
Principles of Object-
Oriented Design

M Saeed Siddik
IIT, University of Dhaka

SOLID Principle
Single-responsibility principle

class should only have a single responsibility, that is, only changes to one part of the
software's specification should be able to affect the specification of the class.

Open–closed principle

"Software entities ... should be open for extension, but closed for modification."

Liskov substitution principle

"Objects in a program should be replaceable with instances of their subtypes
without altering the correctness of that program." See also design by contract.

Interface segregation principle

"Many client-specific interfaces are better than one general-purpose interface."

Dependency inversion principle

One should "depend upon abstractions, [not] concretions

2

Single-responsibility principle

• A class should have one, and only one, reason to
change.

• Every module or class should have responsibility
over a single part of the functionality

• Responsibility should be entirely encapsulated
by the class, module or function

3

4

Single-responsibility principle 5

Open-Closed Principle (OCP)
• "Software Systems change during their life time"

• both better designs and poor designs have to face the changes;
• good designs are stable

“Software entities (classes, modules, functions, etc.)

should be open for extension, but closed for

modification.” B. Meyer, 1988 / quoted by R. Martin, 1996

 Be open for extension

module's behavior can be extended

 Be closed for modification

source code for the module must not be changes

 Modules should be written so they can be extended

 without requiring them to be modified

6

Open the door ...

• How to make the Car run efficiently with a TurboEngine?
• Only by changing the Car!

• ...in the given design

7

 ... But Keep It Closed!

• A class must not depend on a concrete class!
• It must depend on an abstract class ...
• ...using polymorphic dependencies (calls)

8

Strategic Closure
 "No significant program can be 100% closed "
 R.Martin, “The Open-Closed Principle,” 1996

• Closure not complete but strategic

• Use abstraction to gain explicit closure

• provide class methods which can be dynamically invoked
• to determine general policy decisions

• e.g. draw Squares before Circles

• design using abstract ancestor classes

• Use "Data-Driven" approach to achieve closure

• place volatile policy decisions in a separate location
• e.g. a file or a separate object

• minimizes future change locations
9

Liskov Substitution Principle (LSP)

• The principle defines that objects of a superclass shall be
replaceable with objects of its subclasses without breaking the
application.

• That requires the objects of your subclasses to behave in the
same way as the objects of your superclass.

10

Inheritance should ensure that any property proved about

supertype objects also holds for subtype objects
B. Liskov, 1987

Liskov Substitution Principle (LSP)

• An overridden method of a subclass needs to accept the same
input parameter values as the method of the superclass.

• That means you can implement less restrictive validation
rules, but you are not allowed to enforce stricter ones in your
subclass.

• Otherwise, any code that calls this method on an object of the
superclass might cause an exception, if it gets called with an
object of the subclass.

• Similar rules apply to the return value of the method. The
return value of a method of the subclass needs to comply with
the same rules as the return value of the method of the
superclass.

11

LSP Example

12 *Source: https://stackify.com/solid-design-liskov-substitution-principle/

LSP Example
• The BasicCoffeeMachine can only brew filter coffee. So, the

brewCoffee method checks if the provided CoffeeSelection
value is equal to FILTER_COFFEE before it calls the private
brewFilterCoffee method to create and return a CoffeeDrink
object.

• The premium coffee machine has an integrated grinder, and
the internal implementation of the brewCoffee method is a
little more complex. But you don’t see that from the outside.
The method signature is identical to the one of the
BasicCoffeeMachine class.

13

Square IS-A Rectangle?

• Should I inherit Square from Rectangle?

Square

?

14

The Answer is ...
• Override setHeight and setWidth

• duplicated code...
• static binding (in C++)

• void f(Rectangle& r) { r.setHeight(5); }

• change base class to set methods virtual

• The real problem
void g(Rectangle& r) {

 r.setWidth(5); r.setHeight(4);

 // How large is the area?

}

• 20! ... Are you sure? ;-)

• IS-A relationship must refer to the behavior of the class!

15

Interface segregation principle

• The interface-segregation principle (ISP) states that no client
should be forced to depend on methods it does not use

• ISP splits interfaces that are very large into smaller and more
specific ones so that clients will only have to know about the
methods that are of interest to them.

• ISP is intended to keep a system decoupled and thus easier to
refactor, change, and redeploy. ISP is similar to the High
Cohesion Principle.

16

Dependency Inversion Principle
I. High-level modules should not depend on low-level modules.

 Both should depend on abstractions.

II. Abstractions should not depend on details.

 Details should depend on abstractions
R. Martin, 1996

 OCP states the goal; DIP states the mechanism

 A base class in an inheritance hierarchy should not know

any of its subclasses

 Modules with detailed implementations are not depended

upon, but depend themselves upon abstractions

Procedural vs. OO Architecture

Procedural
Architecture

Object-Oriented
Architecture 18

DIP Applied on Example
Copy

Reader Writer

Keyboard

Reader

Printer

Writer

Disk

Writer

class Reader {

 public:

 virtual int read()=0;

};

class Writer {

 public:

 virtual void write(int)=0;

};

void Copy(Reader& r, Writer& w){

 int c;

 while((c = r.read()) != EOF)

 w.write(c);

}

19

DIP Related Heuristic

• Use inheritance to avoid direct bindings to classes:

 Design to an interface,

not an implementation!

Client

Interface

(abstract class)

Implementation

(concrete class)

20

Reference
• https://stackify.com/interface-segregation-principle/

• https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-
object-oriented-design

• https://en.wikipedia.org/wiki/SOLID

• https://www.geeksforgeeks.org/solid-principle-in-
programming-understand-with-real-life-examples/

21

https://stackify.com/interface-segregation-principle/
https://stackify.com/interface-segregation-principle/
https://stackify.com/interface-segregation-principle/
https://stackify.com/interface-segregation-principle/
https://stackify.com/interface-segregation-principle/
https://stackify.com/interface-segregation-principle/
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://en.wikipedia.org/wiki/SOLID
https://en.wikipedia.org/wiki/SOLID
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/

End of SOLID Principle

22

