
Object and Data validation using

Regular Expression

SE306: Object Oriented Concept II

What is Regular Expression

 A regular expression, regex or regexp is a formal language

in theoretical computer science and software engineering.

 It is a sequence of characters that define a search pattern.

 The concept arose in the 1950s when the American

mathematician Stephen Cole Kleene formalized the

description of a regular language.

Patterns

 The pattern is a single character or a metacharacter (with

its special meaning), or a regular character (with its literal

meaning) for matching standard textual syntax.

 For example, in the regex a. a is a literal character which

matches just 'a' and . is a meta character which matches

every character except a newline. Therefore, this regex

would match for example 'a ' or 'ax' or 'a0'.

Boolean "or"

 A vertical bar separates alternatives.

 For example, Selim|Saeed can match “Selim" or “Saeed".

Grouping

 Parentheses are used to define the scope and precedence

of the operators (among other uses).

 For example, BSSE|MSSE and (B|M)SSE are equivalent

patterns which both describe the set of “BSSE" or

“MSSE".

Quantification

? The question mark indicates zero or one occurrences of the

preceding element. For example, colou?r matches both "color" and

"colour".

* The asterisk indicates zero or more occurrences of the preceding

element. For example, ab*c matches "ac", "abc", "abbc", "abbbc", and

so on.

+ The plus sign indicates one or more occurrences of the preceding

element. For example, ab+c matches "abc", "abbc", "abbbc", and so

on, but not "ac"

{n} The preceding item is matched exactly n times. Example: a{3}

matches “aaa”

{min,} The preceding item is matched min or more times. Example: a{3, }

matches “aaa” or “aaaa” or more

{min, max} The preceding item is matched at least min times, but not more

than max times.

RE in Java

The java.util.regex package primarily consists of the

following three classes:

 Pattern Class: To create a pattern, you must first invoke

one of its public static compile() methods, which will then

return a Pattern object.

 Matcher Class: A Matcher object is the engine that

interprets the pattern and performs match operations

against an input string.

 PatternSyntaxException: A PatternSyntaxException

object is an unchecked exception that indicates a syntax

error in a regular expression pattern.

Basic Java RE Code
import java.util.regex.Matcher;

import java.util.regex.Pattern;

{
String line = "Welcome BSSE11 Batch";

String pattern = "S{2,8}";

// Create a Pattern object

Pattern r = Pattern.compile(pattern);

// Now create matcher object.

Matcher m = r.matcher(line);

System.out.println(m.find() ? "Found value: " + line : "NO MATCH“);

}

Regex Code

Doing it in Java, I

 First, you must compile the pattern

import java.util.regex.*;

Pattern p = Pattern.compile("[a-z]+");

 Next, you must create a matcher for a specific piece of text by sending a

message to your pattern

Matcher m = p.matcher("Now is the time");

 Points to notice:

 Pattern and Matcher are both in java.util.regex

 Neither Pattern nor Matcher has a public constructor; you create

these by using methods in the Pattern class

 The matcher contains information about both the pattern to use and the

text to which it will be applied

Doing it in Java, II

 Now that we have a matcher m,

 m.matches() returns true if the pattern matches the entire
text string, and false otherwise

 m.lookingAt() returns true if the pattern matches at the
beginning of the text string, and false otherwise

 m.find() returns true if the pattern matches any part of the
text string, and false otherwise

 If called again, m.find() will start searching from where the last match
was found

 m.find() will return true for as many matches as there are in the
string; after that, it will return false

 When m.find() returns false, matcher m will be reset to the
beginning of the text string (and may be used again)

Finding what was matched

 After a successful match, m.start() will return the index of the
first character matched

 After a successful match, m.end() will return the index of the
last character matched, plus one

 If no match was attempted, or if the match was unsuccessful,
m.start() and m.end() will throw an IllegalStateException

 This is a RuntimeException, so you don’t have to catch it

RE Syntax

. Matches any single character (many applications exclude newlines,

[] Matches a single character that is contained within the brackets. For

example, [abc] matches "a", "b", or "c". [a-z] specifies a range which

matches any lowercase letter from "a" to "z".

[^] Matches a single character that is not contained within the brackets. For

example, [^a-z]matches any single character that is not a lowercase letter

from "a" to "z".

$ Matches the ending position of the string.

() A marked subexpression is also called a block or capturing group.

\n Matches what the nth marked subexpression matched, where n is a digit

from 1 to 9

RE Examples

 .at matches any three-character string ending with "at",
including "hat", "cat", and "bat".

 [^b]at matches all strings matched by .at except "bat".

 [^hc]at matches all strings matched by .at other than
"hat" and "cat".

 [hc]at$ matches "hat" and "cat", but only at the end of the
string or line.

 \[.\] matches any single character surrounded by "[" and
"]" since the brackets are escaped, for example: "[a]" and
"[b]".

 s.* matches s followed by zero or more characters, for
example: "s" and "saw" and "seed".

Example

String line = “tusar0805iitdu";

String pattern =”[a-z]+";

int count = 0;

Pattern r = Pattern.compile(pattern);

Matcher m = r.matcher(line);

while(m.find()) {

count++;

System.out.println("Match number "+count);

System.out.println("start(): "+m.start());

System.out.println("end(): "+m.end());

System.out.println(line);

}

RE Syntax

\w Matches the word characters.

\W Matches the nonword characters.

\s Matches the whitespace. Equivalent to [\t\n\r\f].

\S Matches the nonwhitespace.

\d Matches the digits. Equivalent to [0-9].

\D Matches the nondigits.

\A Matches the beginning of the string.

\Z Matches the end of the string. If a newline exists, it matches just before newline.

\z Matches the end of the string.

RE Syntax

\b
Matches the word boundaries when outside the brackets. Matches the

backspace (0x08) when inside the brackets.

\n, \t Matches newlines, carriage returns, tabs, etc.

\G Matches the point where the last match finished.

\n Back-reference to capture group number "n".

^abc$ start / end of the string

\. *
\\

escaped special characters

Replace in Java

String REGEX = "dog";

String INPUT = "The dog says meow. " + "All dogs say meow.";

String REPLACE = "cat";

Pattern p = Pattern.compile(REGEX);

Matcher m = p.matcher(INPUT);

INPUT = m.replaceAll(REPLACE);

System.out.println(INPUT);

Additional methods

 If m is a matcher, then

 m.replaceFirst(replacement) returns a new String where the first

substring matched by the pattern has been replaced by replacement

 m.replaceAll(replacement) returns a new String where every

substring matched by the pattern has been replaced by replacement

 m.find(startIndex) looks for the next pattern match, starting at

the specified index

 m.reset() resets this matcher

 m.reset(newText) resets this matcher and gives it new text to examine

(which may be a String, StringBuffer, or CharBuffer)

RE in Python

Regular Expressions in Python

 Regular expressions are a powerful string
manipulation tool

 All modern languages have similar library packages
for regular expressions

 Use regular expressions to:

 Search a string (search and match)

 Replace parts of a string (sub)

 Break strings into smaller pieces (split)

Search and Match

 The two basic functions are re.search and
re.match
 Search looks for a pattern anywhere in a string

 Match looks for a match staring at the beginning

 Both return None (logical false) if the pattern isn’t
found and a “match object” instance if it is
>>> import re

>>> pat = "a*b”

>>> re.search(pat,"fooaaabcde")

<_sre.SRE_Match object at 0x809c0>

>>> re.match(pat,"fooaaabcde")

>>>

Q: What’s a match object?

 A: an instance of the match class with the details of

the match result

>>> r1 = re.search("a*b","fooaaabcde")

>>> r1.group() # group returns string

matched

'aaab'

>>> r1.start() # index of the match start

3

>>> r1.end() # index of the match end

7

>>> r1.span() # tuple of (start, end)

(3, 7)

What got matched?

 Here’s a pattern to match simple email addresses

\w+@(\w+\.)+(com|org|net|edu)

>>> pat1 = "\w+@(\w+\.)+(com|org|net|edu)"

>>> r1 = re.match(pat,"finin@cs.umbc.edu")

>>> r1.group()

'finin@cs.umbc.edu’

 We might want to extract the pattern parts, like the

email name and host

What got matched?

 We can put parentheses around groups we want to
be able to reference

>>> pat2 = "(\w+)@((\w+\.)+(com|org|net|edu))"

>>> r2 = re.match(pat2,"finin@cs.umbc.edu")

>>> r2.group(1)

'finin'

>>> r2.group(2)

'cs.umbc.edu'

>>> r2.groups()

r2.groups()

('finin', 'cs.umbc.edu', 'umbc.', 'edu’)

 Note that the ‘groups’ are numbered in a preorder
traversal of the forest

More re functions

 re.split() is like split but can use patterns
>>> re.split("\W+", “This... is a test,

short and sweet, of split().”)

['This', 'is', 'a', 'test', 'short’,

'and', 'sweet', 'of', 'split’, ‘’]

 re.sub substitutes one string for a pattern
>>> re.sub('(blue|white|red)', 'black', 'blue

socks and red shoes')

'black socks and black shoes’

 re.findall() finds al matches
>>> re.findall("\d+”,"12 dogs,11 cats, 1 egg")

['12', '11', ’1’]

Compiling regular expressions

 If you plan to use a re pattern more than once, compile it
to a re object

 Python produces a special data structure that speeds up
matching

>>> capt3 = re.compile(pat3)

>>> cpat3

<_sre.SRE_Pattern object at 0x2d9c0>

>>> r3 = cpat3.search("finin@cs.umbc.edu")

>>> r3

<_sre.SRE_Match object at 0x895a0>

>>> r3.group()

'finin@cs.umbc.edu'

Pattern object methods

Pattern objects have methods that parallel the re
functions (e.g., match, search, split, findall, sub), e.g.:
>>> p1 = re.compile("\w+@\w+\.+com|org|net|edu")

>>> p1.match("steve@apple.com").group(0)

'steve@apple.com'

>>> p1.search(”Email steve@apple.com today.").group(0)

'steve@apple.com’

>>> p1.findall("Email steve@apple.com and bill@msft.com
now.")

['steve@apple.com', 'bill@msft.com’]

>>> p2 = re.compile("[.?!]+\s+")

>>> p2.split("Tired? Go to bed! Now!! ")

['Tired', 'Go to bed', 'Now', ’ ']

email address

sentence boundary

Assignment

 Check the user account name validation (First Name and

Last Name)

 Create password protection RE validation; at least 8

character and combination of uppercase, lowercase and

digit.

 Check the phone number and email ID

