
Object Oriented

UML Class Diagram

Remember from the midterm . . .

7 - Design a software system, in terms of interfaces, which
contain headers of public methods, for the following
problem statement: (20)

 Customers order products from an online store; their
orders will be processes by the closest store to their
address, and their bills will be issued. After the payment
is done, items will be shipped to the customer address.

 Standardized general-purpose modeling language
 Used to specify, visualize, construct, and document the design of an object-oriented system under development
 Offers a way to visualize various elements of a system such as activities, actors, business processes, database

schemas, logical components, programming language statements, and reusable software components.
 Combines techniques from data modeling(entity relationship diagrams), business modeling (work flows), object

modeling, and component modeling

 Booch, Rumbaugh & Jacobson are principal authors
 Still evolving (currently version 2.3)
 Attempt to standardize the proliferation of OO variants

 Is purely a notation
 No modelling method associated with it!
 Was intended as a design notation
 Can be used anywhere in the software development cycle

 Has become an industry standard
 But is primarily promoted by IBM/Rational (who sell lots of UML tools, services)

 Has a standardized meta-model
 Use case diagrams , Class diagrams, Message sequence charts, Activity diagrams, State Diagrams , Module

Diagrams, …

UML Class Diagrams

information structure

relationships between

data items

modular structure for

the system

Use Cases

user’s view

Lists functions

visual overview of the

main requirements

UML Package Diagrams

Overall architecture

Dependencies

between components

(UML) Statecharts

responses to events

dynamic behavior

event ordering,

reachability, deadlock,

etc

UML Sequence Diagrams

individual scenario

interactions between

users and system

Sequence of

messages

Activity diagrams

business processes;

concurrency and

synchronization;

dependencies

between tasks;

5

 A class describes a group of objects with
 similar properties (attributes),

 common behaviour (operations),

 common relationships to other objects,

 and common meaning (“semantics”).

 Examples
 Employee: has a name, employee# and department; an employee is hired, and fired; an employee

works in one or more projects

Employee

name
employee#
department

hire()
fire()
assignproject()

Name (mandatory)
Attributes

(optional)

Operations

(optional)

6

Student

+ name: string [1] = “Anon” {readOnly}

+ registeredIn: Course [*]

+ register (c: Course)

+ isRegistered (c: Course) : Boolean

Name of the class

Visibility:

+, -, #

Attribute
name

Operation
name

Parameters
Return value

Attribute
type

Multiplicity

Default value

Other Properties

7

Fred_Bloggs:Employee

name: Fred Bloggs

Employee #: 234609234

Department: Marketing

 The instances of a class are called objects.
Objects are represented as:

 The relation between an Object and its Class is called “Instantiation”

 Two different objects may have identical attribute values (like two people with

identical name and address)

 Note: Make sure attributes are associated with the right class

 E.g. you don’t want both managerName and manager# as attributes of Project!

(…Why??)

8

 Objects do not exist in isolation from one another
 A relationship represents a connection among things.

 E.g. Fred_Bloggs:employee is associated with the KillerApp:project object

 But we will capture these relationships at the class level (why?)

 Class diagrams show classes and their relationships
 In UML, there are different types of relationships:

 Association

 Aggregation and Composition

 Generalization

 Dependency

 Realization

9

 Associations are semantic connections between
classes.
 If there is a link between two objects, there must be an

association between the classes of those objects.

 Links are instances of associations just as objects are
instances of classes.

Association

Link

10

 Associations may optionally have the following:
 Association name

 may be prefixed or postfixed with a small black arrowhead to indicate the direction in which the name should be
read;

 should be a verb or verb phrase;

 Role names
 on one or both association ends;

 should be a noun or noun phrase describing the semantics of the role;

 Multiplicity
 The number of objects that can participate in an instantiated relation

 Navigability

Association name navigability

multiplicity

role name navigability

multiplicity

* *

11

 Ask questions about the associations:
 Can a company exist without any employee?

 If yes, then the association is optional at the Employee end - zero or more (0..*)

 If no, then it is not optional - one or more (1..*)

 If it must have only one employee - exactly one (1)

What about the other end of the association?

 Can an employee work for more than one company?

 No. So the correct multiplicity is one.

 Some examples of specifying multiplicity:
 Optional (0 or 1) 0..1

 Exactly one 1 = 1..1

 Zero or more 0..* = *

 One or more 1..*

 A range of values 2..6

Company Employee
0 .. *1

12

:StaffMember

staffName
staff#
staffStartDate

:Client

companyAddress
companyEmail
companyFax
companyName
companyTelephone

1 0..*liaises with

contact

person

ClientList

Name
of the

association

Multiplicity
A staff member has

zero or more clients on
His/her clientList

Multiplicity
A client has

exactly one staffmember
as a contact person

Direction
The “liaises with”

association should be
read in this direction

Role
The clients’ role

in this association
is as a clientList

Role
The staffmember’s

role in this association
is as a contact person

13

14

Order

+ dateReceived: Date [0..1]

+ isPrepaid: Boolean [1]

+ lineItems: OrderLine [*] {ordered}

OrderDate Boolean

OrderLine

+isPrepaid+dateReceived

+lineItems {ordered}

1

*

0..1 *

1

15

Person Car*0..1

Person

+ carsOwned: Car [*]

Car

+ Owner: Person [0..1]

Implementation Complexities !

How implement it?

 Generalization is a relationship between a
more general thing and a more specific thing:

 the more specific thing is consistent in every way
with the more general thing.

 the substitutability principle states that you can
substitute the more specific thing anywhere the
more general thing is expected.

 Generalization hierarchies may be created by generalizing
from specific things or by specializing from general things.

Parent

Superclass

Ancestor

Base Class

Child

Subclass

Descendant

Leaf

More general element

More specific element

“is a kind of”

Inheritance

 Class inheritance is implicit in a generalization relationship between classes.

 Subclasses inherit attributes, associations, & operations from the superclass

What is the inheritance

mechanism in Java?

Inheritance

Notes:
 A subclass may override an inherited aspect

 e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses

 A Subclass may add new features

 qualification is a new attribute in CreativeStaff

 Superclasses may be declared {abstract}, meaning they have no instances

 Implies that the subclasses cover all possibilities

 e.g. there are no other staff than AdminStaff and CreativeStaff

Generalization Sets: Implementation

21

Aggregation
 This is the “Has-a” or “Whole/part” relationship

:Person

:Car :Train

0..1 0..1

passengersdriver 1

0..*

aggregation

*

aggregation

MemberClub

*

 Aggregation
 This is the “Has-a” or “Whole/part” relationship

 Composition
 Strong form of aggregation that implies ownership:

 if the whole is removed from the model, so is the part.

 the whole is responsible for the disposition of its parts

 Note: Parts can be removed from the composite (where allowed) before the composite is deleted

2222

3..*

centre{ordered}

1

Polygon CirclePoint

Note: No sharing - any instance of point can be
part of a polygon or a circle, but not both (Why?)

23

:Engine

:Person

:Car :Train
1

0..1 0..1

1..*

passengersdriver 1

1

0..1

0..*

composition

aggregation

:Locomotive

Class Activity

 Draw the UML class diagram which
represents a file system – containing files and
directories

Dependency

Dependencies are relationships in which a change to the supplier
affects, or supplies information to, the client.

 The client depends on the supplier in some way.
 Dependencies are drawn as a dashed arrow from client to supplier.

View ViewController

Model

Layout

Usage Dependencies

 «use»-the client makes use of the supplier in some way -this is the catch-all.

 «call»-the client operation invokes the supplier operation.

 «parameter»-the supplier is a parameter or return value from one of the
client's operations.

 «instantiate»-the client is an instance of the supplier.

client Supplier

The stereotype is

often omitted

Dependencies: Example

client

Supplier client

Dependency from an

operation to a class

<<call>> <<use>>

<<instantiate>>

Example Dependency types:
 <<call>>

 <<use>>

 <<create>>

 <<derive>>

 <<instantiate>>

 <<permit>>

 <<realize>>

 <<refine>>

 <<substitute

>>

 <<parameter>

Interfaces

Order

LineItems [*]
ArrayList

Order

LineItems [*]

<<interface>>

List

get

<<interface>>

Collection

equals

add

ArrayList

get

add

<<requires>>

List

Collection

29

Comments
 -- can be used to add comments within a class description

Notes

Constraint Rules
 Any further constraints {in curly braces}

 e.g. {time limit: length must not be more than three months}

{length = start - end}

Date Range

Start: Date

End: Date

/length: integer

30

 Division of Responsibility
 Operations that objects are responsible for providing

 Subclassing
 Inheritance, generalization

 Navigability / Visibility
 When objects need to know about other objects to call their operations

 Aggregation / Composition
 When objects are part of other objects

 Dependencies
 When changing the design of a class will affect other classes

 Interfaces
 Used to reduce coupling between objects

Good Analysis Classes

 What makes a good analysis class?
 Its name reflects its intent.
 It is a crisp abstraction that models one specific element of

the problem domain.
 It maps to a clearly identifiable feature of the problem

domain.
 It has a small, well-defined set of responsibilities:

▪ a responsibility is a contract or obligation that a class has to its clients;
▪ a responsibility is a semantically cohesive set of operations;
▪ there should only be about three to five responsibilities per class.

 It has high cohesion – all features of the class should help to
realize its intent.

 It has low coupling – a class should only collaborate with a
small number of other classes to realize its intent.

Bad Analysis Classes

 What makes a bad analysis class?

 A functoid- a class with only one operation.

 An omnipotent class -a class that does everything (classes with
"system" or "controller" in their name may need closer scrutiny).

 A class with a deep inheritance tree -in the real world inheritance trees
tend to be shallow.

 A class with low cohesion.

 A class with high coupling.

 Many very small classes in a model – merging should be considered.

 Few but large classes in a model – decomposition should be
considered.

Class Identification Techniques

 Noun/Verb Analysis (Grammatical Parsing)

 CRC Analysis

 Use-Case-Based Analysis

 Real-World Analysis

Noun/verb analysis (Grammatical Parsing)

1.Collect as much relevant information about the problem domain as possible;
suitable sources of information are:
 The requirements model
 The use case model
 The project glossary
 Any other document (architecture, vision documents, etc.)

2.Analyze the documentation:
 Look for nouns or noun phrases -these are candidate classes or attributes.
 Look for verbs or verb phrases -these are candidate responsibilities or operations.

▪ Always think about running methods on objects.
• e.g. given Number objects “x” and “y”

▪ x.add(y) is more OO than x = add(x, y)

3.Make a tentative allocation of the attributes and responsibilities to the classes.

