTo(s1));
 }
}
public class SortDescendApp {
 public static void main(String[] args){
 ArrayList<String> nameList = new ArrayList<String>();
 DescendComparator sComp = new DescendComparator();

 nameList.add("One");
 nameList.add("Two");
 nameList.add("Three");

Class Default ordering
Byte Signed Numeric
Character Unsigned Numeric
Long Signed Numeric
Integer Signed Numeric
Short Signed Numeric
Double Signed Numeric
Float Signed Numeric
BigInteger Signed Numeric
BigDecimal Signed Numeric
Boolean Boolean.FALSE < Boolean.TRUE
String Lexicographic

198 Object-Oriented Programming and Java

Listing 12-13: Illustration of Comparator class.

When the above program is executed, the following output will be produced:

Before Sorting
One
Two
Three

After Sorting
Two
Three
One

12.6 Searching Collections

In this section, you will learn different ways of searching a particular element in a
Collection such as ArrayList.

12.6.1 indexOf and contains Methods

The indexOf method of an ArrayList returns the position (an integer) in which a
particular object is stored. Consider the unsorted arrayList called nameList as
shown in Listing 12-13. The following statement will return 1.

int pos = nameList.indexOf("Two");

Note that the index starts from 0. The indexOf method returns the first

occurrence of the object passed as the parameter. If the object is not found the
method returns -1.

You can use the contains method to find out if the object exists in the List. If
the method is invoked on nameList, the return value will be true.

 boolean doesExist = nameList.contains("Two");

12.6.2 binarySearch Method

A list that is sorted in the ascending natural order can be searched using this method.
If the binarySearch method is invoked on the sorted nameList arrayList shown
in Listing 12-13, the return value will be 2.

 System.out.println ("Before Sorting");
 for (String s : nameList)
 System.out.println(s);
 Collections.sort (nameList, sComp);
 System.out.println ("\nAfter Sorting");
 for (String s : nameList)
 System.out.println(s);
 }
}

Generics and Collections Framework 199

Collections.sort(nameList);
int pos = Collections.binarySearch(nameList, "Three");

This method returns the position (starts from 0 index) if the object is found;

otherwise it returns a negative number specified by the formula (insertion point –1).
For example, if you search the String “Seven” in nameList, it will return -2, as the
insertion point is 1.

int pos = Collections.binarySearch(nameList, "Seven");

If you write your own Comparator, the binarySearch method can be used to

search lists that are sorted in the order as specified by your Comparator. The method
will require one more parameter; that is, your Comparator.

DescendComparator sComp = new DescendComparator();
Collections.sort (nameList, sComp);
int pos = Collections.binarySearch(nameList, "Two", sComp);

Using the binarySearch method is more efficient that using the indexOf or

contains methods of the List interface, as it works on a sorted list and uses an
efficient searching algorithm, that is, binary search algorithm.

12.7 Summary

In this chapter, we discussed:

• The concept of generics (i.e., parameterized types), which helps us to

eliminates run-time-type identification errors. Using Java Generics, we can
encapsulate algorithms and concepts in type independent methods and
classes

• The Java Collections Framework consists of many predefined classes that
encapsulate data structures that can hold a collection of elements.

• The use of three types of Collection classes, namely; ArrayList, HashSet,
and HashMap. We have seen the use of these generic collection classes in
manipulating a collection of same type of objects.

• The sorting and searching methods found in the Collections classes.

12.8 Exercises

1. Define an application called SimpleBookApp which stores distinct ISBN
numbers (e.g., Integer) of a few books in an ArrayList and lists them in
the ascending order.

2. Define a class called Book. This class should store attributes such as the
title, ISBN number, author, edition, publisher and year of publication.
Provide get/set methods in this class, to access these attributes. Define a

200 Object-Oriented Programming and Java

class called BookApp, which contains the main method. This class should
create a few book objects with distinct names and store them in an
ArrayList. This class should then list the name of all books in the
ArrayList.

3. Enhance the program in Exercise 2 to sort the ArrayList in the ascending
order of the year of publication.

 Hint: You will need to define a comparator class that takes two Book
objects as parameters to the compareTo method. This method should return
a boolean value after comparing the year of publication of the two book
objects.

4. In the program in Exercise 2, create a few more Book objects with same
names but a different edition, ISBN, and year of publication. Add these
new Book objects in the ArrayList and display the book list sorted by
name of the book and for duplicate names of books, sorted by year of
publication.
Hint: You will need to define a comparator class that takes two Book
objects as parameters to the compareTo method. This method should do
a two-step comparison. The first comparison should compare the name of
the book. If the name is the same, the second comparison should compare
the year of publication.

5. Define a class called Account that contains attributes such as account
number, name of the account holder, identification number of the account
holder, and year of account opening. Provide get/set methods in this class
to access the attributes. Define a class called AccountApp, which contains
the main method. This class should create a few account objects with
distinct account numbers and store it in a HashMap. The program should
then ask for the account number as the input from the console and display
the Account information pertaining to that account number. Hint: The
account number is the key for the HashMap.

6. Define a class called Student with three attributes, viz. name, program,
and year. Define a class called StudentApp, which contains a main
method. Create several Student objects with different names, programs
(e.g., Bio-Informatics, Computer Science), and year (e.g., 2006, 2007).
Add some students in one HashSet and some students in another HashSet.
Display the union, intersection and difference of two sets. Display also if
one set is a subset of another. Hint: Try adding different combination of
students in the two sets, so that you can print some student details in
deriving the Union, Intersections, and Difference.

13
Graphical Interfaces and Windows

In the earlier chapters, we previewed the Java API for input and output mechanisms,
networking, and multithreading. In this chapter, we proceed to look at the facilities
for incorporating graphical user interfaces. With the availability of powerful and
cheap hardware, and widespread and diverse use of computers, easy and intuitive
interfaces have become an important aspect to developers.

To reduce software costs, developers must be able to easily create and modify
code that implements these interfaces. The Abstract Windowing Toolkit (AWT) in
Java provides a simple yet flexible object-oriented model for building applications
that use graphical user interfaces.

13.1 The AWT Model

Consistent with the principles of abstraction, the AWT model for graphical user-
interfaces in Java is broken into several constituents with its own concerns and func-
tionality. Briefly, AWT constituents include:

• frames;
• components;
• panels;
• layout managers;
• events.

The frame abstraction allows for independent windows in the Java host. While

a Java application typically runs in a window, it may also create more graphical
windows to provide alternative or complementary views.

The AWT components consist of a custom set of widgets for various styles of
user interaction. The range of widgets includes:

202 Object-Oriented Programming and Java

• text labels;
• buttons;
• choice and list selections;
• scrollbars;
• text fields and editing areas;
• canvas painting areas.

The AWT panels are used to contain a set of logically related AWT compo-

nents. For example, user authentication by a user name and password may be pre-
sented by two text field components together with two buttons. One button allows
the user to proceed with authentication, while the other cancels the request. These
components may be logically included in an AWT panel.

The layout manager constituent of the AWT model allows for layout control of
components within panels.

Panels are also components, and thus the containment relationship is hierarchi-
cal. Where there are two logical groups of components, these can be placed and
arranged in two separate panels. These panels are in turn placed into the parent
panel, and may be arranged collectively.

Finally, most implementations of graphical user interfaces typically adopt an
event-based approach over polling. It is tedious to anticipate and poll for every input
that a user can make: mouse clicks, keyboard input, audio command/feedback, and
so on. It is more difficult to determine when subcombinations of these are legitimate.

The event-based model allows for suitable code to be associated with signifi-
cant events, and to be invoked implicitly. We will cover the containment model used
in JDK 1.0, as well as the delegation model in JDK 1.1 (and later versions), which is
based on Java Beans.

The object-oriented features in Java allow the AWT library to be modular for
maintainability. This is evident from the constituents described earlier. Yet they must
ultimately be integrated to allow the intended user interaction at run-time. In addi-
tion, while basic behavior is in-built for easy usage, it is also highly configurable and
many combinations with custom-built components are easily achieved. The imple-
mentation highly relies on Java features such as inheritance and polymorphism.

13.2 Basic AWT Constituents

We will first discuss the AWT through incremental incorporation of its constituents.
Following that, we will incorporate event handlers to complete the functionality of
an interface by binding it to application level code.

As with other abstractions in Java, the functionality of the AWT constituents
are encoded in class definitions, and ultimately its usage manifested in object
instances.

Graphical Interfaces and Windows 203

13.2.1 Frames

An application window is created by instantiating a Frame object. A program that
merely creates a Frame object is shown in Listing 13-1. Since a Frame object is ini-
tially invisible, the setVisible(true) method is used to bring it to the top of the
desktop.

 Listing 13-1: ExampleFrame class.

Two observations deserve comment when the class ExampleFrame is executed.

The Frame instance is considered empty because it does not contain any components.
As such, there is no view of interest, and the corresponding window is displayed
with its title but no viewable area, as in Figure 13-1.

Figure 13-1: Empty frame.

While the window may be minimized and maximized, it cannot be closed as the

expected custom event-handler has yet to be installed. We will return to this issue in
subsequent sections. For the moment, the new window is destroyed by aborting the
execution of the ExampleFrame class.

Besides creating a window by instantiating a Frame object, we may also define
a new class by inheriting from the Frame class. This is the means for defining a new
Frame-like abstraction, but with new default settings or specific behavior. The class
skeleton in Figure 13-2 with a default size of 150 × 100 pixel window is one such
example.

Listing 13-2: ExampleFrame2 class.

import java.awt.Frame;

class ExampleFrame {
 public static void main(String arg[]) {
 Frame f = new Frame("Example");
 f.setVisible(true);
 }
}

import java.awt.Frame;

class ExampleFrame2 extends Frame {
 ExampleFrame2(String m) {
 super("Example2: "+m);
 setSize(150,100);
 setVisible(true);
 }
 // new functionality
 public static void main(String arg[]) {
 new ExampleFrame2("Subclassing");
 }
}

204 Object-Oriented Programming and Java

Figure 13-2: Viewable empty frame.

13.2.2 Components

The Component class defines the generic behavior of GUI components that may
appear in a frame. Specific components, such as those mentioned in the previous
section, are defined as subclasses of this generic Component class.

The insertion of a component into a Frame instance proceeds in two steps: first,
an instance of the component is created with the appropriate parameters to the con-
structor method. Subsequently, it is inserted into the Frame via the add() method,
with signature:

void add(Component comp)

Thus, any subclass instance of Component may be added into our Frame. We

proceed by adding various components to our currently empty Frame. The code in
Listing 13-3 is similar to ExampleFrame2 except a Checkbox component has been
added.

 Listing 13-3: ExampleFrame3 class.

Figure 13-3: Frame with Checkbox Component.

import java.awt.*;

class ExampleFrame3 extends Frame {
 ExampleFrame3(String m) {
 super("Example3: "+m);
 setSize(100,150) ;
 add(new Checkbox("Save settings"));
 setVisible(true);
 }
 public static void main(String arg[]) {
 new ExampleFrame3("Checkbox");
 }
}

Graphical Interfaces and Windows 205

As before, no event handler has yet been installed. While the Checkbox pro-

vides visual feedback as to its state in response to mouse clicks, there is no code to
interrogate that state, nor is any code executed as a result of state changes.

A Button component may be similarly placed as shown in Listing 13-4.

 Listing 13-4: ExampleFrame4 class.

Since the Frame may currently only contain a single component, the Button

component has used the full viewable area for display, and thus looks oversized, as
in Figure 13-4. If this is unsightly in appearance, the consolation is that it is im-
proved with Panels. Components will be discussed further in the next section.

Figure 13-4: Frame with Button component.

13.2.3 Panels

Panels may be succinctly described as components holding other components. As a
component, it may be placed in a Frame via add() as already seen with Checkbox
and Button. As a container, it will also accept constituent components via its own
add() method.

This is illustrated in Listing 13-5, with the corresponding view in Figure 13-5.

import java.awt.*;

class ExampleFrame4 extends Frame {
 ExampleFrame4(String m) {
 super("Example4: "+m);
 setSize(100, 150) ;
 add(new Button("Save"));
 setVisible(true);
 }
 public static void main(String arg[]) {
 new ExampleFrame4("Button");
 }
}

206 Object-Oriented Programming and Java

 Listing 13-5: ExamplePanel class.

Figure 13-5: Frame with Panel.

13.2.4 Layout in Panels

The layout of components in Panels is the responsibility of Layout Managers. The
default layout used by Panels is known as Flow Layout. In this layout scheme, com-
ponents are automatically placed in a left-to-right manner, and down to the next row
if the right margin is exceeded. Formatting components within a row may be cen-
tered (default), left- or right-justified.

Thus, resizing the Frame for more column space will bring the two components
(Button and Checkbox) into the same row, as seen in Figure 13-6.

Figure 13-6: Frame with Stretched Panel.

Two other layout schemes are commonly used: The GridLayout class imple-

ments a table-style layout with fixed rows and columns. Sample code is shown in
Listing 13-6, with results visible in Figure 13-7. It is a simple and useful layout
scheme when components in a Panel have fairly equal dimensions.

import java.awt.*;

class ExamplePanel extends Frame {
 ExamplePanel(String m) {
 super("ExamplePanel: "+m);
 setSize(100,150) ;
 Panel p = new Panel(); // create Panel
 add(p) ; // add Panel into Frame
 p.add(new Button ("Save")); // add Button into Panel
 p.add(new Checkbox ("Save settings")); // add Checkbox into Panel
 setVisible(true);
 }
 public static void main(String arg[]) {
 new ExamplePanel("Inserting Components");
 }
}

Graphical Interfaces and Windows 207

 Listing 13-6: ExampleGridLayout class.

Figure 13-7: Panel with GridLayout.

The BorderLayout class allows for even placement of components near bor-

ders of containers. The top, left, right, and bottom localities of a Panel using this
layout scheme are denoted as “North,” “West,” “East,” and “South,” as seen in List-
ing 13-7 and corresponding view in Figure 13-8. This scheme allows for convenient
component placement without concern as to absolute coordinates or sizes.

 Listing 13-7: ExampleBorderLayout class.

import java.awt.*;

class ExampleGridLayout extends Frame {
 ExampleGridLayout(String m) {
 super("ExampleLayout: "+m);
 setSize(240,80);
 Panel p = new Panel();
 add(p) ;
 p.setLayout(new GridLayout(3,2)) ; // use a 3x2 grid
 p.add(new Checkbox ("Save config"));
 p.add(new Button ("Save"));
 p.add(new Checkbox("Save changes"));
 p.add(new Button("Abort & do not save"));
 p.add(new Checkbox("Ignore colors"));
 p.add(new Button("Quit"));
 setVisible(true);
 }
 public static void main(String arg[]) {
 new ExampleGridLayout("GridLayout");
 }
}

import java.awt.*;

class ExampleBorderLayout extends Frame {
 ExampleBorderLayout(String m) {
 super("ExampleLayout2: "+m);
 setSize(340,280) ;
 Panel p = new Panel();
 p.setLayout(new BorderLayout());
 p.add("North", new TextArea(8,40));
 p.add("West", new Checkbox("Save config"));
 p.add("East", new Checkbox("Ignore colors"));
 p.add("South", new Button ("Exit"));
 add(p);
 setVisible(true);
 }
 public static void main(String arg[]) {
 new ExampleBorderLayout("BorderLayout");
 }
}

208 Object-Oriented Programming and Java

Figure 13-8: Panel with BorderLayout.

As in earlier uses of Button components, the Exit button here is stretched too

wide. Placing Button within a Panel first, and then the Panel into the outer panel
helps, as seen in Figure 13-9.

Figure 13-9: Panel with BorderLayout and nested Panel.

Panel p = new Panel();
p.setLayout(new BorderLayout());
p.add("North", new TextArea());
p.add("West", new Checkbox("Save config"));
p.add("East", new Checkbox("Ignore colors"));
Panel q = new Panel();
q.add(new Button("Exit"));
p.add("South", q);
add(p);

Graphical Interfaces and Windows 209

13.2.5 Events

Currently, the views painted by the application frame with its constituent compo-
nents are like empty shells with no application processing logic underneath. In a
typical scenario, processing logic would involve:

• retrieving the state of switches, such as to determine the states of the “Save

config” and “Ignore colors” Checkboxes, or reading input keyed into the top
TextArea; or

• reacting to events, such as the click of the Exit Button.

The API documentation for the Checkbox class shows that the getState()

method returns the state of a Checkbox object:

boolean getState();

Similarly, the API documentation for the TextComponent class shows that the

getText() method returns the input text of both TextInput and TextField objects
(TextComponent being the superclass).

String getText();

Event handling is more complex due to the relationships between various han-

dlers. Instead of polling, frames and components wait until events occur, and appro-
priately defined code within methods are invoked. The handleEvent() method is
most significant as it is the main method which is invoked when an event occurs.

The list of events is documented in the API documentation for the Event class.
These events may be divided into: action, selection, mouse, keyboard, focus, scroll
and window events. Due to the common handling of the first five types of events,
handleEvent() has channeled the necessary processing to the following handler
methods:

action() The action() method handles events that request

some action by the user, e.g., Button, Checkbox,
List, Choice or TextField components.

mouseEnter(), mouseExit(),
mouseMove(), mouseDrag(),
mouseDown(), mouseUp()

The mouse methods relate to mouse activities—
moving a mouse in/out of a component, moving
the mouse with/without its button depressed, and
mouse button clicks.

keyDown(), keyUp() Like mouse events, a keyboard activity also corre-
sponds to two (push/release) events.

gotFocus(), lostFocus() Keyboard input for a component in a frame is
dictated by whether it has the keyboard focus.

We now demonstrate how events may be handled. We will elaborate in subse-

quent sections.

210 Object-Oriented Programming and Java

Because external events ultimately invoke the above methods, custom event

handlers may be intuitively installed for components via a new class and inheriting
from an existing component. In handling the Exit Button in the previous example,
we might use the MyExitButton class which inherits from Button, as seen in Listing
13-8.

 Listing 13-8: New button with event handler.

The next example in Listing 13-9 has a responsive Exit button because new

MyExitButton() is used instead of new Button().

 Listing 13-9: ExampleEvent class

While this method for installing custom event handlers work, it is tedious in

that each component requires a new class definition to accommodate appropriate
customization. We would thus require two additional class definitions for the two
Checkbox components. Fortunately, the following two design characteristics of com-
ponents provide for another means of installing event handlers:

• Just as properties are inherited down the inheritance chain, event handlers

which are methods are also inherited and are installed for subclass unless
redefined.

class MyExitButton extends Button {
 MyExitButton(String label) {
 super(label);
 }
 public boolean action(Event e, Object what) {
 System.exit(0);
 return true;
 }
}

import java.awt.*;

class ExampleEvent extends Frame {
 ExampleEvent(String m) {
 super("ExampleButton: "+m);
 setSize(340,280) ;
 Panel p = new Panel();
 p.setLayout(new BorderLayout());
 p.add("North", new TextArea());
 p.add("West", new Checkbox("Save config"));
 p.add("East", new Checkbox("Ignore colors"));
 Panel q = new Panel();
 q.add(new MyExitButton("Exit"));
 p.add("South", q);
 add(p);
 setVisible(true);
 }
 publicstatic void main(String arg[]) {
 new ExampleEvent("Event");
 }
}

Graphical Interfaces and Windows 211

• The default event handler for an AWT component passes an uncaught event

to its parent container.

In our earlier examples, any uncaught events for standard components were

diverted to the containing panel and ultimately the frame that contains them. How-
ever, no effort was made to catch them. The next example is mostly unchanged from
the previous, except for the label of the Button component and two top-level event
handler methods, handleEvent() and action(), to capture events from nested
components. (See Listing 13.10.)

Listing 13-10: Event Handling in the Containment model

The WINDOW_DESTROY event is sent following a request to close a frame. Unlike
the common events discussed above, window events are not distributed to other more
specialized methods, and we handle this in handleEvent(). We have redefined

import java.awt.*;

class Example extends Frame {
 TextArea txt;
 public static void main(String arg[]) {
 new Example("Event Handling");
 }
 Example(String m) {
 super("Example: "+m);
 setSize(340,280) ;
 Panel p = new Panel();
 p.setLayout(new BorderLayout());
 p.add("North", txt = new TextArea());
 p.add("West", new Checkbox("Save config"));
 p.add("East", new Checkbox("Ignore colors"));
 Panel q = new Panel();
 q.add(new Button("Clear"));
 p.add("South", q);
 add(p);
 setVisible(true);
 }
 public boolean action(Event e, Object target) {
 if (e.target instanceof Button) {
 txt.setText("");
 return true;
 } else if (e.target instanceof Checkbox) {
 Checkbox x = (Checkbox) e.target;
 txt.appendText(x.getLabel()+
 (x.getState() ? " is on\n" : " is off\n"));
 return true;
 }
 return(super.action(e, target));
 }
 public boolean handleEvent(Event evt) {
 if (evt.id == Event.WINDOW_DESTROY)
 System.exit(0) ;
 return(super.handleEvent(evt));
 }
}

212 Object-Oriented Programming and Java

handleEvent() to be on a lookout for the WINDOW_DESTROY event, but at the same
time, rely on the original event handler for normal processing using the super self-
reference.

The action() method handles the action group of events. It is invoked when
there is a request to perform an action (e.g., Button click or change of Checkbox
state). Here, we check the target component where an event was initially directed to,
and provide the necessary code to handle it. As an example skeleton code, we substi-
tute code to write to a TextArea component via the setText() and appendText()
methods.

This section has provided an overview of the AWT package in JDK 1.0. While
it may co-exist with the new event-handling model in JDK 1.1 (and later versions), it
is nevertheless discouraged. We thus take a quick look at the delegation-based event-
handling model.

13.2.6 Events in JDK 1.1 (and later versions)

The containment model in JDK 1.0 has the advantage of requiring minimal effort in
understanding and use. However, the associated event handlers tend to be bulky in
deciphering which events are relevant and, as a result, becomes untidy in larger ap-
plications.

Event handling in JDK 1.1 adopts the delegation model and consists of event
sources and event listeners. One or more event listeners may register to be notified of
particular events with a source. Any object may be a listener by implementing the
appropriate EventListener interface. Just as in JDK 1.0, where there are various
groups of events, there are also various groups of EventListeners in JDK 1.1.

As any object may be delegated the job of event handling, a direct connection
may be established between event sources and listeners. Other objects may then be
oblivious to this event handling activity.

The following code fragment Listing 13-11 uses components as in previous ex-
amples, but using JDK 1.1–styled event handling. Corresponding to Button and
Checkbox components and the use of Frames, there are three groups of listeners re-
quired. We need EventListeners for action, item, and window events. The corre-
sponding listeners are ActionListener, ItemListener, and WindowListener,
respectively.

import java.awt.*;
import java.awt.event.*;

class Example1 extends Frame
 implements ActionListener, ItemListener, WindowListener {
 Example1(String m) {
 super("Example1: "+m);
 Button b; Checkbox c;
 setSize(240,140);
 Panel p = new Panel();
 p.add(new Label("Conference Registration"));
 p.add(c = new Checkbox("Attend Tutorial")); c.addItemListener(this);
 p.add(c = new Checkbox("Require Hotel")); c.addItemListener(this);
 p.add(b = new Button("Reset")); b.addActionListener(this);
 p.add(b = new Button("Submit")); b.addActionListener(this);

Graphical Interfaces and Windows 213

 Listing 13-11: JDK 1.1–style event handling using the Delegation model.

Figure 13-10: Responding to events.

In this example, the Frame subclass instance also implements the listener inter-

faces and, as such, acts as a listener for all those events. As such, our example per-
forms two generic actions:

• It registers with the event source that it will handle events.
• It implements the necessary interfaces for a handler.

For the three sources of events, the example application performs the following

concrete tasks:

 addWindowListener(this);
 add(p);
 setVisible(true);
 }
 public static void main(String arg[]) {
 new Example1("Event Handling");
 }
 public void actionPerformed(ActionEvent evt) {
 System.out.println("actionPerformed: " + evt.getSource().toString());
 }
 public void itemStateChanged(ItemEvent itm) {
 System.out.println("itemStateChanged: " + itm.getItemSelectable());
 }
 public void windowActivated(WindowEvent we) { }
 public void windowClosed(WindowEvent we) { }
 public void windowClosing(WindowEvent we) { System.exit(0) ; }
 public void windowDeactivated(WindowEvent we) { }
 public void windowDeiconified(WindowEvent we) { }
 public void windowIconified(WindowEvent we) { }
 public void windowOpened(WindowEvent we) { }
}

ActionListener interface, and defines actionPerformed().
(via addActionListener()), makes itself a listener by implementing the

• It registers with the Button components that it will handle action events

ItemListener interface, and defines itemStateChanged().
events (via addItemListener()), makes itself a listener by implementing

• It registers with the Checkbox components that it will handle action

214 Object-Oriented Programming and Java

Judging from the resultant code, the reader may conclude that the delegation

model is more complex due to increased code length. This is somewhat true, but this
model provides for additional flexibility.

• Our example looks cluttered because it contains all the handlers. However,

the delegation model allows for ActionListener and ItemListener to be
distinct objects.

• The other complaint is that a WindowListener needs to define seven meth-
ods even when six of them have null bodies. This drawback is easily solved
by using Adapters. Each EventListener interface that has more than one
abstract method has a corresponding Adapter class which implements the
interface using standard event handlers. For example, compare the API
documentation for the MouseListener and MouseAdapter classes. Subse-

Adaptor classes are further discussed in Section 13.5 with other kinds of class

definitions.

13.3 Basic Components

Having seen an overview of creating graphical user interfaces using basic AWT
components in the preview section, we now proceed to study each component more
closely. For each component, we will see:

• how it may be created and added to a Panel;
• its corresponding visual layout; and
• how appropriate EventListeners may be created and installed.

13.3.1 Label Component

The Label component allows for the display of fixed text strings in a container such
as a Panel.

quently, we may instantiate new custom Adapters by inheriting from standard
Adapters and redefining the necessary methods, instead of implementing
all methods necessary in interfaces.

• It registers with the Frame that it will handle action events (via
addWindowListener()), makes itself a listener by implementing
WindowListener interface, and defines windowActivated(),
windowClosed(), windowClosing(), windowDeactivated(),
windowDeiconified(), windowIconified() and windowOpened().
(In this case, event source and listener is the same object.)

Graphical Interfaces and Windows 215

Panel p = new Panel();
p.add(new Label("WEB Search"));

13.3.2 Button Component

The Button component allows for clickable buttons in a container.

Button b;
Panel p = new Panel();
p.add(b = new Button("Submit query"));
b.addActionListener(actionListener);

When clicked, a Button instance invokes the actionPerformed() method of
the actionListener object that is registered via addActionListener().

13.3.3 Checkbox Component

The Checkbox component allows for a boolean choice in a container.

Checkbox c;
Panel p = new Panel();
p.add(c = new Checkbox("Quick query"));
c.addItemListener(itemListener);

13.3.4 CheckboxGroup Component

The CheckboxGroup component allows for a group of Checkbox components where
only one of them may be on.

Checkbox c;
CheckboxGroup cbg = new CheckboxGroup();
Panel p = new Panel();
p.setLayout(new GridLayout(3, 1));
p.add(c = new Checkbox("Birthday", cbg, true));
c.addItemListener(itemListener);
p.add(c = new Checkbox("Engagement", cbg, false));
c.addItemListener(itemListener);
p.add(c = new Checkbox("Wedding", cbg, false));
c.addItemListener(itemListener);

itemStateChanged() method of the ItemListener object that was registered via
addItemListener(). The previous Checkbox in the group is implicitly turned false.

Within a CheckboxGroup, a Checkbox object on turning true invokes the

itemStateChanged() method of the ItemListener object that was registered via
addItemListener().

Corresponding to a modified state, a Checkbox instance invokes the

216 Object-Oriented Programming and Java

13.3.5 TextArea Component

The TextArea component allows for the display and manipulation of text. Its place-
ment within a Panel is similar to other components we have seen so far. In the fol-
lowing example code, contents are placed into a TextArea via setText() and
append(), and after user manipulation, may be retrieved via getText().

import java.awt.*;
import java.awt.event.*;

class MixedComponents extends Frame
 implements ActionListener, ItemListener, WindowListener {
 TextArea txt;
 MixedComponents(String m) {
 super("Mixed Components: "+m);
 Button b; Checkbox c;
 setSize(255,420);
 Panel p = new Panel();
 p.add(new Label("Conference Registration"));
 Panel sub = new Panel(); sub.setLayout(new GridLayout(2,1));
 sub.add(c = new Checkbox("Attend Tutorial"));
 c.addItemListener(this);
 sub.add(c = new Checkbox("Require Hotel"));
 c.addItemListener(this);
 p.add(sub);
 sub = new Panel(); sub.setLayout(new GridLayout(3,1));
 CheckboxGroup g = new CheckboxGroup();
 sub.add(c = new Checkbox("no food restrictions", g, true));
 c.addItemListener(this) ;
 sub.add(c = new Checkbox("no seafood", g, false));
 c.addItemListener(this);
 sub.add(c = new Checkbox("vegetarian food", g, false));
 c.addItemListener(this);
 p.add(sub);
 p.add(txt = new TextArea(10,30));
 p.add(b = new Button("Reset")); b.addActionListener(this) ;
 p.add(b = new Button("Submit")); b.addActionListener(this);
 addWindowListener(this) ;
 add(p) ;
 txt.setText("Events:\n");
 setVisible(true);
 }
 public static void main(String arg[]) {
 new MixedComponents("Event Handling");
 }
 public void actionPerformed(ActionEvent evt) {
 txt.append("actionPerformed: " + evt.getSource().toString() + "\n");
 }
 public void itemStateChanged(ItemEvent itm) {
 txt.append("itemStateChanged: " + itm.getItemSelectable() + "\n");
 }
 public void windowActivated(WindowEvent we) { }
 public void windowClosed(WindowEvent we) { }
 public void windowClosing(WindowEvent we) {
 System.out.println(txt.getText());
 System.exit(0) ;
 }

Graphical Interfaces and Windows 217

 Listing 13-12: MixedComponents class with various handlers.

The code in Listing 13-13 shows a slightly cluttered Frame, with subgroups of

components in a nested Panel for the benefit of a neat layout in Figure 13-11. Events
are logged into the TextArea. The TextField component may be used in place of
TextArea when a one-line display suffices.

Figure 13-11: Testing event handling.

13.3.6 Choice Component

The Choice component allows for the selection of items via a pop-up menu. Select-
able items are initially specified via the add() method. The current selection is high-
lighted, and may be interrogated via getSelectedItem().

Figure 13-12: Selecting from a choice component.

 public void windowDeactivated(WindowEvent we) { }
 public void windowDeiconified(WindowEvent we) { }
 public void windowIconified(WindowEvent we) { }
 public void windowOpened(WindowEvent we) { }
}

218 Object-Oriented Programming and Java

 Listing 13-13: Using a choice component.

13.3.7 List Component

The List component in Figure 13-13 allows for the selection of items via a scrolling
list. Clicking on an unselected item selects it, and vice versa. As with the Choice
component, its setup and interrogation are via the add() and getSelectedItem()
methods, respectively.

Figure 13-13: Selecting from a List Component.

The List component also allows for multiple selections. In Figure 13-14 this

feature may be enabled via the setMultipleMode() method, correspondingly

import java.awt.*;
import java.awt.event.*;

class ChoiceExample extends Frame
 implements ItemListener, WindowListener {
 Choice c;
 ChoiceExample(String m) {
 super("Components: "+m);
 setSize(170,130);
 Panel p = new Panel();
 p.add(c = new Choice()); c.addItemListener(this) ;
 c.add("Orange");
 c.add("Apple");
 c.add("Pear");
 c.add("Grapefruit");
 c.add("Grapes");
 c.add("Jackfruit");
 c.add("Apricot");
 add(p) ;
 addWindowListener(this);
 setVisible(true);
 }
 public void itemStateChanged(ItemEvent itm) {
 System.out.println("itemStateChanged:" + itm.getItemSelectable());
 }
 public static void main(String arg[]) {
 new ChoiceExample("Event Handling");
 }
 public void windowClosing(WindowEvent we) {
 System.out.println(c.getSelectedItem());
 System.exit(0) ;
 }
 // other methods as before ...
}

Graphical Interfaces and Windows 219

illustrated in Listing 13-14. The getSelectedItems() method returns a list of se-
lected strings.

Figure 13-14: Multiple selections from a List Component.

Listing 13-14: Using a List Component.

In making multiple selections, we are never sure whether there are other selec-

13.3.8 Menus and Menu Items

The Frame that implements the main window of an application typically includes a
menu bar with various menus and menu items. A typical scenario is seen in Figure 13-
15. As with other AWT components, the way in which menu structures are specified,

import java.awt.*;
import java.awt.event.*;

class ListExample extends Frame implements WindowListener {
 ListExample(String m) {
 super("Components: "+m);
 setSize(170,130) ;
 List l;
 Panel p = new Panel();
 p.add(l = new List());
 l.setMultipleMode(true); // allow for multiple selections
 l.add("Orange"); l.add("Apple");
 l.add("Pear"); l.add("Grapefruit");
 l.add("Grapes"); l.add("Jackfruit");
 l.add("Apricot");
 add(p);
 addWindowListener(this);
 setVisible(true);
 }
 public static void main(String arg[]) {
 new ListExample("Event Handling");
 }
 public void windowClosing(WindowEvent we) {
 String x[] = l.getSelectedItems();
 for (int i=0; i<x.length; i++) System.out.println(x[i]);
 System.exit(0);
 }
 // other methods as before ...
}

tions to be made. In this case, it is probably less useful to implement an ItemListener.
Instead, a simpler model might rely on an external gesture (e.g., clicking another
Button component) to trigger the end of selections.

220 Object-Oriented Programming and Java

and how events are handled when menu items are chosen are similar—appropriate
object instances are created and appropriately placed within components.

Figure 13-15: Frame with Menu Bar.

In this case, the three classes of objects used are MenuBar, Menu, and MenuItem.

When seen hierarchically, each menu item is represented by a MenuItem instance,
and all items in the group are collected via the add() method for a menu object.
Similarly, menu instances are collected into the menu bar via the add() method for a
menu bar object. Finally, the single menu bar object is added to the Frame via the
setMenuBar() method. This is shown in the code fragment in Listing 13-15: Run-
ning the MenuBar example produces the frame in Figure 13-15.

import java.awt.*;
import java.awt.event.*;

class MenuExample extends Frame {
 MenuExample() {
 super("Menus");
 setSize(450,220) ;
 MenuBar mb;
 Menu m;

 mb = new MenuBar();
 setMenuBar(mb) ;
 mb.add(m = new Menu("File"));
 m.add(new MenuItem("Open"));
 m.add(new MenuItem("Save"));
 m.add(new MenuItem("Save as"));
 m.add(new MenuItem("Close"));
 mb.add(m = new Menu("Edit"));
 m.add(new MenuItem("Undo"));
 m.add(new MenuItem("Cut"));
 m.add(new MenuItem("Copy"));
 m.add(new MenuItem("Paste"));
 mb.add(m = new Menu("Window"));
 m.add(new MenuItem("New Window"));
 m.add(new MenuItem("Arrange"));
 m.add(new MenuItem("Split"));
 mb.add(m = new Menu("Help"));
 m.add(new MenuItem("Index"));

Graphical Interfaces and Windows 221

 Listing 13-15: Working with Menu Bar.

As with Button components, event handling for menu items is effected via a

suitable ActionListener by using the addActionListener() method. For brevity,
only a skeletal structure for the modified class definition is shown in Listing 13-16.

 Listing 13-16: Handling menu events.

The Dialog class allows for a dialog window where input is expected from the user.
By adding a Label component in a new class, it can be used to deliver a message, as
seen in Figure 13-16.

Figure 13-16: Dialog Frame.

 m.add(new MenuItem("Wizard"));
 m.add(new MenuItem("About"));

 Panel p = new Panel();
 p.add(new TextArea());
 add(p);
 }
 // other methods for event handling ...
}

class MenuExample extends Frame
 implements ActionListener, WindowListener {
 MenuExample() {
 // ... code as before
 MenuItem i;
 mb.add(m = new Menu("File"));
 m.add(i = new MenuItem("Open")); i.addActionListener(this) ;
 m.add(i = new MenuItem("Save")); i.addActionListener(this);
 m.add(i = new MenuItem("Save as")); i.addActionListener(this);
 m.add(i = new MenuItem("Close")); i.addActionListener(this);
 // ... other Menu setup code – similar to above
 addWindowListener(this);
 setVisible(true);
 }
 public static void main(String arg[]) {
 new MenuExample();
 }
 public void actionPerformed(ActionEvent evt) {
 System.out.println("menuItem: " + evt.getSource().toString());
 }
 public void windowClosing(WindowEvent we) { System.exit(0); }
}

13.3.9 Dialog Frames

222 Object-Oriented Programming and Java

passed to the constructor of the superclass. It allows focus to return to the calling

 Listing 13-17: Implementation of a Dialog Frame.

In place of printing a string to the standard output, the previous MenuExample

class may use the Message class to signal the delivery of an event. This is seen in
Listing 13-18.

 Listing 13-18: Invoking a Message Dialog.

A Dialog window may also be tagged as Modal via the setModal() method. In

this case, it will receive all input from the parent window. The side-effect is that it
must be closed before the parent application may proceed.

class Message extends Dialog implements WindowListener {
 Message(Frame parent, String message) {
 super(parent, "Message");
 setSize(400,100) ;
 setLayout(new FlowLayout());
 setResizable(false) ;
 add(new Label(message));
 addWindowListener(this) ;
 setVisible(true);
 }
 public void windowActivated(WindowEvent we) { }
 public void windowClosed(WindowEvent we) { }
 public void windowClosing(WindowEvent we) { dispose(); }
 public void windowDeactivated(WindowEvent we) { }
 public void windowDeiconified(WindowEvent we) { }
 public void windowIconified(WindowEvent we) { }
 public void windowOpened(WindowEvent we) { }
}

class MenuExample extends Frame
 implements ActionListener, WindowListener {

 // ... code as before

 public void actionPerformed(ActionEvent evt) {
 new Message(this,((MenuItem)evt.getSource()).getLabel());
 }

}

class Message extends Dialog implements WindowListener {
 Message(Frame parent, String message) {
 super(parent, "Message");
 setSize(400,100);
 setLayout(new FlowLayout());
 setResizable(false);

class, as illustrated in Listing 13-17. The parent parameter in the constructor is
A simple implementation of a Message frame may inherit from the basic Dialog

parent when the Dialog window is closed. As with other windows, the setVisibletrue
method makes the frame visible while the dispose() method destroys it and reclaims
resources to represent it.

Graphical Interfaces and Windows 223

 Listing 13-19: A Modal Dialog Frame.

13.3.10 File Dialog Frames

A common use of dialog is requesting for an input file to read from, or an output file
to write to. An example view is shown in Figure 13-17. The FileDialog class,
which is inherited from the Dialog class, easily provides this functionality.

Figure 13-17: File Dialog for opening a file.

public FileDialog(Frame parent, String title, int mode);

The constructor method allows three parameters to be specified:

• the parent application;
• a title for the window; and
• whether it is the selected file to be loaded or saved.

 add(new Label(message));
 addWindowListener(this);
 setVisible(true);
 }
 ...
 public void windowClosing(WindowEvent we) { dispose(); }
}

224 Object-Oriented Programming and Java

13.4 Custom Components

Having seen the basic components provided in AWT, we will next see how custom
components might be built. Here, it is easiest to reuse the framework set out by the
Component class via inheritance.

For example, referring to the API documentation for Component, we determine
that the paint() method is significant as it allows for a component to show itself. As
such, in building a custom component, this method is redefined to give an appropri-
ate graphical view of itself.

We consider building a Puzzle component that plays the 15-tile puzzle game,
as shown in Figure 13-18. The object of the game is to maneuver the tiles via the
single empty slot such that they are appropriately ordered.

Figure 13-18: Puzzle board.

First, a component must maintain its state (in terms of board position) so that it

can always paint itself, whether the window is restored after being minimized or
brought to view after being hidden. In the case of the Puzzle component, we main-
tain the board with tiles at their current positions. We thus arrive at a skeletal struc-
ture as follows:

public void actionPerformed(ActionEvent evt) {
 FileDialog fd;
 String m = ((MenuItem) evt.getSource()).getLabel();
 if (m.equals("Open")) {
 fd = new FileDialog(this, "Open", FileDialog.LOAD);
 fd.setVisible(true);
 System.out.println(fd.getDirectory()+fd.getFile());
 } else if (m.equals("Save as")) {
 fd = new FileDialog(this, "Save As", FileDialog.SAVE);
 fd.setVisible(true);
 System.out.println(fd.getDirectory()+fd.getFile());
 } else
 new Message(this, ((MenuItem)evt.getSource()).getLabel());
}

Graphical Interfaces and Windows 225

It is usual to have the constructor method provide the appropriate initialization,

consisting of setting up the board and marking the empty slot.

The first of two important tasks that the Puzzle must fulfill is provide visual

feedback in response to a changed board. This is done by overriding the paint()
method originally defined in the superclass. As shown below, displaying the Puzzle
is achieved by displaying each of the 15 tiles.

Each square is displayed by clearing a rectangle at the appropriate x-y coordi-

nate, which is extrapolated from multiplying row/column with tileSize.

The second task is to receive input as to where the user is playing the next

move. Mouse activity is obtained by installing a MouseListener in about the same
way as what we have done with ActionListener and ItemListener previously.

A MouseListener must implement five methods to track basic mouse activity:
mouseClicked(), mouseEntered(), mouseExited(), mousePressed() and
mouseReleased(). Two options are available here: the Puzzle component could

import java.awt.*;
class Puzzle extends Component {
 final int squares = 4; // size of board
 int tileSize; // pixels per tile
 int state [][]; // board
 int emptySlotX, emptySlotY; // position of empty slot
 int moveX, moveY; // current move
}

 Puzzle(int size) {
 tileSize = size / squares;
 state = new int[squares][squares]; // make the board
 for (int i=0;i<squares;i++) // mess up the tiles
 for (int j=0;j<squares;j++)
 state[squares-j-1][squares-i-1] = i*squares+j+1;
 moveX = moveY = 0; // position of empty space
 state[moveX][moveY]=0; // mark the empty space
 addMouseListener(mouseListener) ;
 }

 public void paint(Graphics g) {
 // clear board
 g.fillRect(0, 0, tileSize*squares, tileSize*squares) ;
 for (int i=0;i<squares;i++) // print all tiles
 for (int j=0;j<squares;j++)
 square(g,i,j);
 }

 void square(Graphics g, int x, int y) {
 if (state[y][x] != 0) { // paint a tile
 g.clearRect(x*tileSize+1, y*tileSize+1, tileSize-2, tileSize-2) ;
 g.drawString(new Integer(state[y][x]).toString(),
 x*tileSize+tileSize/2-4, y*tileSize+tileSize/2+4) ;
 }
 }

226 Object-Oriented Programming and Java

implement these methods and thus become a legitimate MouseListener. However,
as only mouseReleased() is significant, the other four methods may be considered
extra baggage.

A MouseAdapter is useful here. It is basically a class that provides a basic im-
plementation for the five mouse activity methods. An appropriate MouseAdapter
object merely inherits from MouseAdapter but redefines mouseReleased(). For the
moment, we just provide the method:

Updates of the Puzzle state corresponding to tile movement as indicated by a

mouse click must translate to update of the screen display. This is signaled by the
method repaint() which schedules a display refresh by the paint() method.

We have now seen most of the code for our Puzzle component. However, we
pause to consider, in the next section, an elegant means of including an Adapter
object.

13.5 Other Kinds of Class Definitions

The delegation approach to event handling using listener objects is useful in that role
of event handling may be distributed to various objects. Where event handling is
minimal event handling is neater if it is handled by one object. In our Puzzle exam-
ple, while we need to redefine mouseReleased(), redefining the other methods with
null bodies becomes clumsy.

 From this standard MouseAdapter class, we may derive a PuzzleMouseLis-
tener and redefine the mouseReleased() method:

 public void mouseReleased(MouseEvent e) {
 int newX = e.getX() / tileSize;
 int newY = e.getY() / tileSize;
 if (newX < squares && newY < squares &&
 emptySlotX == newX && (Math.abs(emptySlotY-newY) == 1) ||
 emptySlotY == newY && (Math.abs(emptySlotX-newX) == 1)) {
 //update board
 state [moveY=emptySlotY][moveX=emptySlotX] = state[newY][newX];
 state[emptySlotY=newY][emptySlotX=newX] = 0;
 repaint();
 }
 }

An example MouseAdapter class with null handlers for mouse events might be:

class MouseAdapter implements MouseListener {
 public void mouseClicked(MouseEvent e) { }
 public void mouseEntered(MouseEvent e) { }
 public void mouseExited(MouseEvent e) { }
 public void mousePressed(MouseEvent e) { }
 public void mouseReleased(MouseEvent e) { }
}

Graphical Interfaces and Windows 227

However, we encounter a scope problem in PuzzleMouseListener where its

method mouseReleased() is expected to access instance variables of Puzzle. Even if
this was done via proper accessor methods, the problem remains as to how two ob-
ject instances of different classes may be logically associated.

13.5.1 Inner Classes

The revision of Java in JDK 1.1 allows for inner class, local class, and anonymous
class definitions to solve this problem. While all classes in Java JDK 1.0 may only be
declared at the top level, an inner class is one that is declared in another class. An
example is given in Listing 13-20.

Such classes are unknown outside the enclosing class because its instances are
implicitly used within instances of the enclosing class.

 Listing 13-20: Inner Class definition.

As such, this solves the scope problem in that PuzzleMouseListener may be

instantiated within Puzzle, and yet the resultant instance has easy access to instance
variables such as state.

13.5.2 Anonymous Classes

While the inner class facility is convenient in terms of overcoming scoping restric-
tions, they are useful within the enclosing class and unlikely to be reused outside the
scope.

When there is to be only one instance of an inner class, the creation of an
anonymous class instance provides the syntactic sugar for more succinct code. The

class PuzzleMouseListener extends MouseAdapter {
 public void mouseReleased(MouseEvent e) {
 // check move and update Puzzle board
 }
}

class Puzzle extends Component {
 ...
 int state [][]; // board
 ...

 class PuzzleMouseListener extends MouseAdapter {
 public void mouseReleased(MouseEvent e) {
 // check move and update Puzzle board
 // has access to state
 }
 }
 PuzzleMouseListener listener = new PuzzleMouseListener();

 Puzzle() {
 ...
 addMouseListener(listener) ;
 }
}

228 Object-Oriented Programming and Java

example code in Listing 13-21 provides identical functionality to the previous frag-
ment in Listing 13-20.

 Listing 13-21: Anonymous class definition.

The classname PuzzleMouseListener has been omitted since it is used in the

definition and only one instantiation. In an anonymous class, the definition occurs
with instantiation, that is, after the new allocator.

13.5.3 Local Classes

While inner class definitions occur within an enclosing class, local classes are even
more restricted in that they occur within blocks of method definitions. Listing 13-22
shows an example local class definition.

 Listing 13-22: Local class definition.

In fact, if we desire, we can also create an instance of an anonymous class from

the Puzzle constructor, as in Listing 13-23, but this does not necessarily improve
code readability.

class Puzzle extends Component {
 ...
 int state [][]; // board
 ...
 MouseAdapter listener = new MouseAdapter() {
 public void mouseReleased(MouseEvent e) {
 // check move and update Puzzle board
 // has access to state
 }
 };
 Puzzle() {
 ...
 addMouseListener(listener) ;
 }
}

class Puzzle extends Component {
 ...
 int state [][]; // board
 ...

 Puzzle() {
 class PuzzleMouseAdapter {
 public void mouseReleased(MouseEvent e) {
 // check move and update Puzzle board
 // has access to state
 }
 }
 ...
 addMouseListener(new PuzzleMouseAdapter());
 }
}

Graphical Interfaces and Windows 229

 Listing 13-23: Another anonymous class definition.

Using instances of anonymous MouseAdapter and WindowAdapter (sub)classes,
we again present the complete solution for our Puzzle component in Listing 13-24.

class Puzzle extends Component {
 ...
 int state [][]; // board
 ...

 Puzzle() {
 ...
 addMouseListener(new MouseAdapter() {
 public void mouseReleased(MouseEvent e) {
 // check move and update Puzzle board
 // has access to state
 }
 });
 }
}

import java.awt.*;
import java.awt.event.*;

class Puzzle extends Component {

 final int squares = 4; // size of board
 int tileSize; // pixels per row
 int state [][]; // state of board
 int moveX, moveY,
 emptySlotX, emptySlotY; // positions of empty space
 Dimension psize;

 Puzzle(int size) {
 psize = new Dimension(size, size);
 tileSize = size / squares;
 state=new int[squares][squares]; // mess up the tiles
 for (int i=0;i<squares;i++)
 for (int j=0;j<squares;j++)
 state[squares-j-1][squares-i-1] = i*squares+j+1;
 emptySlotX = emptySlotY = 0; // position of empty space
 state[emptySlotX][emptySlotY]=0; // mark the empty space
 addMouseListener(mouseListener) ;
 }
 void square(Graphics g, int x, int y) {
 if (state [y][x] != 0) { // paint a tile
 g.clearRect(x*tileSize+1, y*tileSize+1, tileSize-2, tileSize-2) ;
 g.drawString(new Integer(state[y][x]).toString(),
 x*tileSize+tileSize/2-4, y*tileSize+tileSize/2+4) ;
 }
 }

230 Object-Oriented Programming and Java

 Listing 13-24: Puzzle class Revisited.

13.6 Swing Components

The AWT components we have been discussing were the first graphical components
Java ever had. For easy implementation, they are ultimately mapped to the native
graphical widgets provided by the underlying windowing systems by various ma-
chine platforms such as Windows, Linux, or Mac OS.

Thus, while AWT runs on different platform (just like all other Java codes),
AWT components look different on the various platforms. This is not too significant
except that different dimensions can sometimes drastically alter how designed inter-
faces look.

A more significant concern here is that AWT components are constrained by
what native graphical widgets are available on various target platforms. As such,
AWT components tend to be plain and GUI programmers have always lamented
about insufficient AWT interactivity.

 public void paint(Graphics g) {
 // clear board
 g.fillRect(0, 0, tileSize*squares, tileSize*squares) ;
 for (int i=0;i<squares;i++) // print all tiles
 for (int j=0;j<squares;j++)
 square(g,i,j);
 }
 public Dimension getPreferredSize() { return psize; }
 MouseAdapter mouseListener = new MouseAdapter() {
 public void mouseReleased(MouseEvent e) {
 int newX = e.getX() / tileSize;
 int newY = e.getY() / tileSize;
 if (newX < squares && newY < squares &&
 emptySlotX == newX && (Math.abs(emptySlotY-newY) == 1) ||
 emptySlotY == newY && (Math.abs(emptySlotX-newX) == 1)) {
 // update
 state[moveY=emptySlotY][moveX=emptySlotX] = state[newY][newX];
 state[emptySlotY=newY][emptySlotX=newX] = 0;
 repaint();
 }
 }
 };
 public static void main(String arg[]) {
 WindowAdapter windowListener = new WindowAdapter() {
 public void windowClosing(WindowEvent e) { System.exit(0) ; }
 };
 Frame f = new Frame("Puzzle");
 f.setSize(240,240) ;
 f.addWindowListener(windowListener) ;
 Panel p = new Panel();
 p.add(new Puzzle(200)) ;
 f.add(p);
 f.setVisible(true);
 }
}

Graphical Interfaces and Windows 231

This shortcoming has led to the introduction of Swing components in JDK 1.2.

Swing components work in a similar fashion to AWT components in that we still
instantiate suitable component classes and attach handlers for relevant events.

The wonderful aspect of Swing components is that they are implemented in
pure Java. As such, they exhibit the same look-and-feel across platforms. While
earlier versions of Swing were slow, Java implementors at SUN has improved the
performance over releases of JDK. The more important side-effect of a pure Java
implementation is that Swing is no longer constrained by native widgets. Swing
provides a rich set of components for developing a responsive user-interface.

13.6.1 Transiting from AWT to Swing

Moving from AWT to Swing is generally easy. While the AWT component classes
such as Button, Label, Checkbox, and Frame are defined in the java.awt package,
the Swing package javax.swing contains classes JButton, JLabel, JCheckBox and
JFrame.

Attaching a suitable event handler is unchanged. The following is the Swing
equivalent of the previous MixedComponents example. Notice that most of the AWT
components have been changed to the “J” equivalents. We can also mix the usage of
AWT and Swing components, but this is in practice not encouraged.

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

class JMixedComponents extends JFrame
 implements ActionListener, ItemListener, WindowListener {
 JTextArea txt;
 JMixedComponents(String m) {
 super("Mixed Components: "+m);
 JButton b; JCheckBox c;
 setSize(255,420);
 JPanel p = new JPanel();
 p.add(new JLabel("Conference Registration"));
 JPanel sub = new JPanel(); sub.setLayout(new GridLayout(2,1));
 sub.add(c = new JCheckBox("Attend Tutorial"));
 c.addItemListener(this);
 sub.add(c = new JCheckBox("Require Hotel"));
 c.addItemListener(this);
 p.add(sub);
 sub = new JPanel(); sub.setLayout(new GridLayout(3,1));
 ButtonGroup g = new ButtonGroup();
 sub.add(c = new JCheckBox("no food restrictions", true));
 g.add(c); c.addItemListener(this);
 sub.add(c = new JCheckBox("no seafood", false));
 g.add(c); c.addItemListener(this);
 sub.add(c = new JCheckBox("vegetarian food", false));
 g.add(c); c.addItemListener(this);
 p.add(sub);
 p.add(txt = new JTextArea(10,30));
 p.add(b = new JButton("Reset")); b.addActionListener(this) ;
 p.add(b = new JButton("Submit")); b.addActionListener(this);
 addWindowListener(this) ;

232 Object-Oriented Programming and Java

Listing 13-25: Swing version of MixedComponents example.

The following shows the resultant Swing JFrame.

Figure 13-19: Application with Swing components.

 add(p) ;
 txt.setText("Events:\n");
 setVisible(true);
 }
 public static void main(String arg[]) {

 new JMixedComponents("Event Handling");
 }
 public void actionPerformed(ActionEvent evt) {
 txt.append("actionPerformed: " + evt.getSource().toString() + "\n");
 }
 public void itemStateChanged(ItemEvent itm) {
 txt.append("itemStateChanged: " + itm.getItemSelectable() + "\n");
 }
 public void windowActivated(WindowEvent we) { }
 public void windowClosed(WindowEvent we) { }
 public void windowClosing(WindowEvent we) {
 System.out.println(txt.getText());
 System.exit(0) ;
 }
 public void windowDeactivated(WindowEvent we) { }
 public void windowDeiconified(WindowEvent we) { }
 public void windowIconified(WindowEvent we) { }
 public void windowOpened(WindowEvent we) { }
}

Graphical Interfaces and Windows 233

Similarly, the following code shows the Swing equivalent of the MenuExample

with the resultant Swing JFrame.

Listing 13-26: Swing version of MenuExample.

The Swing components consist of more than just adding a “J”-prefix. For ex-

ample, a JButton may be associated with an icon and buttons can be incorporated
into menus. We will leave the reader to explore such enhanced features.

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

class JMenuExample extends JFrame {
 JMenuExample() {
 super("Menus");
 setSize(450,220) ;
 JMenuBar mb;
 JMenu m;
 mb = new JMenuBar();
 setJMenuBar(mb) ;
 mb.add(m = new JMenu("File"));
 m.add(new JMenuItem("Open"));
 m.add(new JMenuItem("Save"));
 m.add(new JMenuItem("Save as"));
 m.add(new JMenuItem("Close"));
 mb.add(m = new JMenu("Edit"));
 m.add(new JMenuItem("Undo"));
 m.add(new JMenuItem("Cut"));
 m.add(new JMenuItem("Copy"));
 m.add(new JMenuItem("Paste"));
 mb.add(m = new JMenu("Window"));
 m.add(new JMenuItem("New Window"));
 m.add(new JMenuItem("Arrange"));
 m.add(new JMenuItem("Split"));
 mb.add(m = new JMenu("Help"));
 m.add(new JMenuItem("Index"));
 m.add(new JMenuItem("Wizard"));
 m.add(new JMenuItem("About"));

 JPanel p = new JPanel();
 p.add(new JTextArea());
 add(p);
 setVisible(true);
 }
 // other methods for event handling ...
 public static void main(String arg[]) {
 new JMenuExample();
 }
}

234 Object-Oriented Programming and Java

Figure 13-20: Application with Swing menu.

13.6.2 Model versus View

An important aspect of object-oriented programming is decoupling classes so that
each class is as independent as possible from the others. For applications with
graphical interfaces, this principle translates to separating the model (or data) from
the view (or how the data is visualized). This strategy will allow the data to be ren-
dered differently when requirements change.

Handling data and view in a single class may in the short term be simple. This
may be reasonable with smaller applications or less complex data. But in the longer
term with new requirements, tight coupling of data and view will hinder code main-
tenance and code reuse.

 import java.awt.*;
import javax.swing.*;
import javax.swing.table.*;
import java.awt.event.*;
import javax.swing.event.*;

public class TableDemo extends JFrame {
 public TableDemo() {
 super("Table demo");
 add(new JTable(new MultiplicationTable()));
 setSize(500, 200);
 setVisible(true);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 dispose();
 }
 });
 }
 public static void main(String arg[]) {
 new TableDemo();
 }
}

Swing components facilitate the separation of data from the view it provides.
As an example, the JTable class provides for a table view. Its constructor allows
for an array containing the data, or alternatively any class with implements the

MultiplicationTable.
below where the view provided by JTable is separated from the model in class
TableModel interface. This separation is illustrated in the TableDemo class

Graphical Interfaces and Windows 235

Listing 13-27: Swing separation between Model and View.

The class MultiplicationTable implements the model and only contains the

data that will be rendered by the JTable view. As such, it needs to implement the
TableModel interface that JTable expects. The resultant view is shown below:

Figure 13-21: Swing JTable.

13.7 Summary

While graphical user interfaces allow for convenient interaction and intuitive user

class MultiplicationTable implements TableModel {
 public void addTableModelListener(TableModelListener l) { }
 public void removeTableModelListener(TableModelListener l) { }
 public Class getColumnClass(int columnIndex) {
 return("".getClass());
 }
 public int getColumnCount() {
 return(13);
 }
 public String getColumnName(int columnIndex) {
 return(String.valueOf(columnIndex));
 }
 public int getRowCount() {
 return(10);
 }
 public Object getValueAt(int rowIndex, int columnIndex) {
 return(String.valueOf((rowIndex+1)*(columnIndex+1)));
 }
 public boolean isCellEditable(int rowIndex, int columnIndex) {
 return(false);
 }
 public void setValueAt(Object aValue, int rowIndex, int columnIndex) {
 }
}

models, good interfaces still require careful design and much implementation
effort in event handling. The AWT and Swing packages in the Java API allows for a

236 Object-Oriented Programming and Java

 In this chapter, we discussed:

• the constituents of the AWT model and the framework for their integration

in an application;
• detailed incremental development of an example user interface’
• the basic components in AWT available and their control within an applica-

tion;
• the use of custom components when predefined components are inadequate;
• event handling using both containment and delegation models in JDK 1.0

and JDK 1.1, respectively,
• JDK 1.1 language extensions relating to inner class, local class, and anony-

mous class definitions; and
• Swing components and the separation of Model from View.

13.8 Exercises

1. Review the API documentation for the File class. Note that while the File
instance is a directory, the list() method returns the list of files in it in a
String array. Using this feature, implement a directory browser consisting
of List and nonediting TextArea components. The former presents the set of
files in a directory, while the latter displays the selected file.

2. Implement the following enhancements to the browser application discussed
in Exercise 1:

• allow for enabling edit-mode in the TextArea component, and subse-

quently saving the contents back to the original or new file;
• allow for block-move edit operations via custom pop-up mouse menu;
• search-and-replace edit operations via menu and dialog frames; and
• allow for changing into new directories, which is reflected by displaying

a corresponding new set of files in the List component.

3. Using the drawRect() method in the Graphics class, implement a rectangle
drawing application that paints rectangles of various colors and positions in-
dicated by pressing and releasing the mouse to denote opposite corners.

• Include a rubber-band effect to indicate rectangle borders between select-

ing the two opposite corners of the rectangle.
• Are existing rectangles redrawn when the frame is restored after being

minimized? Suggest a scheme to implement this requirement.
• Detect the right-hand mouse button to erase rectangles that enclose the

mouse position.

consistent user interface at a fraction of the typical implementation effort. This is
achieved by its object-oriented framework with reusable GUI components and
integration mechanisms for attaching event handlers.

14
Applets and Loaders

We have learned that Java is an interpreted language. A Java compiler (javac in
JDK) translates source code to Java bytecodes so that it may execute as long as a
Java Virtual Machine (java in JDK) is implemented to run on the underlying hard-
ware. As such, Java is described as platform independent. In fact, the Java Virtual
Machine not only allows Java to be source-code compatible, but object-code com-
patible as well. Object-code derived from compilation on one machine will execute
unmodified on another.

This characteristic was exploited at the opportune time of exponential Internet
growth, to pave the way for Java bytecodes to travel across a network, and subse-
quently be loaded into a virtual machine elsewhere for execution. A Java applet,
which we have heard so much about over the media, is essentially Java bytecode
which have traveled from a Web server to execute within an HTML page as dis-
played by a Web browser with an embedded Java Virtual Machine.

The ease of distributing Java applets over a network has destined this frame-
work to revolutionize Web applications. With good GUI facilities and intuitive inter-
faces, enthusiasm for the Internet has been further heightened. The promise of Java
applets was to turn static HTML pages to dynamic Internet applications.

We have deliberately left the popular subject of Java applets till now, because
the applet framework relies on the AWT package, as well as networking and dy-
namic code loading facilities of Java. We will examine the execution environment of
applets, some of its restrictions and how applications can take advantage of dynami-
cally loaded code.

14.1 Applet Characteristics

The API documentation reveals that Java applets are derived from the java.app-
let.Applet class. This Applet class is in turn derived from the java.awt.Panel

238 Object-Oriented Programming and Java

class. Thus, an applet may be viewed as a special Panel that runs within the context
of a Java-enabled Web browser such as Netscape Communicator or Microsoft’s
Internet Explorer.

Due to inheritance from its superclasses, operations applicable to a Panel such
as placement of predefined or custom components, as discussed in Chapter 12, will
also apply to an applet. There are additional properties peculiar to an applet, such as
how it behaves within the operations of a Web browser and its life-cycle with respect
to init(), start() and stop() methods. In addition, the Applet class implements
additional interfaces that allow it to easily retrieve related Web resources from its
originating server. It may also display an image and play an audio clip and commu-
nicate with other applets in the enclosing HTML document.

Listing 14-1 shows an example applet with a method init() which overrides
the one defined in its superclass.

Listing 14-1: Example applet.

This class definition is unique from those we have seen in that it does not have

a static void main() method, as well as does not seem to have code which invokes
init(). The significance of such particularities and the overriding method will be
discussed in subsequent sections. For the moment, we present the corresponding
HTML document in Listing 14-2, which is used to embed an EgApplet applet object.

<HTML>
<HEAD><TITLE>Example Applet</TITLE></HEAD>
<BODY>
<P>Example Applet</P>
<APPLET CODE="EgApplet.class" HEIGHT="270" WIDTH="450">
</APPLET>
</BODY>
</HTML>

Listing 14-2: Example HTML with embedded applet.

While most of the HTML tags are common, the <APPLET> tag stands out as one

used to embed a Java applet into an HTML document. Here, two additional attributes
are mandatory: the code file of the compiled applet proper, and dimensions (in terms
of pixel height and width) of the display area within the browser required.

import java.applet.Applet;
import java.awt.*;

public class EgApplet extends Applet {
 public void init() {
 add(new TextArea(10, 60));
 add(new TextField(30)) ;
 }
}

Applets and Loaders 239

Figure 14-1: Applet in a Java-enabled browser.

In placing both HTML document and Java bytecode files in the same directory, and
calling a Java-enabled Web browser to load the former (either through a local file
load or an HTTPD server) will also load the applet and commence execution as
shown in

Figure 14-1.
As with Panels and Components in Chapter 12, we may also attach event han-

dlers for our components. We extend our original applet with an event handler and
accessor methods to retrieve other HTML source files as follows:

• The TextArea and TextField components are assigned to instance vari-

ables txt and inp in order that we can interrogate them subsequently (as in
inp.getText() and txt.setText() to retrieve input and write output,
respectively).

• JDK 1.0 styled event handling is installed via the action() method to
retrieve input in the TextField component in response to the return key.
(This would ensure that the applet will still execute on Java-enabled Web
browsers without AWT 1.1 libraries.) This is illustrated in Listing 14-3.

• The relative URL specified in TextField is used to retrieve a Web
resource, whose contents are displayed in the TextArea. This is imple-
mented by the display() method, and it uses the API class in java.io and
java.net.

240 Object-Oriented Programming and Java

Listing 14-3: Event Handling in an Applet

The EgApplet applet in Listing 14-3 is essentially unchanged from Listing 14-
1, except for instance variable declarations and the action() event handling method.
For the purpose of modular descriptions, the display() method is shown in Listing
14-4. It relies on the URL class to construct an URL when given a relative address
and the base address of the applet. The openStream() method initiates a Web
request for the said URL, but relies on InputStream methods to retrieve results.

Listing 14-4: URL content retrieval.

As with applications which use predefined AWT components, applets may also

be installed with JDK 1.1–styled event handlers. The restriction here is that such
code can only be executed in a Web browser with the JDK 1.1 class libraries. (It is
likely that these days, Netizens would be running Java-enabled browsers with JDK
1.1 libraries.)

The EgApplet version in Listing 14-5 uses JDK 1.1 styled event handlers. The
applet differs from the JDK 1.0 version in that:

import java.applet.Applet;
import java.awt.*;
import java.io.*;
import java.net.*;

public class EgApplet extends Applet {
 TextArea txt;
 TextField inp;
 public void init() {
 add(txt = new TextArea(10, 60));
 add(inp = new TextField(30)) ;
 }
 public boolean action(Event evt, Object obj) {
 if (evt.target instanceof TextField) {
 display(inp.getText());
 return true;
 }
 return(super.action(evt, obj));
 }
}

 void display(String n) {
 try {
 URL doc = new URL(getDocumentBase(), n);
 InputStream is = doc.openStream();
 StringBuffer b = new StringBuffer();
 int c;
 while ((c = is.read()) != -1)
 b.append((char) c) ;
 is.close();
 txt.setText(b.toString());
 } catch (Exception e) {
 txt.setText("Cannot retrieve "+n);
 }
 }

Applets and Loaders 241

• it implements the interface for an ActionListener by defining the addi-

tional method actionPerformed(); and
• it installs itself as a listener for the TextField so that input there would

subsequently trigger actionPerformed().

Listing 14-5: EgApplet using JDK 1.1–styled event handling.

14.2 Applet Life Cycle

The two versions of the EgApplet applet in the previous section (which uses both
JDK 1.0 and JDK 1.1-styled event handling) show that applets are very much like
Panels in the java.awt package. This is not surprising since the Panel class occurs
in its inheritance chain.

However, because an applet executes within an HTML document that is ren-
dered by a Web browser, its behavior is in a small way dictated by the browser’s
operation. For example, after an applet has been loaded and is running, provision
must be made for when the browser leaves the page, or revisits the page. In the for-
mer case, the applet should be notified so that execution does not continue (unpro-
ductively). Similarly, when a page containing an applet is revisited, creating two
instances of the same applet is wasteful in terms of computing resources.

A well-behaved applet responds to these state changes via the methods init(),
start(), stop() and destroy(), as illustrated in Figure 14-2. The methods init()
and start() are invoked for the first time when an applet is loaded and execution
commences. After that, stop() and start() are invoked when the browser leaves
the HTML page and revisits it. Finally, the destroy() method is invoked just before
the applet is unloaded and disappears into oblivion. Any change in behavior corre-
sponding to this state change should thus be effected by these methods.

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.*;

public class EgApplet extends Applet implements ActionListener {
 TextArea txt;
 TextField inp;

 public void init() {
 add(txt = new TextArea(10, 60));
 add(inp = new TextField(30));
 inp.addActionListener(this) ;
 }
 public void actionPerformed(ActionEvent evt) {
 display(inp.getText());
 }
 ... // void display() remains unchanged
}

242 Object-Oriented Programming and Java

init()

start() stop()

destroy()

applet
loads

applet starts
execution

browser
leaves page

browser
re-visits page

applet
unloads

Figure 14-2: Applet life-cycle.

Consistent with object-oriented programming methodology, applets inherit the

standard behavior for these methods init(), start(), stop(), and destroy().
Where no additional processing is required for the corresponding states, the standard
behavior is adopted. Where required, custom processing is achieved by new method
definition (which overrides the otherwise inherited method in the superclass).

The EgApplet class in the previous section has a custom init() method, but
did not require special processing for start(), stop(), or destroy(). In the case of
an applet with additional threads, it would be considerate of the applet to stop threads
when the browser leaves the HTML page. In this case, the thread would be restarted
if the page was revisited. Thus, the start() and stop() methods would then be
defined accordingly.

14.3 Custom Applets

While the use of AWT components continues to be the same for applets, we now
compare applets with applications developed in the previous chapter. In reincarnating
the Puzzle application as an applet in Listing 14-6, we note two major differences:

• Applets are not invoked from the command line, but instead instantiated

from a Web browser and with a life-cycle just discussed. As such, static
void main() is not used for applet execution. (However, we might still in-
clude it so that the core applet code will run both as an applet and applica-
tion. This will be discussed later.) Following from this, applets cannot be
terminated via System.exit() because they exist as additional execution
threads of the browser.

• While it is natural for an application class to use constructor methods for
initialization, this is not the case with applets. In the former case, initializa-
tion is implicit at object instantiation. In the latter case, applets cannot al-
ways be initialized at instantiation since some properties are derived from
its environment which is determined after applet instantiation. As such,
applet initialization is thus best via the init() method.

Applets and Loaders 243

Listing 14-6: Applet version of Puzzle.

14.4 Images and Audio

An applet may easily retrieve images and audio clips from its originating server via
the methods

public Image getImage(URL url) ;
public Image getImage(URL url, String name);
public AudioClip getAudioClip(URL url);
public AudioClip getAudioClip(URL url, String name);

The resultant Image object retrieved by getImage() may be displayed via the

drawImage() method in the Graphics class. The skeletal code for this is shown in
Listing 14-7.

Listing 14-7: Skeletal code for retrieving and displaying images.

Similarly, an AudioClip object retrieved via getAudioClip() may commence

and stop playback via play() and stop() respectively. The skeletal code for this is
shown in Listing 14-8.

public class Puzzle extends Applet {

 final int squares = 4; // size of board
 int tileSize; // pixels per row
 int state [][]; // state of board
 int moveX, moveY,
 emptySlotX, emptySlotY; // positions of empty space

 public void init() {
 tileSize = getSize().height / squares;
 state=new int[squares][squares]; // mess up the tiles
 for (int i=0;i<squares;i++)
 for (int j=0;j<squares;j++)
 state[squares-j-1][squares-i-1] = i*squares+j+1;
 emptySlotX = emptySlotY = 0; // position of empty space
 state[emptySlotX][emptySlotY]=0; // mark the empty space
 addMouseListener(mouseListener) ;
 }
 ... // other methods unchanged, static void main() now not required
}

class DrawImage extends Applet {

 Image img;
 ...
 img = getImage(getDocumentBase(), "picture.gif");
 ...
 void paint(Graphics g) {
 ...
 g.drawImage(img, x, y, this) ;
 }
}

244 Object-Oriented Programming and Java

Listing 14-8: Skeletal code for retrieving and playing an audio clip.

The Media applet in Listing 14-9 demonstrates how these methods are used: it

reads in an image and audio clip via getImage() and getAudioClip() in its init()
method. The former is drawn by drawImage() in the paint() method, while the
mouse event handler plays and stops the audio clip via play() and stop() corre-
sponding to mouse press and release events.

Listing 14-9: Media applet.

class PlayAudio extends Applet {

 AudioClip song;
 ...
 song = getAudioClip(getDocumentBase(),"sound.au") ;
 ...

 void start() {
 ...
 song.play();
 }

 void stop() {
 ...
 song.stop();
 }
}

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class Media extends Applet {

 Image image;
 AudioClip audio;
 MouseAdapter listener = new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 audio.play();
 }
 public void mouseReleased(MouseEvent e) {
 audio.stop();
 }
 };
 public void init() {
 image = getImage(getDocumentBase(),"image.gif");
 audio = getAudioClip(getDocumentBase(),"audio");
 addMouseListener(listener) ;
 }

 public void paint(Graphics g) {
 g.drawImage(image, 0, 0, this) ;
 }
}

Applets and Loaders 245

14.5 Animation in Applets

Since the introduction of the Java programming language, animation applets have
been a popular means to liven up a Web page. The common technique for animating
a Java component is making the paint() method redraw a new image between a
specified time interval.

However, applets themselves should not be making continuous calls to the
paint() method, or it will not allow other work to be done such as responding to
events. Instead, an extra thread allows the internal state of the applet to be updated
transparently. As with other threads, this work is done within the run() method.

The NumberAnim applet in Listing 14-10 creates a thread in the method init(),
and starts it running to increment the instance variable count once every 100 milli-
seconds. In doing so, the display is also scheduled for refresh via repaint() over the
same time interval.

import java.awt.*;

public class NumberAnim extends java.applet.Applet implements Runnable {
 Thread updateThread;
 int counter = 0;
 public void init() {
 updateThread = new Thread(this);
 updateThread.start();

 }
 public void run() {
 for (;;) {
 counter++;

 repaint();
 try {

 Thread.sleep(100);
 } catch (Exception e) {

 }
 }
 }
 public void paint(Graphics g) {
 g.drawString("counter " + counter, 40, 40) ;
 }

}

Listing 14-10: Basic animation.

This version of NumberAnim is inconsiderate as it continues to run even after the

HTML page is no longer in view of the Web browser. While the previous EgApplet
applet had no housekeeping chores to perform, the NumberAnim applet must however
stop the active thread created by init(). This is a good situation where an overrid-
ing stop() method should be defined for the NumberAnim class:

The applet now prevents a runaway thread in that it stops its execution when it
is now longer required. However, the counter does not resume if the applet page was

 public void stop() {
 updateThread.stop();
 updateThread = null;
 }

246 Object-Oriented Programming and Java

revisited. Here, we define another method start() to restart thread execution. Since
this is similar to the init() method, we no longer need it but instead rely on
start().

We now attempt something more interesting. Instead of a display of increment-

ing numbers, we will instead display a coordinated series of GIF images to provide
the animation effect. Here are the modifications required:

• In counting up, the method run() applies the % modulo operator on count
so its value rolls over to index the next image to display.

• The paint() method draws the appropriate image to the display area.

The resultant Animate applet is shown in Listing 14-11.

Listing 14-11: Animate applet.

 public void start() {
 updateThread = new Thread(this);
 updateThread.start();
 }

import java.awt.*;

public class Animate extends java.applet.Applet implements Runnable {
 Thread updateThread;
 final int MAXIMAGES = 10;
 Image img[]; int counter=0;
 Color background;
 public void init() {
 background = getBackground();
 img = new Image[MAXIMAGES];
 for (int j=0; j<MAXIMAGES; j++)
 img[j] = getImage(getDocumentBase(),"image" + j + ".gif");
 }
 public void start() {
 updateThread = new Thread(this); updateThread.start();
 }
 public void stop() {
 updateThread.stop(); updateThread = null;
 }
 public void run() {
 for (;;) {
 repaint();
 counter++; counter = counter % MAXIMAGES;
 try { Thread.sleep(200); } catch (Exception e) { }
 }
 }
 public void paint(Graphics g) {
 g.drawImage(img[counter], 0, 0, background, null) ;
 }
}

• The initialization method init()loads the required set of images image0.gif,
image1.gif, image2.gif… from the applet directory so that it is ready for
subsequent display.

Applets and Loaders 247

14.6 Efficient Repainting

While the Animate applet works in that it continuously displays a sequence of im-
ages, a slight display flicker is noticed on slower machines due to the way screen
updates are performed for AWT components.

So far, we have only seen the paint() method which is called in response to a
repaint request to refresh the display of an AWT component. In attempting optimum
screen updates, we distinguish the two situations in which the paint() method is
currently invoked.

• We have seen that repainting is necessary due to state changes, for example,

a tile in the Puzzle has moved, or the next image in the animation sequence
in Animate is to be displayed.

• The other situation that requires a display update is not caused by state
changes within the applet, but instead by its windowing environment, for
example, the applet is visible after being overlapped by another window, or
the applet is restored to normal display size after being iconized.

In the second situation, it is likely that a complete refresh is necessary, but in-

cremental updates might suffice in the former case. In the Puzzle applet example, the
paint() method updates the whole puzzle board, and this is suitable for a formerly
iconized or hidden applet. However, in response to movement of a tile, only two
positions need to be updated—the original and final position of the tile that has been
moved, while the display of all other positions remain unchanged.

The AWT component framework allows such distinctions to be made. In fact,
the paint() method is invoked for whole updates, whereas the update() method is
invoked for partial updates. We have thus far ignored the latter because its prede-
fined definition is to clear the background area and rely on paint() for repainting.
While this is a functionally correct definition and works for all situations, screen
flicker in our demonstration applets is caused by erasing the background needlessly
just before repainting it again.

A display optimization for the Puzzle applet merely redraws the affected
squares may be easily deployed by overriding the update() method.

Since the empty position was previously implied by no drawings and relied on

the paint() method, using update() for incremental display requires the square()
method to now also draw the blank position.

 public void update(Graphics g) {
 // merely update affected board positions
 square(g, moveX, moveY);
 square(g, emptySlotX, emptySlotY);
 }

248 Object-Oriented Programming and Java

Display optimization for the Animate applet is also minimal, and consists of

placing the body of paint() into update(), and having paint() invoke update().
Clearing the background explicitly is not necessary because drawImage() does so for
invisible portions of an image using the selected background color.

14.7 Applet Parameters

The Animate applet could be more useful if working parameters were not hardwired
into code. Currently, the statically determined values include:

• the prefix of image files image

• the number of images 10

• the delay between 2 images 200 (ms)

• the delay in restarting image sequence (same as delay between two im-
ages)

Applet parameters may be specified via the <PARAM> tag within the <APPLET>

tag. The associative scheme maps the parameter name in the “name” attribute of a
<PARAM> tag to the corresponding value specified by the “value” attribute.

<APPLET code=Animate.class height=100 width=100>
 <PARAM name="imagesource" value="image">
 <PARAM name="maximages" value="10">
 <PARAM name="delay" value="200">
 <PARAM name="delaynext" value="1000">
</APPLET>

void square(Graphics g, int x, int y) {
 if (state[y][x] != 0) { // paint a tile
 g.clearRect(x*tileSize+1, y*tileSize+1, tileSize-2, tileSize-2);
 g.drawString(new Integer(state[y][x]).toString(),
 x*tileSize+tileSize/2-4, y*tileSize+tileSize/2+4);
 } else // paint a blank position
 g.fillRect(x*tileSize+1, y*tileSize+1, tileSize-2, tileSize-2);
}

 public void update(Graphics g) {
 g.drawImage(img[counter], 0, 0, background, null) ;
 }
 public void paint(Graphics g) {
 update(g) ;

 }

Parameter values are subsequently interrogated from an applet via the
getParameter() method. Given the name attribute of a <PARAM> tag, it returns the

Applets and Loaders 249

Listing 14-12: Applet parameters.

import java.awt.*;

public class Animate2 extends java.applet.Applet implements Runnable {
 String IMAGESOURCE = "image";
 int MAXIMAGES = 10;
 int DELAY = 200;
 int DELAYNEXT = 200;

 Thread updateThread;
 Image img[]; int counter=0;
 Color background;
 public void init() {
 String val;
 if ((val = getParameter("imagesource")) != null)
 IMAGESOURCE = val;
 if ((val = getParameter("maximages")) != null)
 MAXIMAGES = val;
 if ((val = getParameter("delay")) != null) {
 DELAY = Integer.parseInt(val);
 if (DELAY < 50) DELAY = 50;
 }
 if ((val = getParameter("delaynext")) != null) {
 DELAYNEXT = Integer.parseInt(val);
 if (DELAYNEXT < 50) DELAYNEXT = 50;
 }
 background = getBackground();
 img = new Image[MAXIMAGES];
 for (int j=0; j<MAXIMAGES; j++)
 img[j] = getImage(getDocumentBase(), IMAGESOURCE+j+".gif");
 }
 public void start() {
 updateThread = new Thread(this); updateThread.start();
 }
 public void stop() {
 updateThread.stop(); updateThread = null;
 }
 public void run() {
 for (;;) {
 repaint();
 counter++; counter = counter % MAXIMAGES;
 try {
 Thread.sleep(counter == 0 ? DELAYNEXT : DELAY);
 } catch (Exception e) {
 }
 }
 }
 public void paint(Graphics g) {
 g.drawImage(img[counter], 0, 0, background, null);
 }
}

associated value attribute. A more flexible version of the Animate applet is shown
in Listing 14-12.

250 Object-Oriented Programming and Java

To aid the documentation process, the redefinition of getAppletInfo() and

getParameterInfo() methods allow an applet to provide information as to itself and
expected parameters.

Requesting applet information from Appletviewer returns a window similar to that
shown in

Figure 14-3.

Figure 14-3: Applet information.

14.8 Loading Code Dynamically

Static analysis of a program (such as in Pascal, C, or C++) spread over a set of files
will reveal what subroutines or class definitions are required, and whether sufficient

 public String getAppletInfo() {
 return("Kiong B.K., Animate Applet, (c) 1998");
 }

 public String[][] getParameterInfo() {
 String info[][] = {
 {"imagesource","string","prefix name of image files"},
 {"maximages", "int", "number of images in 1 sequence"},
 {"delay", "int", "delay between 2 images (ms)"},
 {"delaynext", "int", "delay before 2 sequences (ms)"}
 };
 return(info);
 }

Applets and Loaders 251

code is available for program execution. This is often the case for Java too, but not
always true. Java is said to allow for dynamically loaded code.

The successful compilation of each class definition produces a bytecode file
whose name is the name of the class with a “.class” suffix. This scheme allows for
code to be loaded on a per class basis and as required.

Consider the case with A.class where the source A.java makes references to
classes B and C. This would also be apparent in the compiled bytecodes in A.class,
and loading it will subsequently require loading of codes in B.class and C.class.
D.class would however not be loaded since it was not referenced from classes A, B
or C, even if it existed in the same directory.

The MyAppletLoader class in Listing 14-133 reflects this situation. Loading

and it does not respond to Window events. These have been intentionally left out for
the sake of simplicity. The main issue here is dynamically loading class code.)

Listing 14-13: Static applet loader.

However, the MyAppletLoader class does not reflect the case of applet execu-

tion adequately. There are currently two common applet environments for applet
execution: (i) a Java-enabled Web browser such as Netscape Communicator or (ii)
an appletviewer that is bundled in the Java SDK distribution from JavaSoft. In this
“real” situation, applet class files cannot be determined prior to the start of execution.
Based on the attributes in the <APPLET> tag, the appropriate bytecodes are retrieved
over the network, and loaded dynamically for continued execution. Thus, the applet
to be loaded cannot be determined statically (when the environment was built), but at
runtime when the <APPLET> tag has been read.

An applet loader functions by anticipating code for an Applet object, and then
loading code over a network and assembling it into an appropriate class representa-
tion. After object instantiation, the applet environment supports the agreed life-cycle
framework for applets involving initialization, execution, suspension and destruction
through the methods init(), start(), stop() and destroy() respectively. Regard-
less of the exact class definition, the framework holds since the object is derived
from the Applet class. The framework also holds even if the class was not directly

import java.awt.*;
import java.applet.*;

class MyAppletLoader {
 public static void main(String args[]) {
 Frame host = new Frame("Host");
 Applet a = new EgApplet();
 host.add(a);
 host.setSize(450,270) ;
 a.init();
 a.start();
 host.setVisible(true);
 }
}

MyAppletLoader.class will cause EgApplet.class to be loaded too. (The
MyAppletLoader class does not work properly in that it does not have a DocumentBase,

252 Object-Oriented Programming and Java

derived from the Applet class, or methods have been overridden. This is consistent
with late binding and polymorphism in object-oriented programming methodology.

The MyAppletLoader2 class in Listing 14-14 is slightly more realistic as now
the applet name is not hardwired. It reads the applet name from the command line,
just as a Web browser would determine the applet file from the HTML document.

Listing 14-14: Local applet loader.

Class.forName()
 is a static method which given a class name, attempts to load

its code so as to represent it as a Class object. This is subsequently used to create
instances via method newInstance().

We now consider the situation where code files are not found in the standard
local CLASSPATH set of directories, but instead must be retrieved over the network.
This framework now approaches that of a typical applet environment.

We introduce the new class MyNetworkLoader in Listing 14-15. It inherits from
the predefined ClassLoader class. The latter is an abstract class with the ability to
process Java bytecodes into Class objects. We overload the findClass() method so
that it may read compiled bytecodes from across the network (with an appropriate
base URL prefix), and obtain the resultant Class object via the defineClass()
method.

import java.awt.*;
import java.applet.*;

class MyAppletLoader2 {
 public static void main(String args[]) throws Exception {
 Frame host = new Frame("Host");
 Applet a;
 Class c = Class.forName(args[0]) ;
 host.add(a = (Applet) c.newInstance());
 host.setSize(450,270) ;
 a.init();
 a.start();

 }
}

import java.io.*;
import java.net.*;

class MyAppletLoader3 {
 public static void main(String args[]) throws Exception {
 java.awt.Frame host = new java.awt.Frame(args[0]);
 java.applet.Applet a;
 Class c = new MyNetworkLoader(args[0]).loadClass(args[1]);
 host.add(a = (java.applet.Applet) c.newInstance());
 host.setSize(450,270) ;
 a.init();
 a.start();
 host.setVisible(true) ;
 }
}

 host.setVisible(true);

Applets and Loaders 253

Listing 14-15: Network applet loader.

Using the MyAppletLoader3 class, an applet (say, Puzzle.class from the base
location http://localhost/java/demo) may be retrieved from a Web server and
executed via the command line:

$ java MyAppletLoader3 http://localhost/java/demo Puzzle

14.9 Security Restrictions for Untrusted Code

The ease of applet execution over the network makes the Java environment very
attractive in terms of reducing code maintenance and distribution costs. Source code
modifications are merely re-compiled and deployed on the Web server. The distribu-
tion of new code to all client machines is implied the next time the applet is required.

While this situation works reasonably well on an Intranet with good network
bandwidth, there is a potential problem in open and untrusted networks such as the
Internet. In making code execution and distribution as easy as clicking a Web hyper-
link, malicious applets can in principle invade the machines of many unsuspecting
users to wreck havoc.

The early JDK 1.0 solution to executing untrusted applets and yet maintain a
secure environment was to isolate such code within a restricted sandbox environ-
ment. Here, malicious code cannot cause any damage to the client browser machine
because access to local machine resources is denied.

The sandbox prevents remote applet code from:

• reading and writing files on the client machine;
• making network connections except to the host from where the applet origi-

nated;
• starting other programs on the client; or
• load library code or call native methods (to effect the above).

class MyNetworkLoader extends ClassLoader {
 URL base;
 public MyNetworkLoader(String b) {
 try { base = new URL(b) ; } catch (Exception e) { }
 }
 public Class findClass(String name) throws ClassNotFoundException {
 try {
 System.err.println("Loading "+name+" from network...");
 URL f = new URL(base, name+".class");
 InputStream is = f.openStream();
 ByteArrayOutputStream b = new ByteArrayOutputStream();
 int x;
 while ((x = is.read()) != -1) b.write(x) ;
 byte data[] = b.toByteArray();
 return(defineClass(name, data, 0, data.length));
 } catch (Exception f) {
 throw new ClassNotFoundException();
 }
 }
}

254 Object-Oriented Programming and Java

Consider the following ReadFile applet. In particular, the readData() method

could be used to scan for confidential data in the local file system. Executing the
code from within a standard appletviewer or browser will reveal restricted privileges
within the restricted sandbox.

Listing 14-16: ReadFile applet.

Of course, executing it from the command line via a static main() method will
in fact show that the code runs well. This is the main distinction between applets and
applications.

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;

{
 TextField input;
 TextArea txt;

 public void init() {
 add(new Label("Source:"));
 add(input = new TextField(50));
 input.addActionListener(this);
 add(new Label("Contents:"));
 add(txt = new TextArea(10, 40));
 }

 String readData(String source) {
 try {
 BufferedReader r = new BufferedReader(new FileReader(source));
 String lin;
 StringBuffer buf = new StringBuffer();
 while ((lin = r.readLine()) != null) {
 buf.append(lin);
 buf.append('\n');
 }
 return(buf.toString());
 } catch (Exception ex) {
 return("Error in reading from "+source);
 }
 }

 public void actionPerformed(ActionEvent e) {
 txt.setText(readData(input.getText()));
 }
}

 public static void main(String arg[]) {
 final Frame f = new Frame();
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent w) {
 f.dispose();
 System.exit(0);
 }
 });

public class ReadFile extends java.applet.Applet implements ActionListener

Applets and Loaders 255

Listing 14-17: Running the ReadFile applet from the command-line.

While this sandbox implementation keeps malicious code out, it can also at

times be too restrictive for code with legitimate reasons to break out of the sandbox,
such as requiring access to the local file system, say for remembering user prefer-
ences.

JDK 1.1 addresses this shortcoming by allowing applets that legitimately
require privileged access to breakout of the otherwise restrictive sandbox. Java byte-
codes may be digitally signed so that they may be recognized by the client as trusted.
In providing full access to machine resources, trusted remote code can become on
par with local applications.

While the privileged position of trusted applets in JDK 1.1 solves the sandbox
issue, it remains that there is too great a gulf between trusted and unsigned applets,
with nothing in between. It is somewhat inconsistent with the security principle to
provide only the minimum privileges for code to execute. A flexible and fine-grain
access control security policy implies that different applets could be assigned differ-
ent security policies as appropriate. JDK 1.2 improves on the JDK 1.1 model by
providing fine control over what permissions to grant to different code. This is best
illustrated by working on our ReadFile applet.

14.9.1 Security Policy

A Java security policy is a text file which specifies the set of permissions to be
granted to code fragments. The policytool.exe program is part of the standard Java
SDK and helps in the syntax of the policy file such as ~/.java.policy.

The policy fragment in Listing 14-18 grants permissions to code loaded from
the URL http://localhost/book/secure/. The ReadFile applet in Listing 14-16
loaded from any other location will fail to read any file, but loaded from
http://localhost/book/secure/ will at least have read access to C:\boot.ini.

Listing 14-18: CodeBase policy specification.

Alternatively, the policy fragment in Listing 14-19 grants permissions to code

signed by user dkiong.

Listing 14-19: SignedBy policy specification.

 ReadFile g = new ReadFile();
 g.init();
 f.add(g);
 f.setSize(500, 300);
 f.setVisible(true);
 }

grant codeBase "http://localhost/book/secure/*" {
 permission java.io.FilePermission "C:/boot.ini", "read";
};

grant signedBy "dkiong" {
 permission java.io.FilePermission "C:/boot.ini", "read";
};

256 Object-Oriented Programming and Java

14.9.2 Keys

Key pairs for signing Java bytecodes are stored in a keystore. Both are generated
using the keytool.exe program distributed in the standard Java SDK:

keytool -genkey -alias dkiong

The signing process does not work on individual .class files but instead of a

file.

jar -cf ReadFile.jar ReadFile.class ReadFile$1.class

The .jar file may now be signed via:

jarsigner ReadFile.jar dkiong

Finally, we augment the policy file with the location of the keystore.

keystore "file:C:/Documents and Settings/dkiong/.keystore", "JKS";
grant signedBy "dkiong" {
 permission java.io.FilePermission "C:/boot.ini", "read";
};

14.9.3 Permissions

While a policy file might be worked out based on the sample examples, the GUI
policytool.exe supplied as part of the SDK tools simplifies the specification of
various permissions and their associated options.

AllPermission
AudioPermission
AuthPermission
AWTPermission
DelegationPermission
FilePermission
LoggingPermission
NetPermission
PrivateCredentialPermission

PropertyPermission
ReflectPermission
RuntimePermission
SecurityPermission
SocketPermission
SerializablePermission
ServicePermission
SQLPermission
SSLPermission

The granting of various permissions shows the fine grain control allowable in

JDK 1.2 as opposed to privileged vs. sandbox option in JDK 1.1, which we discussed
earlier.

.jar Java archive. As such, we bundle our .class files into a suitable ReadFile.jar

Applets and Loaders 257

258 Object-Oriented Programming and Java

14.10 Summary

Chapter 14 builds upon AWT components in the previous chapter to show how Java
applets may be easily implemented and shipped across the network for execution.
We discussed:

• the applet framework and its life-cycle;
• JDK 1.0 and 1.1 event handling for applets;
• converting between Java applications and applets;
• animation in applets;
• efficient screen updating via the update() method;
• applet parameters and security;
• dynamic loading of Java code using a custom ClassLoader and the find-

Class() method.

14.11 Exercises

1. The example Puzzle game is functional in that it allows users to rearrange tiles
to achieve the desired ordering on the puzzle board. However, it does not give a
clear indication of the state change because the view is updated instantaneously.

Animate the display of tiles to give the effect of the selected tile moving to
its new board position.

2. Extend the Media Applet so that six images may be displayed at one time. Pre-
pare 6 different audio clips to be played when the mouse button is depressed
over the corresponding image. In addition, allow for different messages when
the mouse is over each image.

3. The applet in Exercise 2 could be used as a starting point to build an Internet
CD kiosk. Extend it such that different sets of six images/audio clips may be
selected. Remember the use of <PARAM> tags for customizable parameters.

4. Remote applets are prevented from reading and writing local files on the client
browser to prevent malicious applets from reading sensitive files or even dam-
aging the file system. However, applets are allowed to make socket connections
back to the originating server.

Design and implement a means whereby an applet may store and retrieve
its data from the server via its network resource.

15
Java Servlets

We learned about dynamic loading of Java code in Chapter 13 where the name of a
class may be determined dynamically at run-time and then subsequently loaded via
the Class.forName() method. We also saw how this is exploited for applets. When
an applet class is found embedded in an HTML document, its corresponding .class
files are retrieved from the Web server and loaded into a typical Java-enabled host
browser.

All applets inherit from java.applet.Applet superclass. The host browser
loads the .class file and instantiates a corresponding applet object, regardless of the
specific applet class. The browser-hosting environment merely has to invoke the
appropriate life-cycle methods as polymorphism will ensure that any overriden
methods will be correctly invoked. Such dynamic loading is an efficient way to dy-
namically increase the functionality of the host. The existing code need not be de-
signed to expect only particular class names, nor do they need be recompiled. This
offers much flexibility in providing opportunities to limitless functionality via plug-
ins to be developed after the host system is complete.

15.1 Dynamic Web Pages and Servlets

While applets execute to increase the functionality on the host client browser, Java
servlet technology also involves dynamic code loading for increased functionality
but executes on the server-side instead.

A standard Web server may publish static HTML documents, but servlets can
provide the customised backend processing for dynamic content personalized for a
customer.

CGI-BIN scripts produced dynamic content in first generation Web servers.
However, Java servlets can leverage on existing Java code, still take advantage of the

260 Object-Oriented Programming and Java

Java virtual machine and large set of Java API class libraries, as well as provide
simplicity and scalability in large installations with concurrent users.

15.2 Tomcat Installation

The Servlet API and environment for servlets is not included in the standard Java
SDK distribution. Apache Tomcat offers a Web server and a servlet-hosting envi-
ronment to run servlets.

15.2.1 Downloading and Installation

Tomcat may be downloaded from the Apache Tomcat site. While it comes in various
binary distributions, a single .zip file (say, from http://tomcat.apache.org/
download-60.cgi) is probably easiest for novice servlet programmers whose prime
motivations are to run servlet code as soon as possible. (See Figure 15.1)

Figure 15-1: Tomcat binary distribution.

Java Servlets 261

Extract the zip archive into a directory (Figure 15.2):

Figure 15-2: Tomcat home directory.

15.2.2 Configuration

The bin/ directory contains startup.bat and shutdown.bat for starting and stop-
ping Tomcat respectively.

The minimum configuration is to be explicit about the paths of the Java SDK
and the home directory of Tomcat in the catalina.bat file. Edit to include two
environment variables JAVA_HOME and CATALINA_HOME:

262 Object-Oriented Programming and Java

Figure 15-3: Setting up paths for Tomcat.

15.2.3 Starting and Stopping Tomcat

Double-clicking on startup.bat will start Tomcat and show a text log window that
stays open for as long as Tomcat is running.

Figure 15-4: Log window when running Tomcat.

You may confirm that Tomcat is indeed running by pointing your browser to

the URL http://localhost:8080/ (8080 being the default network port from

Java Servlets 263

which the Web server will listen for incoming requests). Seeing the start-up home
page in your browser as below confirms that Tomcat has started correctly and is
delivering content to requesting clients.

Figure 15-5: Tomcat start-up page.

15.3 Sample Servlet

A trivial servlet is shown below before we explain how it actually works:

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Sample extends HttpServlet {
 int count;

 public void init() throws ServletException {
 count = 0;
 }

264 Object-Oriented Programming and Java

Listing 15-1: Sample Servlet

We will use ${catalina.home} to represent where Tomcat has been installed,
eg C:\tomcat in describing how we might compile and deploy the sample servlet in
Tomcat.

1. Place Sample.java in ${catalina.home}\webapps\examples\WEB-

INF\classes

2. Compile Sample.java

Since we are accessing the servlet API classes (which are not included in
Java SE), we will need to inform the compiler of its location via the –classpath
option.

$ javac -classpath ${catalina.home}\lib\servlet-api.jar Sample.java

3. Edit ${catalina.home}\webapps\examples\WEB-INF\web.xml

Insert a <servlet> tag for the Sample servlet after a similar tag for the
HelloWorldExample servlet

 public void service(ServletRequest request,
 ServletResponse response)
 throws IOException, ServletException {
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Sample</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h3>Sample</h3>");
 out.println("<P>It is now "+new Date().toString());
 out.println("<P>This page has been accessed " +
 ++count + " time(s)");
 out.println("</body>");
 out.println("</html>");
 out.println("</body>");
 out.println("</html>");
 }
}

<servlet>
 <servlet-name>HelloWorldExample</servlet-name>
 <servlet-class>HelloWorldExample</servlet-class>
</servlet>
<servlet>
 <servlet-name>Sample</servlet-name>
 <servlet-class>Sample</servlet-class>
</servlet>

Java Servlets 265

Insert a <servlet-mapping> tag for the Sample servlet after a similar tag
for the HelloWorldExample servlet

4. Enter the URL http://localhost:8080/examples/servlets/servlet/Sample

at the browser.

Figure 15-6: Servlet result.

<servlet-mapping>
 <servlet-name>HelloWorldExample</servlet-name>
 <url-pattern>/servlets/servlet/HelloWorldExample</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>Sample</servlet-name>
 <url-pattern>/servlets/servlet/Sample</url-pattern>
</servlet-mapping>

266 Object-Oriented Programming and Java

15.4 Servlet Characteristics

The Sample class servlet shares some similar characteristics with applets:

(a) It does not contain a static void main() method, but instead inherits from
a HttpServlet superclass so as to reuse framework code common to all
servlets.

(b) init() and service() methods are overridden to provide customized
servlet functionality in the form of backend processing. They are invoked at
the appropriate point of a servlet life-cycle.
• The init() method is invoked when a servlet is dynamically loaded—

corresponding to the first time that its corresponding URL is requested
by a client.

• The service() method is invoked for every request by a client browser

and corresponding response by the server-side processing.

Since the browser communicates with the Web server via a TCP socket, there is

really a bidirectional exchange of messages or protocol. We saw this briefly in Chap-
ter 11 when we discussed TCP sockets with the Socket class and the HTTP protocol.
It is interesting that in the case of servlets, the bidirectional stream is encapsulated by
the parameter types of the service() method—HttpServletRequest and
HttpServletResponse.

number of browsers accessing the servlet via its corresponding URL. (We will inves-
tigate how the servlet may process inputs from different concurrent users in subse-
quent sections.)

15.5 Servlet Paramters and Headers

So far, we have seen how a Web server may merely return a static Web resource, or
a servlet performing some backend execution to return some dynamic content. Just
as typical programs and methods, it would be more flexible if servlet execution was
accompanied by parameters. (In the case of Java applications with a static void
main(String arg[]) method, command line arguments are translated into method
arguments.)

Servlet parameters typically come from user input in an HTML form. For ex-
ample, the following HTML document

Sample servlet shows that there is only one instantiation of the class, regardless of the
The monotonically increasing value of the count instance variable of the

Java Servlets 267

Listing 15-2: Sample HTML form.

is rendered on a standard browser as follows:

Figure 15-7: Rendered HTML form.

We could have the Sample2 servlet extract user input submitted from an HTML

form and interpolated into a message as follows:

<html>
 <body>
 <p>Details of meal
 <form method="GET"
 action="http://localhost:8080/examples/servlets/servlet/Sample2">
 <p> Name: <input name="user">
 <p> Favourite meal:

 <input type="radio" name="meal" value="Breakfast"> breakfast

<input type="radio" name="meal" value="Lunch"> lunch

<input type="radio" name="meal" value="Dinner"> dinner

 <p><input type="submit">
 </form>
 </body>
</html>

268 Object-Oriented Programming and Java

Listing 15-3: Sample2 servlet.

Figure 15-8: Sample2 servlet result.

Notice that parameters in a GET HTTP form submission request (as specified by

the method parameter in Listing 15-2) are transmitted as part of the submission URL.
In the case of a POST HTTP form submission request (as specified in Listing

15-4), parameters are not seen in the URL because they are transmitted as part of the
body of the HTTP message. In any case, the HttpServletRequest.getParameter()
method still functions in the same way and the Sample2 servlet gives the same re-
sults as seen in:

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Sample2 extends HttpServlet {
 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 String name = request.getParameter("user");
 String whichMeal = request.getParameter("meal");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head><title>Sample2</title></head>");
 out.println("<body>");
 out.println("<h1>Accessing Parameters</h1>");
 out.println("<p>"+name+" would like "+whichMeal);
 out.println("</body>");
 out.println("</html>");
 }
}

Java Servlets 269

Listing 15-4: Sample POST submission HTML form.

Figure 15-8: Sample2 servlet result with POST submission.

The HttpServlet class actually includes two instance methods—doGet() and
doPost() to differentiate between GET and POST requests. In differentiating the
two requests by overriding these methods, we can avoid a separate HTML document.
We show this in the Sample3 servlet in Listing 15-5.

Note that the doPost() method has the same implementation as service() in
Sample2. However, now doGet() dynamically constructs the HTML form so that it
is ready for submission. We use the method HttpServletRequest.getRequestURI()
to reference the same URL for the POST submission.

<html>
 <body>
 <p>Details of meal
 <form method="POST"
 action="http://localhost:8080/examples/servlets/servlet/Sample2">
 <p> Name: <input name="user">
 <p> Favourite meal:

 <input type="radio" name="meal" value="Breakfast"> breakfast

<input type="radio" name="meal" value="Lunch"> lunch

<input type="radio" name="meal" value="Dinner"> dinner

 <p><input type="submit">
 </form>
 </body>
</html>

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Sample3 extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 PrintWriter out = response.getWriter();

270 Object-Oriented Programming and Java

Listing 15-5: Sample3 servlet with overriden doGet() and doPost() methods.

Note that while we have used HttpServletRequest.getParameter(),
HttpServletRequest.getParameterNames() is used when parameter names are
dynamically known. Further, HttpServletRequest.getParameterValues() is used
when there are multiple values for a parameter name.

In addition, while parameter values will be the main form of user input, there
might be special occasions when HTTP headers are also examined. For example, the
Web browser typically supplies information as to its implementation and referer page
of the current request via the headers user—agent and referer.

Just as with parameters, HttpServletRequest.getHeaderNames() will return
the set of headers as an Enumeration. HttpServletRequest.getHeader() will
return the value of a specified header.

The sample code fragment in Listing 15-6.

Listing 15-6: Traversing set of HTTP headers

 out.println("<html><body><p>Details of meal");
 out.println("<form method=\"POST\" action=\""+
 request.getRequestURI()+"\">");
 out.println("<p> Name: <input name=\"user\">");
 out.println("<p> Favourite meal:");
 out.println(" <input type=\"radio\" name=\"meal\"");
 out.println("value=\"Breakfast\"> breakfast");
 out.println("
<input type=\"radio\" name=\"meal\"");
 out.println("value=\"Lunch\"> lunch");
 out.println("
<input type=\"radio\" name=\"meal\"");
 out.println("value=\"Dinner\"> dinner ");
 out.println("<p><input type=\"submit\">");
 out.println("</form></body></html>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 String name = request.getParameter("user");
 String whichMeal = request.getParameter("meal");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head><title>Sample2</title></head>");
 out.println("<body>");
 out.println("<h1>Accessing Parameters</h1>");
 out.println("<p>"+name+" would like "+whichMeal);
 out.println("</body>");
 out.println("</html>");
 }
}

 Enumeration e = request.getHeaderNames();
 while (e.hasMoreElements()) {

 String header = (String) e.nextElement();
 String val = request.getHeader(header);
 out.println("<p>"+header+"="+val);
 }

Java Servlets 271

produces the following key/value pairs:

15.6 Servlet Output

While we have only created HTML documents for the Web client browser, a
servlet may produce any other output formats such as PNG and JPEG images or even
SVG vector graphics. The HttpServletResponse.setContentType() is used to
specify the MIME type of the intended output format. We did not use it in our sam-
ples as the default is assumed to by text/html.

A PrintWriter instance is most convenient for text and HTML output,

15.7 Handling Sessions

So far, our servlets cannot distinguish concurrent users because the HTTP protocol is
stateless. This means that each HTTP request is serviced independently and without
recollection of the previous requests. As such, only one instance of the servlet is ever
created—which means that very little effort is expanded in serving an HTTP request.

HTTP requests are serviced by calls to doGet(), doPost() and service()
methods. State changes of any local variables are discarded after processing a request
and this is consistent with HTTP requests being stateless with no recollection after it
is completed.

accept=image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-

application/x-ms-xbap, application/x-ms-application, */*
referer=http://localhost:8080/examples/servlets/servlet/Sample3
accept-language=en-us
content-type=application/x-www-form-urlencoded
ua-cpu=x86
accept-encoding=gzip, deflate

2.0.50727; .NET CLR 3.0.04506.30)
host=localhost:8080
content-length=31
connection=Keep-Alive
cache-control=no-cache

user-agent=Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR

application/msword, application/xaml+xml, application/vnd.ms-xpsdocument,
shockwave-flash, application/vnd.ms-powerpoint, application/vnd.ms-excel,

HttpServerResponse parameter of service(), doGet() or doPost() methods.

So far, servlet output is performed via either a Stream or PrintWriter instance
via getOutputStream() and getWriter() methods respectively using the

Stream instance. In the case of the latter, it is also necessary to use the method
HttpServletResponse.setContentLength() so that the client browser may prepare
for output coming its way.

whereas other binary formats such as PNG and JPEG may easily rely on a

This helps the servlet framework work efficiently and that is very useful for a busy
Web site.

272 Object-Oriented Programming and Java

On the other hand, instance variables hold values across multiple requests (and

possibly by multiple users too). The value of the count variable in the Sample servlet
in Listing 15-1 can be seen to accumulate as the corresponding URL is accessed by
various Web client browsers.

Between the use of local and instance variables, there is no other means to cater
to a user session unless each browser is uniquely identified. This is achieved via
browser cookies or URL rewriting—both schemes attempt to distinguish between
user browser sessions. If a repeated request of the URL is attempted, the servlet may
then restore a state from the previous request transaction.

The servlet framework handles cookie operations and thus such lower level im-
plementation details are abstracted away for ease of use. As far as servlet API, the
servlet can distinguish between new sessions from repeated visits. In the case of the
former, a new set of state variables are created. For the latter, the old state from
the previous service request is restored. Furthermore, before completing service, the
current state must be stored, so that it may be restored at the next visit. This strategy is
seen in the Sample4 servlet below which accummulates wishes (just like a shopping
cart):

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Sample4 extends HttpServlet {

 void show(HttpServletRequest request, HttpServletResponse response,
 ArrayList<String> wish)
 throws IOException, ServletException {
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Sample4</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<p>My wish list is ");
 if (wish.size() == 0)
 out.println("empty");
 else {
 Iterator<String> i = wish.iterator();
 while (i.hasNext()) {
 String w = i.next();
 out.println("
+ "+w);
 }
 }

 out.println("<form method=\"POST\" action=\""+request.getRequestURI()+"\">");
 out.println("To add <input name=\"wish\">");
 out.println("<input type=\"submit\" value=\"submit\">");
 out.println("</form>");
 out.println("</body>");
 out.println("</html>");
 }

Java Servlets 273

Listing 15-7: Sample4 servlet.

Session management involves instantiating an HttpSession object to represent

the session (using the getSession() method) and being able to save and restore
variables (using setAttribute() and getAttribute() methods) that make up the
state of a session.

Note that the getSession() method is overloaded. getSession() will always
return a HttpSession instance associated with previous requests. If it was the first
request (and there was no previous), a new instance would be returned. It is conven-
ient but does not distinguish between the first and subsequent requests.

getSession(false) is more selective and will only return a HttpSession

An HttpSession instance needs to recognise HTTP request from the same user
session, as well as maintain the set of variables associated with that session. As this
set of variables could differ from application to application, and possibly be dynamic
as well, HttpSession uses an associative store of key/value bindings.

Sample4 uses getSession() to distinguish between a first and subsequent
requests. In the case of the former, appropriate initialization may be performed, such
as creating a new ArrayList. In the case of the latter, we retrieve an ArrayList via
the getAttribute() method. This assumes that an ArrayList instance was saved in
the previous request via the setAttribute() method.

 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 ArrayList<String> wishList;
 HttpSession session = request.getSession(false);
 if (session == null) {
 // new session initialisation
 session = request.getSession();
 wishList = new ArrayList<String>();
 } else
 // restore from previous request
 wishList = (ArrayList<String>) session.getAttribute("wishlist");

 // service request
 String wish = request.getParameter("wish");
 if (wish != null)
 wishList.add(wish);
 show(request, response, wishList);

 session.setAttribute("wishlist", wishList); // save for next request
 }
}

instance if one already exist, that is, there was a previous request. getSesion(true)
is similar to getSession().

274 Object-Oriented Programming and Java

15.7.1 Session Timeout

Session handling involves saving session state for the next HTTP request when it
will be restored. How long should we keep this session state for before we believe
the user will no longer return (the network might be disrupted or his computer might
have crashed)?

Storing session state indefinitely will mean that more storage space is required,
especially for a large user base. At some stage, we must assume that the session must
have terminated and that the user will not return for another request. Thus, we could
perform some housekeeping and reclaim the storage allocated to session variables.

However, a short timeout interval could cause user frustration. A suitable time-
out interval should be longer than the standard “think” time when a user is either
reading or thinking how to proceed with his intended transaction.

The ideal session timeout interval is likely to be domain dependent. An applica-
tion with high security requirements such as Internet banking is likely to have a
shorter timeout interval, compared with a Web-based e-learning application where
significant portion of time is spent reading Web-based materials.

The default Tomcat session timeout is specified as 30 minutes in
${catalina.home}/conf/web.xml.

15.8 Concurrency

occur if these methods are to update shared variables simultaneously.
We have reviewed how to guard against overwriting shared variables in Chap-

ter 11 on “Networking and Multithreading” by using the synchronized keyword.
Note that in the case of servlets synchronized statements are only required for
accessing to instance variables.

Local variables are allocated on the stack of each thread and not shared across
threads. As such, they are not exposed concurrent access and would not need such
restrictions. Thus, session data should always be held in local variables until they are
saved across sessions using the setAttribute() method.

15.9 Customized Processors

While we have shown servlets being invoked explicitly from HTML forms, this need
not be the only means. Most servlet environments allow for URLs with particular
patterns (such as a file suffix) to implicitly invoke a servlet to process or translate its
contents.

This is effected via the web.xml file. The <servlet> tag, which associates the
servlet name with a class of the same name, remains the same as previous tags
involving the Sample servlets.

doPost() methods can be invoked and executed concurrently. A race condition can
The possibility of concurrent users implies that the service(), doGet() and

Java Servlets 275

The <servlet-mapping> is where you will see the difference; instead of a

static URL to invoke the servlet, any pattern with a .tml invokes the servlet for
preprocessing before returning the output to the client browser.

The Transform servlet in Listing 15-8 does not look all too different from those

we have written. We had previously used the getRequestURI() method so that the
HTML form is submitted to the same servlet for processing. Here it is used to map
the URL to a physical file for processing.

Listing 15-8: Transform servlet

 <servlet>
 <servlet-name>Transform</servlet-name>
 <servlet-class>Transform</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>Transform</servlet-name>
 <url-pattern>*.tml</url-pattern>
 </servlet-mapping>

import java.io.*;
import java.util.*;
import java.util.regex.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Transform extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 Pattern pat = Pattern.compile("\\\\b\\{([^}]*)\\}");
 PrintWriter out = response.getWriter();
 String file = "C:\\tomcat\\webapps" + request.getRequestURI();
 try {
 BufferedReader in = new BufferedReader(new FileReader(file));
 String ln;
 while ((ln = in.readLine()) != null) {
 Matcher m = pat.matcher(ln);
 if (m.find())
 out.println(m.replaceAll(""+
 m.group(1)+""));
 else
 out.println(ln);
 }
 in.close();
 } catch (Exception e) {
 out.println("<pre>");
 e.printStackTrace(out);
 out.println("</pre>");
 }
 }
}

276 Object-Oriented Programming and Java

While the example processing in the Transform servlet is trivial—substituting

\b{xxx} substrings with xxx—it demonstrates that, in
principle, it can provide useful a transformation facility (e.g., XSLT transforma-
tions).

Listing 15-9: hello.tml data file

Figure 15-9: Rendering results of processing hello.tml.

15.10 Summary

Chapter 15 introduces Java servlets as an application of dynamic code loading to
conveniently extend basic functionality without recompiling the base application.
We discussed:

• the servlet rationale, its framework, and its life-cycle;
•

would have been suitable too);

<h1>Welcome</h1>
<p>
This is a \b{sample} document
to be \b{transform} by the \b{Transform} servlet.
<p>
Does it work?

the Tomcat servlet hosting environment (although other environments

Java Servlets 277

• HTML <form> submission, sample servlets; and accessing input parame-

ters;
• session handling and timeout;
• servlet mapping.

15.11 Exercises

1. Improve on Sample4 so that the wish list may be both expand and contract.

2. Implement a servlet that will present a set MCQ (multiple-choice ques-

tions) to the user and mark them on completion.

16
Object Serialization and Remote Method Invocation

Almost every application requires some means of keeping data across program runs.
Most applications use a file or database for the storage or persistence of data. How-
ever, databases are not typically used to store objects, particularly Java objects. On
the other hand, flat files alone do not cope well with object structure. What is
required is some means to preserve the state of a Java object so that it may be easily
stored and subsequently restored to its original state.

Object serialization is a facility that enables objects to be “flattened” out so that
they can be stored in a file or sent in a stream across a network. This is accomplished
by “writing” the object into an ObjectOutputStream instance, which is then used to
resurrect the object from the corresponding flattened representation. The serialization
classes convert graph (hierarchies) of objects into bytestreams. Serialized objects
may be written to a storage device for persistent retention of their state information
or shipped across networks for reconstruction on the other side.

The JDK 1.1 (and beyond) provides the Object Serialization mechanism to
tackle this once notorious problem of object persistency. Serialization also allows
objects to be easily distributed across various Java Virtual Machines (JVMs). As
such, we will also discuss Remote Method Invocation (RMI) where a program run-
ning on one JVM may invoke methods of objects on another JVM. In this scenario,
Java RMI uses the Object Serialization API to pass and return objects during remote
method invocation. We will examine RMI and what it brings to Java applications,
with an emphasis on understanding the key concepts behind RMI. We will also
develop simple applications to illustrate these concepts.

16.1 Object Serialization

The design of object serialization allows for most common cases to be handled
easily. The following example code in Listing 16-1 shows:

280 Object-Oriented Programming and Java

• a Serialize class program that accepts a filename argument, and with

methods write() and read() as representative code for serializing
operations’

• an ObjectOutputStream being created from an OutputStream instance
(in the form of a FileOutputStream object), and writing out via the
method writeObject();

• an ObjectInputStream being created from an InputStream instance (in

Listing 16-1: Serialize.java.

import java.util.*;
import java.io.*;
class Serialize {
 String filename;
 public static void main(String[] args) {
 Serialize a = new Serialize(args);
 a.write(”This is a Serialization Test”);
 System.out.println(a.read());
 }
 public Serialize(String[] args) {
 if (args.length < 1) {
 System.err.println(”Usage: Serialize filename”);
 System.exit(0);
 } else
 filename = args[0];
 }
 public void write(String str) {
 try {
 FileOutputStream out = new FileOutputStream(filename);
 ObjectOutputStream outobj = new ObjectOutputStream(out);
 outobj.writeObject(str) ;
 outobj.flush(); outobj.close();
 } catch (Exception e) {
 System.err.println(”Failure while writing: ”+ e.getMessage());
 e.printStackTrace();
 }
 }
 public String read() {
 try {
 FileInputStream in = new FileInputStream(filename);
 ObjectInputStream inobj = new ObjectInputStream(in);
 String str = (String) inobj.readObject();
 inobj.close();
 return str;
 } catch (Exception e) {
 e.printStackTrace(); return null;
 }
 }
}

readObject().
the form of a FileInputStream object), and reading via the method

Object Serialization and Remote Method Invocation 281

16.2 Components in Object Serialization

Object serialization applies to objects such as a String, as in the previous example.
Typically, a serialized object is a standard Java object, but it must implement the

indicate that the object may be serialized. (There are a few reasons why this empty
interface is needed, but more about that later.)

The next concern of serialization is an input/output stream. An output stream is
used to save data, as with the file output we saw earlier. Object serialization requires
an instance of ObjectOutputStream, which is a subclass of FilterOutputStream.
Like all such streams, ObjectOutputStream wraps itself around another output
stream to use the output functionality.

On the face of things, serialization is trivial. We could save a serialized string
to a file like this:

The writeObject() method can be called any number of times to save any
number of objects to the output stream. The only restriction is that each object that is
passed to the writeObject() method must implement the Serializable interface.

Not surprisingly, reading a serialized object is equally trivial:

ObjectInputStream ois = new ObjectInputStream(fis);
Object o = ois.readObject();

Once again, the readObject() method may be called unlimitedly to read any

number of objects from the input stream. The potential pitfall when reading a stream
of serialized data, is knowing what data is expected in the stream. Nothing in the
stream identifies the types of objects that are there.

We can use the instanceof operator to determine the class of the object that
the readObject() method returned, but that technique is useful only for verification.
If we are expecting a String object, it can confirm a String object, but if another
type of object is read, there will be no easy way to tell what type of object we have
actually received. Hence, programs that serialize data streams must be kept in sync
with the corresponding programs that de-serialize data, so that the latter may know
what type of data to expect.

16.3 Custom Serialization

Because almost all classes in the Java API implement the Serializable interface,
why should an empty interface be needed? One reason is due to the way in which

ObjectOutputStream oos = new ObjectOutputStream(fos);

serializable interface does not have any methods, but instead it is merely used to
java.io.Serializable interface to be used with object serialization. The

FileOutputStream fos = new FileOutputStream("obj.out");

oos.writeObject("Save me!") ;

FileInputStream fis = new FileInputStream("obj.out");

282 Object-Oriented Programming and Java

these objects are de-serialized from an object stream. De-serialization requires that

The JVM will only construct serializable objects in this manner. An interesting
case arises when a serializable class extends a nonserializable class. In this case, the
JVM will first construct the nonserializable object like any other object, that is, it
creates the nonserializable object by calling its constructor, which must not require
any arguments. Hence, a serializable class can only extend a nonserializable class
when the latter has a default constructor.

The important benefit of distinguishing serializable objects, (from an adminis-
trative perspective, the important feature of the Serializable interface) has to do
with the security of serialized objects.

If this object is serialized into a file, the written data will include the account

number too. Although there is other data in the file, the account number string will
be readable to anyone with access to the file.

This happens because object serialization has access to all instance variables
within a serializable class, which includes private instance variables. The instance
variables will be sent in the I/O stream with the rest of the object. Anyone who reads
the file where the object is saved will be able to see the private data. Similarly, any-

In a way, then, implementing the Serializable interface can be thought of as
a flag to the JVM that says, “Hey JVM, I have thought about the security issues of
my object, and it’s OK with me if you write the private state of the object out to a
data store.” This raises the issue of security that requires special consideration, particu-
larly when using sockets. A serialized object traveling across the Internet is subject to
the same privacy violations as Email or any other unencrypted communication. It may
be read by unintended parties, or it may be tampered with while in transit.

There are two ways to have the best of both worlds whereby the object may still
be serialized, but without exposing any sensitive data. The first of these is to mark
any sensitive data fields as transient, as in:

private transient String acctNo;

When it is time for the JVM to serialize an object, it will skip any fields in the

object that are marked as transient (including any public or protected fields). In

public class CreditCard implements Serializable {
 private String acctNo;
 ...
}

an object be created, in a special way. Rather than creating the object by calling its
constructor, object de-serialization creates the object directly on the heap and then
begins to assign the saved values in the stream to the instance variables of the newly
created object.

Consider the situation with sensitive information, as in the following CreditCard
class:

anyone who is snooping the network, when a serialized object is sent over a
SocketOutputStream, will also see the private data.

Object Serialization and Remote Method Invocation 283

other words, the transient keyword prevents selected fields from being written to a
stream.

When an object is read in from a stream, transient data fields are set to their
default values, such as 0 for integers and null for objects such as Strings. The
programmer can restore transient data by implementing a readObject() method.

In general, sensitive data in serializable objects, such as file descriptors, or
other handles to system resources, should be made both private and transient.
This prevents the data from being written when the object is serialized. Furthermore,
when the object is read back from a stream, only the originating class can assign a
value to the private data field. A validation callback can also be used to check the
integrity of a group of objects when they are read from a stream.

On the other hand, if transient data must be serialized together with the rest of

Assuming that we have appropriate implementations of the modify() and

unModify() methods, then this technique allows us to save the entire object includ-
ing potentially sensitive data in a secure way. The defaultWriteObject() method
is responsible for writing any nontransient fields (such as exprYear) to the output
stream to be subsequently read by the defaultReadObject() method.

The modify() and unModify() methods may work by encrypting the string, or
adding a few characters to confuse snoopers. As long as the symmetric operation is
available when it is read in, we can take whatever necessary steps to protect such
data.

public class CreditCard implements Serializable {
 private transient String AcctNo;
 private int exprYear;

 ...

 public void writeObject(ObjectOutputStream oos) throws IOException {
 oos.defaultWriteObject();
 String s = modify(acctNo);
 oos.writeObject(s);
 }

 public void readObject(ObjectInputStream ois)
 throws IOException, ClassNotFoundException {
 ois.defaultReadObject();
 String s = (String) ois.readObject();
 acctNo = unModify(s);
 }
}

the object, this may be achieved by overriding the writeObject()and readObject()
methods. These methods provide control over what data is sent (or read) from the
data store, and how that data looks while it is in transit. For example, we may redefine
our previous CreditCard class as follows:

284 Object-Oriented Programming and Java

16.3.1 The Externalizable Interface

With the Externalizable interface, the programmer takes full responsibility for
reading and writing the object from a stream, including subclass and superclass data.
This allows for complete flexibility, such as when a data format has already been
defined, or the programmer has a specific format in mind. It also requires more pro-
gramming, which is beyond the scope of this chapter, but may be an interesting topic
for a future book.

16.4 Distributed Computing with Java

So far, we have merely worked with objects represented by one JVM. In distributed
object computing, an object reference may be created locally and bound to a
(remote) server object. The local program can then invoke methods on the local
reference as if it was a regular local object. The distributed object infrastructure
(generally referred to as an Object Request Broker, or ORB) transparently inter-
cepts these method invocations and transmits the method request with its argu-
ments to the server object (via a process known as marshalling), where the work
is performed. The return values are then transmitted back to the local invocation.

The ability to pass information from one computer to another is the core of dis-
tributed computing. It allows multiple machines (presumably connected by a net-
work) to work cooperatively on a single problem. Java can be treated like any other
language in a distributed system where standard connection mechanisms include
Remote Procedure Call systems (Distributed Computing Environment or Open Net-
work Computing) or object request brokers CORBA (Common Object Request Bro-
ker Architecture).

In the Java distributed object model, a remote object is one whose methods can
be invoked from another JVM, potentially on a different host. An object of this type
is described by one or more remote interfaces, which are Java interfaces that declare
the methods available on the remote object.

Distributed object computing offers many advantages over traditional approaches
such as remote procedure calls (RPC) or socket-based client/server communication:

• The programmer is shielded from the complexity of the underlying com-

munication mechanism. The developer interacts with a remote object via
familiar method invocations, just as if the object was local.

• Distributed objects inherit the distinction between interface and imple-
mentation imposed by object-oriented programming. By separating the
two, developers can work in parallel without concerning themselves
about the implementation details of another developer’s objects.

The elegance of Java lends itself well to the distributed object paradigm. The

Java model boasts all of the object-oriented features necessary to build robust and
highly maintainable object-oriented applications. With its rich and continually
improving library of network classes, Java is also a network-centric language, as

Object Serialization and Remote Method Invocation 285

demonstrated by the applet concept. These features beg for an elegant implementa-
tion of distributed Java objects. Not surprisingly, several efforts are already under-
way to add distributed extensions to the Java language.

16.4.1 RMI and CORBA

The Remote Method Invocation (RMI) standard in Java provides a distributed object
model that crosses Java Virtual Machines seamlessly. Although RMI is an ORB in
the generic sense that it supports making method invocations on remote objects, it is
not a CORBA-compliant ORB. RMI is native to Java. It is, in essence, an extension
of the core language. RMI depends on many of the other features of Java object
serialization. Thus, the inclusion of RMI as a standard part of the JDK has caused
much controversy, being a direct competitor of the CORBA standard for distributed
objects.

One of the major differences between CORBA and RMI is that RMI allows
objects to be passed by value. There are of course other differences, from the low-
level protocol that each uses (CORBA uses a protocol called IIOP, and RMI uses its
own protocol) to the programming interface that each provides (CORBA is pro-
grammed via IDL, and RMI is programmed using a normal Java interface).

Along with Java Database Connectivity (JDBC) and the Java Interface Defini-

By compromising on some generality, RMI has been assigned to retain the
semantics of the Java object model and provide close integration with the rest of the
Java system. It allows objects in one JVM to call methods of objects residing in other
JVMs, with very little change in either the local or remote code. The main difference
from the user’s perspective is the need to handle the additional exceptions that may
be generated by a remote object, mostly related to issues of communication.

Enterprise Java addresses how network-centric computing is changing the way
applications are developed and deployed. It is a huge initiative and consists of a
number of Java APIs. RMI addresses the incorporation of the network into a pro-
gramming language, a key issue in network computing.

16.4.2 Java Limitations

In a distributed application, it is the designer’s responsibility to select the protocol
used to move data between client and server. Sometimes a well-known and sup-
ported protocol may be available, such as FTP for transferring files. More often, with
a custom database application, for example, no such protocol exists. It is necessary to
both design and build an application-specific protocol to connect to both parts of the
system.

tion Language (Java IDL), RMI forms part of the Java Enterprise API. Although
it does not address all the issues of deploying objects in a heterogeneous environment,
it provides the facilities needed by a wide range of distributed Java appplications
in a “Java world.”

286 Object-Oriented Programming and Java

In this situation, Java itself offers no advantage over other languages. If per-

formance bottlenecks are discovered when the system is deployed, functionality will
have to migrate to rectify the problem. The protocol between client and server may
require change, and so must the code that implements the protocol. In fact, code has
to change for each different arrangement, making empirical tuning an expensive
business. In other words, Java lacks support for location transparency.1

16.5 An Overview of Java RMI

Until the release of the RMI API, sockets were the only facility built into Java that
provided direct communication between machines. RMI is quite like RPC (Remote
Procedure Call), which is intended for use in procedural languages such as C. It
allows programs to call procedures over a network as if the code was stored and
executed locally. Think of RMI as the object equivalent of RPC. Instead of calling a
procedure over a network as if it were local, RMI invokes an object’s methods. In
short, RMI abstracts the socket connectivity and data streaming involved with pass-
ing information between the hosts, so that method invocation to remote objects are
made no differently than method invocation to local objects.

It is common practice for an object to invoke methods of other objects. This
“local” method invocation forms the basis of object interaction in a program. For
example, when a button object is clicked, it triggers a message that causes your pro-
gram to invoke a method in a graphics object that causes it to calculate a 3D-
rendered image.

RMI allows us to leverage on the processing power of another computer. This
is called distributed computing. Clicking the button can cause the program to invoke
a method in a graphics object on the server computer. The server then calculates the
values needed to render the 3D object locally, and returns those values to the client
program.

RMI attempts to make communication over the network as transparent as pos-
sible for the programmer. It may be used to interlink a number of objects that are
distributed throughout a network and are physically residing on different machines.
RMI brings the distributed objects under a virtual umbrella. From the application’s
point of view, a remote method and a local method are invoked in the same manner
following the same semantics. RMI takes care of the details at the lower implementa-
tion level.

1 This is addressed in JavaEE (Java Enterprise Edition) within the scope of Enterprise Java-
Beans (EJB) architecture.

Object Serialization and Remote Method Invocation 287

The end result is that programs enjoy advantages similar to those of cli-

ent/server database programming without the complexity overhead. With RMI, a
client program may invoke methods on the server object as if it was local. The
method is then invoked and executed on the server machine (as required), but via a
local syntax in the client program. This greatly simplifies the design of the applica-
tion while leveraging on the processing power of possibly many computers.

16.6 Using Java RMI

The RMI API is a set of classes and interfaces designed to enable the developer to
make calls to remote objects that exist in the runtime of a different JVM invocation.
This “remote” or “server” JVM may be executing on the same machine or on an
entirely different machine from the RMI “client.”

16.6.1 Setting Up the Environment on Your Local Machine

The currently available JDK environment (J2SE) has RMI incorporated within the
run-time seamlessly.

16.6.2 How RMI Works

Writing an RMI application is not inherently complex, but it has to be done in the
correct order. The following are the steps to create an RMI application:

• Create an interface.
• Create a class that implements the interface.
• Create a server that creates an instance of this class.
•
• Compile these classes.
• Run the RMI interface compiler (rmic) on the .class file of the imple-

mentation class to create the stubs. The stub classes provide the actual
implementation for the underlying RMI functionality.

• Start the RMI registry (rmiregistry).
• Start the server class.
• Run the client program.

Creating the interface is perhaps the most important portion of the design of a

RMI-driven multitiered client/server application. It defines the functionality the
server will provide to the clients. Because the Java language does not allow multiple
inheritance, the interface mechanism is used to allow classes to exhibit multiple
types of behavior. An interface contains method declarations, but cannot contain
method implementations.

Create a client that connects to the server object using Naming.lookup().

288 Object-Oriented Programming and Java

RMI interfaces must extend the java.rmi.Remote interface, and every method

Each time a method is called, the parameters to that method must be serialized
and sent back. The reverse occurs with results from methods.

16.6.3 An RMI Example

Let us now consider a simple example. Say we have two objects: a client and a
server. We want the client object to invoke a method on the server object. Because
the two objects reside on different machines, we need a mechanism to establish a
relationship between the two.

RMI uses a network-based registry to keep track of the distributed objects. The
server object makes a method available for remote invocation by binding it to a name
in the registry. The client object, in turn, can check for availability of an object by
looking up its name in the registry. The registry acts as a limited central management
point for RMI and functions as a simple name repository. It does not address the
problem of actually invoking the remote method.

Recall that the two objects physically reside on different machines. A mecha-
nism is needed to transmit the client’s request to invoke a method on the server ob-
ject to the server object and provide a response. RMI uses an approach similar to
RPC in this regard. The code for the server object must be processed by an RMI
compiler called rmic, which is part of the JDK. This is depicted in Figure 16-1.

The rmic compiler generates two files: a stub that resides on the client machine
and a skeleton that resides on the server machine. Both comprise Java code that
provides the necessary link between the two objects.

When a client invokes a server method, the JVM looks at the stub to do type
checking (since the class defined within the stub is an image of the server class). The
request is then routed to the skeleton2 on the server, which in turn calls the appropri-
ate method on the server object. In other words, the stub acts as a proxy to the skele-
ton, while the skeleton is a proxy to the actual remote method.

2 The skeleton class is not generated from JDK 1.2 onwards.

declared in the interface must be declared as throwing a java.rmi.RemoteException
(a generic exception that is reported when an unexpected network problem occurs).
This is because a lot of work goes on behind the scenes to allow remote objects to be
used in a seamless manner, and any number of problems can occur. For instance, the
server could shutdown unexpectedly, or a network cable could be cut.

Object Serialization and Remote Method Invocation 289

Figure 16-1: Java remote method invocation.

16.7 RMI System Architecture

The RMI system in Figure 16-2 is built in three layers: the stub/skeleton layer, the
remote reference layer, and the transport layer. These layers are built using specific
interfaces and defined by specific protocols in order to make the layers independent
of one another. This was done intentionally to make the system flexible and allowing
modification of the implementation of any given layer without affecting the other
layers. For example, the TCP-based transport can be modified to use a different
transport protocol. As mentioned earlier, RMI uses stubs and skeletons to act as
surrogate placeholders (proxies) for remote objects. The transport of objects between
address spaces is accomplished through the use of object serialization, which con-
verts object graphs to bytestreams for transport.

Client

Stub

Remote Reference

Transport

Server

Skeleton

Remote Reference

Transport

Network

Figure 16-2: Java RMI architecture.

290 Object-Oriented Programming and Java

The stub/skeleton layer is the interface between the Application layer and the

rest of the RMI system. This layer does not deal with any of the specifics of any
transport, but transmit data to the Remote Reference Layer (RRL).

A client invoking a method on a remote server object actually makes use of a
stub or proxy for the remote object as a conduit to the remote object. A skeleton for a
remote object is a server-side entity that dispatches calls to the actual remote object
implementation.

Stubs interact with the client-side RRL in the following ways:

• The stub receives the remote method invocation and initiates a call to the

remote object.
• The RRL returns a special type of I/O stream, called a marshal stream,

which is used to communicate with the server's RRL.
• The stub makes the remote method call, passing any arguments to the

stream.
• The RRL passes the method’s return value to the stub.
• The stub acknowledges to the RRL that the method call is complete.

Skeletons interact with the server-side RRL in the following ways:

• The skeleton unmarshals (receives and interprets) any arguments from

the I/O stream, established by the RRL.
• The skeleton makes the up-call to the actual remote object implementa-

tion.
• The skeleton marshals the return value of the call (or an exception, if one

occurred) onto the I/O stream.

The Remote Reference Layer (RRL) is responsible for carrying out the semantics

of the method invocation. It manages communication between the stubs/skeletons and
the lower-level transport interface using a specific remote reference protocol that is
independent of the client stubs and skeletons. The RRL’s responsibilities include man-
aging references to remote objects and reconnection strategies if an object should
become unavailable.

The RRL has two cooperating components: the client-side and the server-side.
The client-side component contains information specific to the remote server, and
communicates via the transport layer to the server-side component. The server-side
component implements the specific remote reference semantics prior to delivering a
remote method invocation to the skeleton.

The reference semantics for the server are also handled by the RRL. It abstracts
the different ways of referring to objects that are implemented on servers—those that
are always running on some machines, and those that are run only when some
method invocation is made on them (activation). These differences are not obvious at
the layers above the RRL.

The Transport Layer is a low-level communication layer that provides the
actual shipment of marshal streams between different address spaces or virtual

Object Serialization and Remote Method Invocation 291

machines. It is responsible for setting up and managing connections, listening for
incoming calls, passing data to and from the remote reference layer. It also maintains
a table of remote objects residing in particular address spaces.

The Transport Layer performs the following tasks:

• Receives a request from the client-side Remote Reference Layer.
• Locates the RMI server for the remote object requested.
• Establishes a socket connection to the server.
• Passes that connection back to the client-side Remote Reference Layer.
• Adds this remote object to a table of remote objects with which it knows

how to communicate.
• Monitors connection “liveness.”

At the Transport Layer, remote objects are represented by object identifiers and
endpoints. An object identifier is used to look up which objects should be the targets
of remote calls. Endpoints represent particular address spaces or virtual machines.
The transport layer creates channels between endpoints by establishing connections
and physically transferring data through input/output.

The RMI system uses a TCP-based transport, but the transport layer supports
multiple transports per address space, so it is also capable of supporting UDP-based
transport or even TCP and UDP.

16.8 Under the Hood

We have covered enough theory so that we can examine a simple application

Firstly, all RMI-based applications will need to import java.rmi and
java.rmi.server packages. The static void main() method sets the Java security
manager and it is the job of the security manager to grant or deny permissions on the
operations performed by the application (such as reading and writing a file). If the
security manager is not set, RMI will only load classes from local system files as
defined by CLASSPATH.

We then create a try/catch block that performs the remote method invocation.
Recall that a registry acts as the repository of names for objects whose methods can
be invoked remotely. The server object, in our case, has registered itself using the
name “ServerObject.” The client application must do a lookup in the registry using
that name.

import java.rmi.*;
import java.rmi.server.*;

public class Client1 {
 public static void main(String[] args) {
 System.setSecurityManager(new RMISecurityManager());
 try {

that uses RMI. Listing 16-2 shows a client application that invokes the doSomething()
method of a remote object (of type Server1).

292 Object-Oriented Programming and Java

Listing 16-2: Client1.java.

The returned object from the lookup operation is then assigned to the object ro

which is of type Server1. The client can then use this object and invoke its methods

Server1, which is used in the client application to declare the remote object
type, is actually an interface. In fact, all remote objects are referenced through inter-
faces. Listing 16-3 shows the Server1 interface. However, two points must be made
about the Server1 interface:

• Like all RMI interfaces, it extends the Remote interface.
• The method doSomething() throws a RemoteException exception

which all remote operations must be able to handle.

Listing 16-3: Server1.java.

We now have a client and a server application. The last piece is a class that

implements the Server1 interface shown above. Such a class is shown in Listing 16-
4, which forms the heart of the application.

 Server1 ro = (Server1) Naming.lookup(”doSomething”) ;

 ro.doSomething();
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(-1);
 }
 }
}

import java.rmi.*;
public interface Server1 extends Remote {
 public void doSomething() throws RemoteException;
}

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

public class Server1Impl extends java.rmi.server.UnicastRemoteObject
 implements Server1 {
 public static void main(String[] args) {
 System.setSecurityManager(new RMISecurityManager());
 try {
 Server1Impl obj = new Server1Impl();

 } catch (Exception e) {
 e.printStackTrace();
 return;
 }
 }

as if it was a local object. In particular, the client application invokes the doSomething()
method of the object ro, which in turn invokes the method with the same name on
the Server1 object.

 Naming.rebind("doSomething", obj) ;
 System.out.println("doSomething bound in registry");

 System.out.println("Location:"+System.getProperty("LOCATION"));

Object Serialization and Remote Method Invocation 293

Listing 16-4: Server1Impl.java.

The Server1Impl class extends the UnicastRemoteObject class. This class

streams. Once again, the first thing the main method does is to set the security man-
ager. It then instantiates an object of type Server1Impl. This object is registered in
the registry using the name doSomething.

Next, the constructor for the Server1Impl is defined. A remote implementation
class must have a zero-argument constructor. In addition, the constructor method
must throw RemoteException.

Finally, the doSomething() method is defined. Note that since it is a remote
method, it throws RemoteException. In our case, the remote method does not really

ingful application, the remote method may perform a query on a database, or read
and process data from a file.

16.9 RMI Deployment

Our simple RMI application consists of a client, a server, and an implementation of
the server interface. We still need two more pieces: the stub and the skeleton. To
generate these two, we use the rmic compiler that comes with the JDK. You can
generate them by the following command3:

$ rmic rmi1.Server1Impl

3 Use $ rmic –v1.2 rmi1.Server1Impl for JDK 1.2 onwards. This suppresses the generation
of the skeleton class.

 public Server1Impl() throws RemoteException {}

 public void doSomething() throws RemoteException {

 }
}

server process is alive. It supports point-to-point active object references via TCP

We can use the bind() method instead of rebind(). The difference is that
rebind() will replace the name in the registry if it already exists. Method

defines a nonreplicated remote object whose references are valid only while the

doSomething() of obj is now available for remote invocation.

do anything useful. It merely prints a couple of lines to the console. In a more mean-

 System.out.println("This is printed by the Server1 object");
 System.out.println("Location: "+System.getProperty("LOCATION"));

294 Object-Oriented Programming and Java

One may wonder why rmic is used with the implementation of the server and

for the remote methods.
We now have all the necessary pieces for our application. The following three

commands may be executed in separate windows in the order shown:

$ rmiregistry &
$ java -DLOCATION=server rmi1.Server1Impl
$ java -DLOCATION=client rmi1.Client1

The first command is not going to generate any output. It basically starts the

registry in the background.
The second command starts the server, which registers the remote object with

the registry. We use the -D option to set a system parameter LOCATION which is used
to indicate that the code belongs to the server.

of the system parameter LOCATION to client. Whenever the client starts, a message
will be printed on the server window, since the remote method doSomething() sim-
ply prints a couple of lines.

The client may be started several times, and the messages would be correspond-
ingly printed. This shows that the client application has started successfully and
invoked the method on the server application using RMI.

The above three commands may be executed on three different machines, with
the same results. Remember to distribute the skeleton and stub class files appropri-
ately. The stub goes with the client application while the skeleton goes with the
server application.

With very little coding effort, we have created a prototype for a potentially
valuable and marketable service that could be deployed on the Internet today.4 As
distributed object computing becomes more viable with time, we should see the rise
of a rich library of distributed objects available on the Internet. Entire class libraries
could be deployed on the Internet as distributed objects, enabling Java programmers
around the world to use them in their own applets and applications.

4 The Sun Java Enterprise System implements RMI-IIOP (a cross between RMI and IIOP) to
enable objects from different operating platforms to communicate with one another.

The last command starts the client. Again, we use the -D option to set the value

files, use the -keepgenerated option.

in the ServerImpl class, and the purpose of rmic is to generate stubs and skeletons

ServerImpl_Skel.class. Should you want to see the Java source code for these

not the server itself. The answer is that the method to be invoked remotely is defined

This will create the two files: ServerImpl_Stub.class and

Object Serialization and Remote Method Invocation 295

16.10 Summary

This chapter has introduced Java solutions to key technologies: object serialization
for object persistence and distributed objects for effortless client/server communica-
tion.

• Object serialization allows objects to be flattened and represented in a

bytestream, for subsequent reconstruction to its original state.
• Java RMI provides a framework for communication between Java pro-

grams running in different virtual machines.
• Using object serialization, Java RMI allows for parameters in the form of

object graphs to be converted into bytestreams for transport across the
network and reconstruction on the other side.

The RMI system is unique in that it preserves the full Java object model

throughout the distribution, allowing true polymorphism of both remote and local
objects. The syntax of a remote method call is exactly the same as the syntax of a
local remote call, making distributed programming easy and natural. Any Java object
can be passed during remote method calls, including local objects, remote objects
and primitive types.

16.11 Exercises

1. Implement an ordered binary tree so that it will accept a list of words. Se-
rialize the tree, and then retrieve it in another program to confirm that the
resultant tree structure is unchanged.

2. Using RMI, implement a service to accept a filename and retrieves the
contents of the remote file.

17
Java Database Connectivity

Applications that require complex manipulation of data will need to use a database to
store information. Many Java applications fall into this category. Although many
database vendors provide Java APIs, they are proprietary to their database imple-
mentations. Therefore, it becomes very difficult to port applications from one data-
base to another. Java Database Connectivity (JDBC) APIs provide a simplified and
uniform access to the database management systems from different vendors. In this
chapter you will learn the essential classes and techniques to use JDBC APIs.

17.1 Introduction

Data can be stored in normal text or binary files. As data grows, and applications
need to manipulate data in complex ways, this simplistic approach of storing data
may not be sufficient. One of the best alternatives to files is to store data in data-
bases. Databases allow us to manipulate and store data in an organized way, and
hence transform data into meaningful information. In today’s world, a database is an
integral part of any application.

Definition of a database in WikiPedia, the free online encyclopedia, is as fol-
lows: “A database is a collection of records stored in a computer in a systematic way,
so that a computer program can consult it to answer questions. The items retrieved in
answer to queries become information that can be used to make decisions.”

17.2 Java Database Connectivity

Different database vendors provide different products to implement data access and
manipulation mechanisms for storing and retrieving data stored from databases.

MySQL, MS-SQL, MS-Access are examples of some popular DBMSs. DBMS
These products are called Database Management Systems (DBMS). Oracle 10g,

298 Object-Oriented Programming and Java

vendors also provide language-specific Application Programming Interfaces (APIs),
so that applications developed using specific languages can use these APIs to access
and manipulate data. Unfortunately, APIs greatly differ from one vendor to the other
even for the same language.

Java Database Connectivity (JDBC) APIs are a set of Java classes that can be

JDBC APIs are independent of any vendor-specific implementations of DBMS, and
hence makes applications portable. For example, if you write a database application
for Oracle DBMS, the same application will work for MySQL DBMS with minimal
modifications. The specifications for the JDBC APIs have been developed by Sun
Microsystems, in conjunction with many popular database vendors.

17.3 JDBC Architecture

JDBC APIs can be used in any form of Java program such as stand-alone java appli-
cations, Applets, Servlets, and so on. Figure 17-1 shows JDBC in the context of an
application.

Figure 17-1: JDBC Architectural Stack.

17.4 JDBC Drivers

As can be seen from the JDBC Architectural Stack, a Java program accesses the
DBMS via specific drivers. Drivers are a set of Java classes that translate the stan-
dard JDBC API calls to the DBMS specific API calls. They can be thought of as
adapters that make the DBMS-specific calls on behalf of the applications. This is the
layer that makes a Java database application portable across various relational

Java Application/Applet/Servlet

JDBC API
Classes

JDBC Driver
Manager

Oracle
JDBC Driver

Oracle
RDBMS

MySQL JDBC
Driver

Other JDBC
Driver

MySQL
RDBMS

Other
RDBMS

used to develop Java applications that need to access data from a relational database.

Java Database Connectivity 299

DBMSs, it can be done by substituting the Oracle driver with another suitable driver.

17.4.1 Types of Drivers

JDBC Drivers come in four different flavours. DBMS vendors usually supply differ-
ent types of drivers for their products.

17.4.1.1

These types of drivers make use of the existing ODBC (Open Database Connec-
tivity) connection to databases. Native drivers and libraries need to be installed and
relevant configuration setting need to be done at the client side. Hence, these drivers
are not very portable across databases. Figure 17-2 shows the architecture of Type 1
drivers.

Figure 17-2: Type 1 JDBC drivers.

Java Application/Applet/Servlet

JDBC API
Classes

JDBC Driver
Manager

Oracle JDBC-
ODBC Driver

Oracle
RDBMS

Other
JDBC-ODBC

Driver

RDBMS
(Other DBMS)

Oracle ODBC
Driver

ODBC Driver
(Other DBMS)

DBMSs. If a Java application developed with Oracle DBMS is to be ported to other

Type 1: JDBC-ODBC Bridge

17.4.1.2 Type 2: Java–Native API adapter

These types of drivers make use of Java Native Interface (JNI) APIs to connect to the
native database drivers. Native drivers and libraries need to be installed and relevant
configuration setting need to be done at the client side. These drivers are more effi-
cient than Type 1. For similar reasons as that of Type 1 drivers, these are also not
very portable across databases. Figure 17-3 shows the architecture of Type 2 drivers.

300 Object-Oriented Programming and Java

Figure 17-3: Type 2 JDBC drivers.

Figure 17-4: Type 3 JDBC drivers.

Java Application/Applet/Servlet

JDBC API
Classes

JDBC Driver
Manager

Oracle
JDBC (JNI)

Driver

Oracle
RDBMS

JDBC (JNI)
Driver

(Other DBMS)

Other
RDBMS

Oracle OCI
Driver

Native Driver
(Other DBMS)

Java Application/Applet/Servlet

JDBC API
Classes

JDBC Driver
Manager

Oracle JData-
Connect
Driver

Oracle
RDBMS

JDataConnect
Driver

(Other DBMS)

Other
RDBMS

Oracle DB
Middleware

DB Middle-
ware

Java Database Connectivity 301

17.4.1.3 Type 3: JDBC-Net Protocol

These types of drivers use a pure JavacClient to connect to a server-side driver. They
use standard network protocols to communicate to the DBMS server. No specific
client-side libraries are required to be installed. Hence these are more portable than
any other type of drivers. Figure 17-4 shows the architecture of Type 3 drivers.

17.4.1.4 Type 4: Pure Java

These drivers connect directly to the DBMS, using proprietary database protocols.
Hence, they are the most efficient type of drivers. As they use database-specific
protocols, they are not portable across DBMSs. Like Type 3 drivers, they also do not
require any client side installation. Figure 17-5 shows the architecture of Type 4
drivers.

Figure 17-5: Type 4 JDBC drivers.

Table 17-1 summarizes the comparison between the four different types of

drivers.

Table 17-1: Types of JDBC drivers.

Java Application/Applet/Servlet

JDBC API
Classes

JDBC Driver
Manager

Oracle
Thin

Driver

Pure-Java
Driver

(Other DBMS)

Oracle
RDBMS

Other
RDBMS

 Type 1 Type 2 Type 3 Type 4
Portability across databases Low Low High Low
Efficiency Low Medium Medium High
Client side installation Yes Yes No No

302 Object-Oriented Programming and Java

17.5 JDBC APIs

Developing a typical database application using JDBC involve performing the fol-
lowing steps:

1. Establishing a connection.

17.5.1 Establishing a Connection

17.5.1.1 Loading the Driver

In order to establish a connection with a DBMS, the required JDBC driver needs to
be first loaded. This is done by using the DriverManager class found in the package
called java.sql. There are two ways in which this can be done. The first, using the
Reflection API class called Class. The second, using the driver system properties to
determine the exact Driver to be loaded.

Using Reflection APIs: The driver can be loaded dynamically by specifying
the name of the driver class in the reflection API’s method called forName() in the
class called Class. The class loader will look for the driver class in its classpath.

For example, if you are using the MySQL database, you may copy the jar file
containing the driver class (e.g.: mysql-connector-java-3.1.12-bin.jar) into the
JDK’s jre\lib\ext\ directory. For instance, if your JDK is installed at C:\Program
Files\Java\jdk1.5.0_03 directory, the driver class may be copied at C:\Program
Files\Java\jdk1.5.0_03\jre\lib\ext. This directory is automatically included in
the classpath. The driver class in the mysql-connector-java-3.1.12-bin.jar
file is included in the package called com.mysql.jdbc. The statement shown
below, will dynamically load the driver class into the memory.

Class.forName("com.mysql.jdbc.Driver").newInstance ();

The statement uses the reflection API class called Class. This class contains a

method called forName(). The parameter specified in this method identifies the
name of the class to be loaded. The newInstance() method of the loaded class will
then create an instance of the class and load it in the memory.

Alternatively, you can load the driver by creating an instance of the class and
registering it with the driver as shown below:

Driver driver = new com.mysql.jdbc.Driver();
DriverManager.registerDriver (driver);

a. Loading a driver.
b. Connecting to a DBMS.

a. Creating a Statement object.
b. Formatting an SQL statement.
c. Executing the statement (CRUD operations).
d. Closing the Statement and Connection.

2. Data manipulation.

Java Database Connectivity 303

Using System properties: By specifying the System property called jdbc.

drivers in the command line, during execution of the database application, we can
get the Driver class to load the specified drivers dynamically during run-time.

$java –Djdbc.drivers=com.mysql.jdbc.Driver MyApplication

17.5.1.2 Connecting to the DBMS

As DBMSs can be located across the network, database applications connect to them
using their Universal Resource Locator (URL). In other words, JDBC Connections
are identified using an URL. Although URL formats may differ from DBMS to
DBMS, they all have the essential parts that identify the JDBC Connection uniquely;
viz. location of the DBMS (host and port numbers), connection protocol designator
and the name of the database. An example of a URL for the MySQL DBMS running
on the localhost is as follows:

URL: "jdbc:mysql://localhost:3306/florist";

“jdbc:mysql” specifies the connection protocol designator, “localhost:3306”

specifies the hostname and port number and “florist” is the name of the database.

The connection can be established by using the getConnection() method of

the DriverManager as shown below:

If the DriverManager is unable to establish the connection, it will throw the

SQLException.

Note: Prior to making a connection, a user account and a database must be cre-

ated in the DBMS using the admin tools. For example, in MySQL, it is done by
using the MySQL Administrator tool to add a new Connection.

17.5.2 Data Manipulation

After the connection to the database is established, the data can be retrieved, in-
serted, updated, or deleted from the database. This is done by using the Statement
object of the java.sql package.

try {
 String dbUrl "jdbc:mysql://localhost:3306/florist";
 String userName = "florist";
 String password = "password";

} catch (SQLException e) {

}

 Connection conn = DriverManager.getConnection(dbUrl, userName, password);

 System.err.println ('Error during Connection");

304 Object-Oriented Programming and Java

17.5.2.1 Creating Statement Objects

The createStatement() method of the connection object is used to create a state-
ment as shown below:

Statement stmt = conn.createStatement();

SQLException will be thrown if the creation fails.

This object is used to send SQL statements to the database. There are three

types of Statement objects as shown in Table 17-2.

Table 17-2: JDBC Statement types.
Statement Type Purpose
Statement Used to execute simple SQL statements with-

out parameters
PreparedStatement Used to reuse an SQL statement by passing

different parameters
CallableStatement Used to execute a stored procedure in the

database

17.5.2.2 Executing SQL Statements

After the Statement is created, the Statement object is used to execute SQL state-
ments on the database. For example, the following statement will retrieve the name
and description of a Product whose id is p001.

and “id.”

The ResultSet object that is returned is like a cursor to a Collection of re-

sults. So, in order to access the retrieved values, the cursor needs to be positioned at
the first object. This is done by using the rSet.next() method. And the column
values can be retrieved from the ResultSet object, using the getXXX() methods.
The XXX represents the type of column.

rSet.next();
String name = rSet.getString();
String description = rSet.getString();
Other data manipulation statements are shown in Table 17-3.

ResultSet rSet = stmt.executeQuery("SELECT name, description " +
 "FROM ProductTable WHERE id='p001'");

database. Some of the columns in the ProductTable are named as ‘name’, ‘description’
Note: It is assumed that a table called ProductTable is already created in the

Java Database Connectivity 305

Table 17-3: Statement execute methods.

Statement Execute
Methods

Purpose

executeQuery For retrieving single result-set, e.g., using SELECT
SQL statement.

executeUpdate For modifying the database, e.g., INSERT, UPDATE,
DELETE, CREATE TABLE and DROP TABLE SQL
statements.

execute For statements that return multiple result-sets and/or
update counts.

17.6 Data Definition Language (DDL) with JDBC

In this section you will learn how to perform the Data Definition Language opera-
tions such as creating and dropping tables using JDBC.

17.6.1 Creating a Table

In order to create tables, the user must have permission to do so. This is done by the
administrator granting permission to the user to create tables in that database, after
which the database program can create tables by specifying the user name. The
executeUpdate() method of the Statement class is used to specify the CREATE
SQL statement. Listing 17-1 illustrates creating a table called ItemTable in the data-
base called florist.

Listing 17-1: Creating tables using JDBC.

import java.sql.*;
public class CreateTable {
 public static void main (String[] args){
 Connection conn = null;
 try {
 String userName = "florist";
 String password = "password";
 String url = "jdbc:mysql://localhost:3306/florist";
 Class.forName("com.mysql.jdbc.Driver").newInstance ();
 conn = DriverManager.getConnection(url, userName, password);
 Statement stmt =conn.createStatement();

 } catch (Exception e) {
 System.err.println (e.getMessage());
 }
 }
}

 String tableName = "'florist'.'ItemTable'";
 stmt.executeUpdate ("CREATE TABLE " + tableName +

 " ('Id' varchar(255) NOT NULL, " +
 "'name' varchar(255) default NULL, " +
 "'description' varchar(255) default NULL, " +
 "'quantity' int(5), PRIMARY KEY ('Id'));");

306 Object-Oriented Programming and Java

The highlighted statement executes the CREATE SQL statement. The schema of

the table is provided in the SQL statement. There are four columns in the table,
namely, Id, name, description, and quantity. The primary key of the table is the
Id column. The primary key is used by the DBMS to identify a record uniquely.

In general, the syntax of a CREATE SQL is as follows:

CREATE TABLE <table>(<column type> [, <column type>]...)

A column type is of the form:

<column-name> <type> [DEFAULT <expression>]

 [<column constraint> [, <column constraint>]...]

A column constraint is of the form:

NOT NULL or UNIQUE or PRIMARY KEY

The exact syntax can differ from one DBMS to the other.

17.6.2 Dropping a Table

In order to delete (drop) tables, the user must have permission to do so. This is done
by the administrator granting permission to the user to drop tables in that database.
After which the database program can drop tables, by specifying the user name. The
executeUpdate() method of the Statement class is used to specify the DROP SQL
statement. The highlighted statement in Listing 17-2 illustrates deleting a table called
ItemTable in the database called florist.

Listing 17-2: Dropping tables using JDBC.

import java.sql.*;
public class DropTable {
 public static void main (String[] args){
 Connection conn = null;
 try {
 String userName = "florist";
 String password = "password";
 String url = "jdbc:mysql://localhost:3306/florist";
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 conn = DriverManager.getConnection(url, userName, password);
 Statement stmt =conn.createStatement();

 }catch (Exception e) {
 System.err.println (e.getMessage());
 }
 }
}

 stmt.executeUpdate ("DROP TABLE " + tableName + ";");
 String tableName = "'florist'.'ItemTable'";

Java Database Connectivity 307

17.7 Data Manipulation Language (DML) with JDBC

In this section you will learn how to perform the Data Manipulation Language opera-
tions such as creating, retrieving, updating and deleting records (CRUD operations)
from tables using JDBC.

17.7.1 Creating (Inserting) Records Using JDBC

Records (i.e., rows) can be inserted into database tables using the executeUpdate()
method of the Statement class. The return value of the executeUpdate() method
is the number of rows affected, that is, the update count.

+ "VALUES ('p002', 'Rose', 'Beautiful Flower', 101);";

int updateCount = stmt.executeUpdate (sqlStmt);

The equivalent SQL statement is formatted as a String and passed to the

executeUpdate() method. The resulting update count will be 1 in this case.
In general, the INSERT SQL statement has the following syntax:

 INSERT INTO <table> [(<column> [, <column>]...)]
 VALUES (<expression> [, <expression>]...)

The exact syntax can differ from one DBMS to the other.

17.7.2 Deleting Records Using JDBC

Rows can be deleted from database tables using the executeUpdate() method of the
Statement class, as shown below.

The equivalent SQL statement is formatted as a String and passed to the
executeUpdate() method. The resulting update count will be 1 in this case.

In general a DELETE SQL has the following syntax:

The exact syntax can differ from one DBMS to the other.

17.7.3 Retrieving Records Using JDBC

DBMSs are frequently used for retrieving information from tables. This is done
by using SQL Queries. SQL Query statements can be executed by using the

String sqlStmt = "DELETE FROM 'florist'.'ItemTable' "
 + "WHERE 'Id' = 'p001';";
int i = stmt.executeUpdate (sqlStmt);

 DELETE FROM <table> WHERE <condition>

String sqlStmt = "INSERT INTO 'florist'.'ItemTable' "

308 Object-Oriented Programming and Java

executeQuery() method of the Statement class. The return value is a Collection
of ResultSet objects. The ResultSet object can be thought of as a pointer or cursor
to the retrieved value sets. For example, consider the following SQL statement being
executed.

The result retrieved by the executeQuery() statement will be a query result

table as shown below:

Id name
p001 daisy
p002 rose
p003 lily
p004 jasmine

rSet is the cursor that initially points just before the first row of the retrieved

result table. The method rSet.next() positions the cursor to the first element. Sub-
sequent calls to the same method advances the cursor to the next element (if it exists).

The values of the columns can then be retrieved from the result set using the

various getXXX() methods, depending on the column type.

17.7.3.1 Mapping of SQL Type to JDBC Type

Most SQL typed data can be retrieved from the result set using the getXXX() meth-
ods The mapping between SQL types and JDBC types is shown in Table 17.3.

Table 17-3: Mapping of SQL types to JDBC types.

SQL Type JDBC Type
VARCHAR String
CHAR String
NUMERIC BigDecimal
BIT boolean
INTEGER int
BIGINT long
REAL float
FLOAT double
DOUBLE double
DATE java.sql.Date
TIME java.sql.Time

String sqlStmt = "SELECT 'Id', 'name' FROM 'florist'.'ItemTable'";
ResultSet rSet = stmt.executeQuery(sqlStmt);
while (rSet.next()) {
 System.out.println ("Id = " + rSet.getString("Id") + " Name = " +
 rSet.getString("name"));
}

Java Database Connectivity 309

Corresponding to every JDBC type, there is a get method in the ResultSet

class, for example, getString(), getInt(), getDate(), getFloat(), getTime(),
and so on.

17.7.3.2 Query SQL Statements

Many complex query statements can be formulated using the SQL Query language.
Some examples are shown below:

• Retrieving Ids of Items with description that matches the pattern “Beautiful”:

 SELECT Id

• Retrieving Ids of Items with quantity greater than 100:

 SELECT Id

• Retrieving Ids and names of Items with quantity less than 100. The retrieved

list should be ordered in the ascending order of name.

SELECT Id, name

ORDER BY name;

In general, a SELECT SQL has syntax similar to what is shown below. (Other

clauses are available.)

The exact syntax can differ from one DBMS to the other.

17.7.4 Updating Records Using JDBC

Records can be updated into the database using the executeUpdate() method of the
Statement class as shown below:

SELECT [ALL | DISTINCT] <columns>
 FROM <table>
 WHERE <condition>
 LIKE <pattern>
 [ORDER BY <column> [ASC | DESC]
 [, <column> [ASC | DESC]]...]

int updateCount = stmt.executeUpdate(sqlStmt);

 FROM 'itemtable'
 WHERE 'description' LIKE 'Beautiful%';

 FROM 'itemtable'
 WHERE 'quantity' > 100;

FROM 'itemtable'
WHERE 'quantity' < 100

String sqlStmt = "UPDATE 'florist'.'ItemTable'
 SET 'name' = 'freesia'
 WHERE 'Id' = 'p001'";

310 Object-Oriented Programming and Java

The equivalent SQL statement is formatted as a String and passed to the

executeUpdate() method. The resulting update count will be 1 in this case.

In general a UPDATE SQL has the following syntax:

17.7.5 Updatable Result Sets

JDBC 2.0 allows creating updatable result sets. This enables using the SELECT state-
ment to do all CRUD operations. An example is shown in Listing 17-3 below:

Listing 17-3: Illustrating the use of Updatable ResultSet.

The highlighted statement in Listing 17-3 creates a Statement object that can

be traversed in the forward direction and is concurrently updatable. Using these

UPDATE <table>
 SET <column = {<expression> | NULL}
 [, <column = {<expression> | NULL}]...
 WHERE <condition>

import java.sql.*;
public class UpdatableRS {
 public static void main(String[] args) {
 Connection conn = null;
 try {
 String userName = "florist";
 String password = "password";
 String url = "jdbc:mysql://localhost:3306/florist";
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 conn = DriverManager.getConnection(url, userName, password);

 String sqlStmt = "SELECT * FROM itemtable WHERE `Id`='p001';";
 ResultSet rs = stmt.executeQuery(sqlStmt);
 while (rs.next()) {
 rs.updateString ("name", "Camillia");
 rs.updateRow();
 }
 } catch (Exception e) {
 System.err.println("Database Exception");
 } finally {
 if (conn != null) {
 try {
 conn.close ();
 } catch (Exception e) { }
 }
 }
 }
}

 ResultSet.CONCUR_UPDATABLE);
 Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,

ResultSet objects, as shown below:
constants in the createStatement() method will enable updates on the query

Java Database Connectivity 311

Updatable Result Sets also allow Insertion and Deletion of records. Insertion of

Records is illustrated below:

moveToInsertRow() method of the ResultSet class will position the cursor to

a new row, and hence prepares the result set object for inserting a new record. The
column values are then filled up in the result set using the updateXXX() methods of
the ResultSet class; where XXX is the type of column. insertRow() method of the
ResultSet class will insert the new record in the position of the cursor.

Rows can be deleted as shown below:

ResultSet rs = stmt.executeQuery(sqlStmt);
rs.next();
rs.deleteRow();

deleteRow() method of the ResultSet class will delete the row at the cursor

position.

17.7.6 Prepared Statements

The SQL statements that have been introduced until now were executed using JDBC
one at a time. Many times, it may not be optimal to do so, especially, if the same
SQL statement has to be executed several times.

ResultSet rs = stmt.executeQuery(sqlStmt);
while (rs.next()) {
 rs.updateString ("name", "Camillia");
 rs.updateRow();
}

 rs.moveToInsertRow();

 rs.updateString("Id", "p005");
 rs.updateString("name", "Hibiscus");
 rs.updateString("description", "Hibiscus");
 rs.updateInt("quantity", 100);

 rs.insertRow();

JDBC APIs provide a special type of Statement class called
PreparedStatement, which can be used to execute an SQL statement over and
over again. Prepared statements are generally very efficient because they are
compiled before sending them to the DBMS. This requires an SQL statement is
supplied to a PreparedStatement when it is created. This prepared statement
can then be executed many times by varying some parameters. An example of
using a PreparedStatement is shown in Listing 17-4.

312 Object-Oriented Programming and Java

Listing 17-4: Illustration of PreparedStatement.

String sql = "UPDATE itemtable SET description = ? WHERE Id = ?;";

Each of the “?” in the sql string can be referred to by an integer starting with 1

in the order of their appearance in the SQL statement. In the String sql shown
above, the first “?” stands for the value of the description column and the second
“?” stands for the value of the Id column. These values are supplied as parameters in
the update() method of the PreparedStmt class as shown in Listing 17-4.

The following statement in the Listing 17-4 shows the invocation of update()
method of the PreparedStmt class. The value for the description column is
“Pretty Flowers” and Id column is “p001.”

public class PreparedStmt {
 private Connection conn = null;
 private void upDate(String desc, String Id){
 try {
 String sql = "UPDATE itemtable SET description = ? WHERE Id = ?;";
 PreparedStatement prepStmt = conn.prepareStatement(sql);
 prepStmt.setString(1,desc);
 prepStmt.setString (2, Id);
 prepStmt.executeUpdate();
 } catch (SQLException e) {
 System.out.println("Exception in Prepared Statement");
 }
 }
 public static void main(String[] args) {
 PreparedStmt p = new PreparedStmt();
 try {
 String userName = "florist";
 String password = "password";
 String url = "jdbc:mysql://localhost:3306/florist";
 Class.forName ("com.mysql.jdbc.Driver").newInstance();
 p.conn = DriverManager.getConnection(url, userName, password);

 } catch (Exception e) {
 System.err.println ("Cannot connect to “
 + “database server"
 + e.getMessage());
 } finally{
 if (p.conn != null) {
 try{
 p.conn.close ();
 } catch (Exception e) {}
 }
 }
 }
}

 p.update("Pretty Flowers", "p001");

to be used by the PreparedStatement object. The “?” specifies the parameters
that can be varied during execution of this statement.

The following string sql (extracted from Listing 17-4) formulates the sql statement

Java Database Connectivity 313

Multiple updates can be performed by looping through a set of values as shown

below:

String [] desc = {"Pretty Flowers", "For your eyes",
 "Violet Splash", "Rainbow display", "Red Roses"};
String [] Id = {"p002", "p004", "p006", "p008", "p010"};
for (int i = 0; i < 5; i++)

17.8 Summary

In this chapter, we have learned the architecture of the Java Database Connectivity
(JDBC) APIs and the different types of database drivers supported by JDBC APIs.
JDBC APIs are used from Java programs to interact with any Relational Database
Management Systems (RDBMS). We have learned how to use these APIs to create,
delete and modify table definitions using the Data Definition Language (DDL) of the
SQL. We have also learned how to manipulate tables to perform the create, retrieve,
update and delete (CRUD) operations.

When a JDBC API returned the queried result, it stores it in a ResultSet.
JDBC2.0 supports updatable ResultSets, using which other operations such as
insert, update can be performed efficiently.

17.9

Create a database called florist in your favorite database management system (e.g.,
MySQL). Develop a class called MemberApp, which contains a main method. In this
class do the following using the JDBC APIs:

• Load the driver.
• Open a connection to the florist database.
• Create a table called florist.members, with the following fields:

− Name
− Member Id
− Address
− PrivilegesStatus (ordinary, silver, gold)

• Populate the table by inserting a few records.
• Formulate an SQL Query to do the following and print the result on screen.

Exercises

p.update("Pretty Flowers", "p001");

 p.update(desc[i], Id[i]);

Queries can also be prepared before they are executed. We use Preparedstatement
objects to do so. These statements can be parameterized to formulate the exact query
with varying parameters.

314 Object-Oriented Programming and Java

• Retrieve the Name and Member ID of all member.
• Retrieve the Name and Member ID of all persons with Gold Privilege

Status.
• Retrieve all information of Names starting with “Chan.”
• Take the Member ID as the input from the console and update the address

information of this member. Read the new address from the console.
• Take the Member ID as the input from the console and delete the member’s

record from the table.

 Index

A

Abstract classes, 57, 83
Abstract methods, 80, 83
Abstract window toolkit

components, 204, 205
events, 209–214
frames in, 203
Layout Managers, 206–208
panels, 205–208

Abstraction, concept of, 23, 40, 104, 166
accept() method, 161
Access control specifiers, 73, 108, 111

action() method, 212
add() method, 188, 191
addActionListener() method, 221
addAll() method, 192
AddAndPrint class, 167, 168
Animate applet, 246–248
Anonymous class, 227–229
Apache Tomcat, 260. See also Tomcat
API. See Application Program Interface
API documentation, 136–138, 224
API libraries, 47, 48, 120
API packages, 136
Applet class, 237, 238, 251, 252
Applets. See Java applets
Appletviewer, 250
Application Program Interface, 43, 123,

137
Arguments, 3, 10, 83, 266
Arithmetic operators, 24, 25
ArrayList class

declaring, 187, 188
methods for, 188, 189
traversing the, 189, 190

Arrays creation, 34
Arrays, sorting alogorithms, 196–199
Assignment operators, 27, 28
Associativity rules, and Java operators, 30

Attribute, in objects, 7, 8, 18, 22, 79
AudioClip object, 243, 244

AWT components
CheckboxGroup, 215
Choice, 217
custom made, 224–226
dialog frames, 221–224
label, 214
List, 218, 219
menus and menu items, 219–221
TextArea, 216, 217

B

bind()method, 293
Bitwise operators, 26
Block, declaration of, 32, 33
Boolean primitive, 18, 25
break-statement, 33
Buffer class, 173
BufferedInputStream class, 146,

147
BufferedOutputStream object, 145,

146
BufferedReader class, 46
BufferedWriter class, 148
Bundling. See Encapsulation
Button component, in AWT, 215
Byte, primitive type, 17
ByteArrayInputStream class, 146,

148
ByteArrayOutputStream class,

145, 148, 253
Bytecode. See Java byte code

C

CalculatorEngine class, 40, 44
CalculatorFrame class, 48
CalculatorInterface class, 45

binarySearch method, 198, 199 AQ

AWT. See Abstract window toolkit

acl.read ()
acl.write ()

case statement, 95
Catch block, 121, 122, 126, 128, 130,

132, 133, 291
CGI-BIN scripts, 259
Character stream classes, 148–150
CharArrayReader class, 148, 149
CharArrayWriter class, 148
Checkbox class, 209
Checkbox component, in AWT, 215
CheckboxGroup component, in AWT,

215
Choice class, 217, 218
Class attributes, 107
Class construct, 18–22, 36, 43
Class hierarchy diagram, 54
Class methods, 43
Class objects, 252
Classes

classification, 52–54
common properties of, 61, 62
definition, 8
generalization, 55
hierarchical relationship, 54
inheritance in, 62–80
properties of, 103–106
specialization, 56

Classification, of objects, 52–55
ClassLoader class, 252, 253
Client/Server communication, 158, 284
close()method, 143
Collection Interfaces, 186
Collections class, 196
Collections.sort method, 196
Common Object Request Broker

Architecture (CORBA) and
RMI, 284, 285

Comparable interface, 196
ComparableT interface, 197
Comparator interface, 197
Complement, 192, 193
Component class, 204
Concrete classes, 57
Conditional expression operator, 28
Constructors, 23
Consumer–producer synchronization, 171
containsAll() method, 192
continue-statement, 34
Contract inheritance, 80
Contract part, 79
Control-flow statements, 30, 31

Cookie operations, 272
Counter class, 13, 18–20
CREATE SQL statement, 305, 306
CREATE SQL statement, 305, 306
createStatement()method, 304,

310
CRUD operations, 302, 310
Custom serialization, 281–283

D

Data manipulation, 303
Data Manipulation Language (DML)

record creation and deletion, 307
record retrieval, 307

Database, 297. See also Java Database
Connectivity

Database Management Systems (DBMS),
297, 303

DataInputStream class, 147
DataInputStream object, 162
DataOutputStream class, 147
defaultReadObject()method, 283
defaultWriteObject()method, 283
Delegation model, in JDK, 212–214
DELETE SQL statement, 307
Dialog class, 221–223
Display flicker, 247
dispose() method, 222
Distributed object computing, 284, 286
Distribution, SDK, 251, 260
DivideByZero exception, 123
doGet()method, 269, 270
doPost()method, 269, 270
doSomething()method, 291, 294
double, primitive type, 17, 18, 28
DriverManager class, 302
DROP SQL statement, 305, 306
Dynamic binding, 93, 96, 97
Dynamic web pages, and java servlets,

259

E

EmptyStack class, 123
Encapsulation

advantages, 112–114
bundling in, 112

316 Index

Data Definition Language (DDL) table
creation and deletion, 305, 306

definition, 111
trade-off, 115

Environment, 45, 46, 48, 123, 136, 237,
242, 251, 253, 260, 276, 287

Event class, 209
Event handling, 209–211
Event-driven programming, 48
EventListener interface, 212, 214
Events, in JDK, 212–214
ExampleFrame class, 203
Exception class, 120, 122
Exception handling

block, finalization of, 131, 132
definition, 121, 122
multiple, 125, 126
nested, 129
object finalization, 131
raising exceptions, 122, 123
regular, 127
semantics, 120, 121
stack object and, 123–125
subconditions in, 128

Exceptions in Java
IOException, 156
UnknownHostException, 156

Execute methods, for SQL statements,
304

Execution, 10, 23, 30, 31, 42–44, 65, 136
(96 instances)

executeQuery()method, 308
executeUpdate()method, 309
Expression statements, 30
extends keyword, 65
Externalizable interface, 284

F

false, boolean value, 18, 25
File class, 152
File descriptors, 138
File manipulation, in Java

file input, 142
file output, 143
printing, 144

FileInputStream object, 142
FileNotFoundException class, 142
FileOutputStream class, 143
FileReader class, 148, 149
FilterInputStream class, 146, 148
FilterReader class, 148, 149

FilterWriter class, 148
final attributes, 83
finalize()method, 131, 133
finally clause, 131
Finger, 156
float, primitive type, 17, 18, 28
Florist database, 305, 306
for-each construct, 186, 189
fork()function, 166
Formal parameter, 122
forName()method, 302
Frame class, 203, 213
friendly, access specifier, 109
FullStack Exception, 123, 124

G

Generalization, of classes, 55
Generic Class, 183–185
Generic programming

basic concept, 179, 183
classes for, 183, 184
methods in, 185
problems with, 180–182

GET HTTP form, 268

get() method, 174
getAttribute()method, 273
getInputStream() method, 157, 176
getOutputStream() method, 157,

176
getRequest() method, 163, 168
getSelectedItems()method, 219
getSession()method, 273
getState() method, 209
getText() method, 209
Graphical user interfaces, 165, 166
Graphics class, 243

H

handleEvent() method, 209
HashMap class

declaration, 194
methods available for, 195

HashSet class
declaration, 190
methods available for, 193
subset and intersection in, 191–193

Index 317

GET path command, 158

HTML class, 238, 267
HTML form, 136, 266, 267, 269, 274,

275
HTTP. See HyperText Transmission

Protocol
HTTP headers, traversing set of, 270
HTTP requests, 271
HttpServlet, 269
HttpServletRequest method, 266,

270
HttpServletResponse, 266
HttpSession, 273
HyperText Transmission Protocol, 158,

160, 168

I

Image class, 243
Implementation part, of inheritance, 79,

80
import java.net.Socket

statement, 156
import keyword, 110, 111
indexOf method, 198
Information hiding, concept of, 11, 112,

114
Inheritance

adding/deleting a class, 72–75
chain in, 75–80
class hierarchy, 67–72
code reuse, 67
definition, 62
implementation, 64–67
interface concept in, 80–88

init()method, 241, 246
Initialization, of object, 23
Input and output operation

character classes, 148–150
classes for, 138–141
code reuse, 145, 146
file input, 143
file output, 144
output, formatting of, 151
token for input, 150

InputStream object, 140, 157, 176
InputStreamReader class, 148
INSERT SQL statement, 307
Instance variable, 18, 41, 163, 240, 245
int, primitive type, 17, 18
Integer object, 195
Interface construct

abstract classes and, 84
attributes in, 83
methods in, 83
multiple inheritance and, 80–82,

85–88
interface keyword, 80
Internal representation, 21, 112, 114, 140
Intersection, in HashSet Class, 192
IOException object, 122, 140, 156
ItemListener object, 214–216, 218,

219, 225
Iterator class, 189, 190

J

Java API

networking and multithreading in, 155
networking model in, 155, 156

Java applets
animation in, 245, 246
code, dynamic loading of, 250–253
custom made, 242
event handling in, 238
HTML and, 238, 241
life cycle of, 241, 242
multimedia and, 243, 244
parameters in, 248
security issues, 253–257
URL content, retrieval of, 240

Java Beans, 202
Java byte code, 44, 237, 256
Java Database Connectivity, 308

architecture of, 298
data definition language (DDL) with,

305
data manipulation language (DML)

with, 307
database application using, steps in,

302
drivers, 299, 300
record creation and deletion, 307
record retrieval, 307
table creation and deletion, 305–306
types, 308
updatable result sets, 310
updating records using, 309

Java Development Kit, 44, 136, 148
Java Development Kit 1.1, 148, 153, 202,

279
events in, 212

Java Enterprise API, 285

318 Index

Java Native Interface (JNI) APIs, 299, 300
Java programming language

abstraction used in, 166
concept of generics in, 183
limitations, 285, 286
object definition, 18
packages in, 110, 111
primitive data types, 17
variable definition, 18, 19

Java servlets
characteristics of, 266
and dynamic web pages, 259
output of, 271
parameters and headers, 266–271

Java virtual machine, 4, 110, 121, 131,
237, 279, 280

Java, implementation of
code execution, 42
concept, 39, 40
event driven programming in, 48
methods for, 40–42
user interface, 44–46

Java-enabled Web browser, 239, 251
java.applet package, 136
java.applet.Applet class, 237
java.awt package, 47, 241
java.io package, 145
java.lang package, 166
java.net package, 156, 176
java.sql package, 302, 303
java.util package, 150
java.utils.Collections class,

196
javac command, 237
JButton class, 231, 233
JDBC. See Java Database Connectivity
JDBC drivers, 298

comparison of, 301
types of

Java–Native API adapter, 299,
300

JDBC-Net protocol, 301
JDBC-ODBC Bridge, 299
Pure Java, 301

JDBC Statement types, 304
JDBC types, mapping of SQL types to,

308
JDBC-Net protocol, 300, 301
JDBC-ODBC Bridge, 299

JDK. See Java Development Kit
JTable class, 234
JVM. See Java virtual machine

K

keytool.exe program, 256

L

Label class, 231
Label component, in AWT, 214
Layout Manager, 202, 206
LineNumberInputStream class,

146, 148
LineNumberReader class, 148, 149
Linked list, 112
List interface, 187
Listener sockets, 161
ListIterator class, 190
ListIterator method, 190
Local class, 228, 236
Local variable, 19, 32, 36, 271, 274
Logical operators, 25
long, primitive type, 17, 26

M

MalformedURL exception class, 123
Map interface, 194
Memory de-allocation, 131
Menu class, 220
MenuBar class, 220
MenuItem class, 220
Message, 9, 10
Message passing, 10, 36, 135
Methods

definition, 19, 20
parts of, 79
signature, 19, 24, 35, 71, 97, 789

MixedComponents class, 217
modify()method, 283
Modularity, 103–115
MouseAdapter class, 214, 226, 229
MouseListener class, 214, 225, 226
moveToInsertRow()method, 311
Multiple inheritance

concept of, 76
interface and, 80–82
problems associated with, 77, 78

Index 319

Java Interface Definition Language
(Java IDL), 285

Multithreading, concept of, 166–175
MyAppletLoader class, 251, 252
MyExitButton class, 210
MyNetworkLoader class, 252, 253
MySQL database, 302, 303

N

Network-centric computing, 285
new operator, 34, 42
newInstance()method, 302
notify() method, 172, 175

O

Object (s)

classification, 52
creation of, 12, 13
definition, 9, 18
initialization, 23
instantiation, 20

Object class, 182
Object de-serialization, 282
Object instantiation, 119, 161, 242, 251
Object Request Broker (ORB), 284, 285

components in, 281
sensitive data in, 283

Object-oriented programming
basic concept, 1
class definition, 7–9
class generalization, 55
Java and, 4
message, definition of, 9, 10
methods in, 10, 11
object classification in, 52
object definition, 7–9

ObjectOutputStream
Open Database Connectivity (ODBC),

299
Operation overloading, 97, 100
Operators. See also Operation

overloading
precedence, 29
types, 24–28

OutputStream class, 145, 157, 176

OutputStreamWriter class, 148
Overloaded constructors. See

Constructors

P

package keyword, 110
paint()method, 225, 245
Panel class, 241
Parameter, 22, 41, 71, 120, 122
performOperation() method, 122
PipedInputStream class, 146, 148
PipedOutputStream class, 145, 148
PipedReader class, 148, 149
PipedWriter class, 148
Platform independence, of Java, 4, 135
policytool.exe program, 256
Polymorphism, 100–102
POST HTTP form, 268, 269
Precedence. See Operators
Prepared statements, 311, 312
PreparedStmt class, 312
printarray method, 185, 186
println() method, 139
PrintStream class, 139

printing using, 144
PrintWriter, 271
Private data field, 283
private keyword, 21, 73
protected keyword, 109, 116
Proxy server, 176
public keyword, 21, 83
Pure Java Driver, 301
push() method, 113
PushbackInputStream class, 146,

148
PushbackReader class, 148, 149
put() method, 174
Puzzle class, 230

R

RandomAccessFile class, 152, 153
read()method, 135
Reader classes, 173
readLine()method, 45, 46
readObject()method, 281, 283
rebind()method, 293
Receiver, 3, 9, 10, 100

320 Index

Object serialization, 279. See also
Custom serialization; Object

ObjectInputStream object, 280

de-serialization

, 280

Records
insertion and deletion of, 307, 311
retrieval of, 307

Reflection API, 302
Relational operators, 26
Remote Method Invocation (RMI), 286,

289
architecture of, 289–291
and CORBA, 285
deployment, 293, 294
example of, 288

steps for creating, 287
stub/skeleton layer of, 289
transport layer of, 290, 291

Remote object, 284, 287, 290, 291
Remote procedure call (RPC), 284, 286
Remote Reference Layer (RRL), 289

client and server side, 290
RemoteException, 293
removeAll() method, 193
request() method, 158
ResultSet class, 309, 311
return-statement, 35
returnResponse() method, 163, 168
rmic compiler, 288, 293
run() method, 166–168, 176
Run-time type identification (RTTI), 182
Runnable interface, 176

S

Scanner class, 150
Security issue, in Java, 255–257
SELECT statement, 305, 308, 310
Sender, 3, 9, 19, 35, 100
SequenceInputStream class, 146
Serializable interface, 281
Serialization

custom, 281–283
object, 279

Serialize class, 280
Server. See Client/Server communication
ServerImpl class, 294
ServerSocket class, 161, 176
service()method, 266
Servlet-mapping, 275
Servlets. See Java servlets

Session handling, 271–273
Session management, 273
Session timeout, 274
Set interface, 190
setAttribute()method, 273, 274
setMenuBar()method, 220
setModal()method, 222
setMultipleMode()method, 218
Shared variable, 106, 169, 274
short, primitive type, 17, 26
Single inheritance, 75–77, 79, 80
Single thread of execution, 166
Smalltalk-80, 13
Socket class, 156, 157, 161, 176
Socket programming

client side, 157–160
code execution, 164, 165
server side, 161–163

Software engineering, 40, 75, 120
SortedMap interface, 187
SortedSet interface, 187
Sorting algorithm, for arrays, 196–199
Specialization, of classes, 54, 56
SQL Query statements, 307, 309
SQL statements, execution of, 304, 305
SQL types, 308
SQLException class, 303
Stack class, 180, 182
StackE class, 184
StackApp class, 185
StackItem class, 114
start() method, 168, 176
State, of the object, 7, 8, 282
Statement class, 305–309, 311
Static binding, 93–95
static method, 43, 83, 108
static void main() method, 159,

169, 291
stderr, 138
stdout, 138
String class, 182, 186
StringBufferInputStream class,

146, 148
StringReader class, 148, 149
StringTokenizer class, 163
strList object, 188
Subclass, definition, 53, 54
Subset, and HashSet class, 192
Superclass, definition, 53, 54

Index 321

remote reference layer (RRL) of

Layer (RRL))
(see Remote Reference

Swing components, JDK 1.2
AWT, transition from, 231–234

Swing JFrame, 233
switch statement, 97
Synchronized statement, 170
synchronized tag, 175
System class, 138
System privileged services, 156
System.err object, 138, 140, 153
System.in object, 138, 140, 153
System.out.println()method,

37 , 43

T

Table creation and deletion, 305, 306
TCP sockets, 266
TCP-based transport, 289, 291
TCP/IP socket connections, 156
TextArea component, in AWT, 21, 217
TextComponent class, 209
TextField class, 239, 241
Thread creation, methods for

Runnable class, 166, 168, 176
using Thread class, 166, 167

Thread synchronization, 169–175
throw-statement, 120
throws Exception statement, 46
Tomcat

binary distribution, 260
configuration of, 261
downloading and installation, 260
home directory of, 261
log window, 262
sample servlet in, 263

compilation of, 264
servlet tag for, 264
servlet-mapping tag for, 265

session timeout of, 274
setting up paths for, 262
start-up page of, 263
starting and stopping, 262

toString() method, 140
Transform servlet, 275
Transient data field, 283

TransmissionError exception
object, 121–123

true, boolean value, 18, 25, 26, 28
Trusted applets, 255
try-block, 120–123, 125, 129, 131
Typecast operator, 28, 29, 140

U

Uniform Resource Locator (URL), 158,

303
Union, in HashSet class, 192
UNIX

convention, 156
operating systems, 166

UnknownHostException, 156
unModify()method, 283
Untrusted applets, 253
Updatable ResultSet, in JDBC, 310
UPDATE, SQL statement, 309, 310

V

Variable definition, 18

W

wait() method, 172, 175
Web browser, 136, 165, 177, 238–242,

245
Web client/server communication, 158,

161
WebRetriever class, skeleton of, 157
WebServe

instances in, 165
multithreading in, 169

Web server
codes for, 164
processes requests for, 168

while-statement, 31
WindowAdaptor class, 48
windowClosing()method, 48
write()method, 144
writeObject()method, 281
Writer classes, 173

322 Index

